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Pseudo Projective Modules Which are not Quasi Projective and Quivers

Gabriella D’Este and Derya Keskin Tütüncü*

Abstract. In this paper we construct pseudo projective modules which are not quasi

projective over non-commutative perfect rings. To do it we construct finite dimen-

sional quiver algebras over the field Z2. The modules which are constructed will have

finite length three and only three nonzero proper submodules.

1. Introduction

We consider associative rings R with identity and all modules considered are unitary left

R-modules. Throughout this paper K will be any field.

Let M be a module. M is said to be quasi projective (pseudo projective) if, for any

submodule X of M , any homomorphism (epimorphism) f : M →M/X can be lifted to an

endomorphism of M . Note that pseudo projective modules are named as epi-projective

in [2].

Let M be a module and (P, p) be a projective cover of M . M is called automorphism

coinvariant if, for every automorphism f : P → P , f(Ker p) ⊆ Ker p, equivalently, for

every automorphism f : P → P , f(Ker p) = Ker p. It is proven in [3, Theorem 2.3]

that automorphism coinvariant modules and pseudo projective modules coincide over left

perfect rings.

Let x be a vertex of a quiver Q. Then S(x) will denote the simple representation

corresponding to the vertex x. On the other hand, P (x) (resp. I(x)) will denote the

indecomposable projective (resp. injective) representation corresponding to the vertex x.

Sometimes, for short, S(x) is replaced by x and pictures of the form
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1 2

2
,
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2
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, . . .

denote the composition series of indecomposable modules. For more background on quivers

we refer to [1, 6].
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The aim of this paper is to construct pseudo projective modules which are not quasi

projective. The modules that we construct by means of quivers are either injective (see Ex-

amples 2.3 and 2.4) or of injective dimension one and infinity (see Theorem 2.8). Moreover

they have finite length three and only three nonzero proper submodules.

This paper is organized as follows. In Section 1 we recall some definitions and conven-

tions. In Section 2 we collect all the results.

2. Results

The following lemma is the dual of Lemma 2 in [5]. We are giving its proof for sake of

completeness.

Lemma 2.1. (see also [2, Exercises 4.45(8)]) Let M be an R-module whose lattice of

submodules is
M

N1 N2

N1 ∩N2

0

�
�
��

[
[
[[

[
[
[[

�
�
��

with M/N1 �M/N2. The following facts hold:

(i) M is not quasi projective.

(ii) M is pseudo projective if and only if EndR(M/Ni) ∼= Z2 for i = 1, 2.

Proof. (i) We first note that the two submodules of length 2 of M are uniserial. On the

other hand, the unique factor module of M of length 2 is the direct sum of two non-

isomorphic simple modules. Hence every nonzero endomorphism f of M which is not an

automorphism has the property that f(M) = N1 ∩N2.

Let π : M →M/(N1 ∩N2) be the natural epimorphism and let g : M →M/(N1 ∩N2)

be the homomorphism defined by g(n1 +n2) = n1 +N1 ∩N2 for all n1 ∈ N1 and n2 ∈ N2.

Since g(M) = N1/(N1∩N2), we conclude that there is no f ∈ EndR(M) such that πf = g.

(ii) Assume M is pseudo projective. Suppose that f1, f2 are two nonzero endomor-

phisms of M/N1 with f1 6= f2. Since M/N1 is simple, f1 and f2 are isomorphisms.

Let n2 ∈ N2. Then there exist n′2, n
′′
2 ∈ N2 such that f1(n2 + N1) = n′2 + N1 and
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f2(n2+N1) = n′′2+N1. With n2, n
′
2, n

′′
2 as above and n1 ∈ N1 let g1, g2 : M →M/(N1∩N2)

be the homomorphisms defined by the formula

g1(n1 + n2) = n1 + n′2 +N1 ∩N2, g2(n1 + n2) = n1 + n′′2 +N1 ∩N2.

Then N1/(N1 ∩N2) $ gi(M) and so gi is an epimorphism for every i = 1, 2. Let π : M →
M/(N1 ∩ N2) be the natural epimorphism and let h1, h2 be two endomorphisms of M

such that πh1 = g1 and πh2 = g2. Set h = h1 − h2. Since g1 6= g2, we have h 6= 0 and

h(M) 6= N1 ∩ N2. Fix m = n1 + n2 ∈ M with n1 ∈ N1 and n2 ∈ N2. Then there exist

n′2, n
′′
2 ∈ N2 such that h(m) + N1 ∩N2 = πh(m) = g1(m) − g2(m) = n′2 − n′′2 + N1 ∩N2.

It follows that h(M) ⊆ N2. This implies that h(M) = N2, but this contradicts the

first remark on the endomorphisms of M . Consequently, EndR(M/N1) ∼= Z2. Similarly,

EndR(M/N2) ∼= Z2.

Assume now EndR(M/Ni) ∼= Z2 for i = 1, 2. Let f : M → M/N1 be an epimorphism.

Since N1 and N2 are the unique submodules of M of length 2 and M/N1 � M/N2 we

have Ker f = N1. This remark and the hypothesis EndR(M/N1) ∼= Z2 imply that f

is the natural epimorphism π : M → M/N1. Therefore f = π lifts to the identity of

M . The same is true for any epimorphism f : M → M/N2. Now assume f : M →
M/(N1 ∩ N2) is an epimorphism. Since N1 ∩ N2 is the unique simple submodule of M

and M/Ker f ∼= M/(N1 ∩ N2), it follows that Ker f = N1 ∩ N2. On the other hand, we

have EndR(M/(N1 ∩ N2)) ∼= Z2 ⊕ Z2. This implies that f is the natural epimorphism

π : M → M/(N1 ∩N2). Thus also in this case f lifts to the identity of M , and the proof

of (ii) is completed.

Remark 2.2. Let R be a ring and let a be an element of the center of R. Assume that N is

an R-module which has two elements x and y such that N = Rx, y = ax and S = Ry is the

unique nonzero proper submodule of N . Let f : N → N be the R-homomorphism defined

by f(n) = an, for any n ∈ N . Then we have that f(rx) = arx = rax = ry ∈ S for any

r ∈ R. Consequently, f(N) = S. Since N and S are not isomorphic, Ker f = S. Hence

N/S ∼= S. Now let R, M , N1 and N2 be as in Lemma 2.1. Assume that R is commutative.

Then N1 and N2 satisfy the hypotheses on N above and clearly N1 ∩ N2 is the unique

nonzero proper submodule of N1 and N2. Therefore we have N1/(N1 ∩ N2) ∼= N1 ∩ N2

and N2/(N1 ∩N2) ∼= N1 ∩N2. This is a contradiction since M/N1 �M/N2. Therefore R

cannot be commutative in Lemma 2.1.

Example 2.3. There is a hereditary K-algebra R and an R-module M with projective

cover (P, p) such that M satisfies the hypotheses of Lemma 2.1, EndR(M) ∼= K and

AutP ∼= K∗ ×K∗.
Construction. Let R be the K-algebra given by the quiver 1 −→ 3 ←− 2 and let M

be the R-module I(3) = 1 2
3 . Note that P (1) = 1

3 , P (2) = 2
3 and P (3) = 3. Then the
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lattice of submodules of M is

M

P (1) P (2)

P (3)

0

�
�
�

[
[
[

[
[
[

�
�
�

and we have I(3)/P (1) � I(3)/P (2). (Also EndR(I(3)/P (1)) ∼= EndR(I(3)/P (2)) ∼= K

because I(3)/P (1) and I(3)/P (2) are one dimensional vector spaces.) Moreover we clearly

have EndR(I(3)) ∼= K and P ∼= P (1) ⊕ P (2). On the other hand, we have EndR(P ) ∼=
K ⊕K and so AutP ∼= K∗ ×K∗.

Example 2.4. There is a non hereditary K-algebra R and an R-module M with projective

cover (P, p) such that M satisfies the hypotheses of Lemma 2.1 and EndR(M) ∼= K[x]/(x2).

Moreover, if K = Z2, then AutP is C2 × C2 and for any f ∈ AutP we have f(v) = v for

all v ∈ Ker p.

Construction. Let R be the K-algebra given by the quiver 1
a−→ 2 bb b with relations

ba = b2 = 0 and let M = I(2) = 1 2
2 . Note that P (1) = 1

2 , P (2) = 2
2 and S(2) = 2. Also

in this case the lattice of submodules of M is of the form

M

P (1) P (2)

S(2)

0

�
�
�

[
[
[

[
[
[

�
�
�

with I(2)/P (1) � I(2)/P (2) and EndR(I(2)) ∼= K[x]/(x2). (Also EndR(I(2)/P (1)) ∼=
EndR(I(2)/P (2)) ∼= K because I(2)/P (1) and I(2)/P (2) are one dimensional vector

spaces.) Then P ∼= P (1) ⊕ P (2) is of the form V1
a−→ V2 bb b and there exists a ba-

sis {v1, v2, v3, v4} of P such that V1 = 〈v1〉, V2 = 〈v2, v3, v4〉, Ker p = 〈v2 − v4〉, av1 = v2
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and bv3 = v4. Hence bv2 = bv4 = 0. Assume now K = Z2, and take any f ∈ AutP .

Then f(v1) = v1 and f(v3) is one of the vectors v3, v2 + v3, v3 + v4, v2 + v3 + v4. Since

f(v2) = f(av1) = v2 and f(v4) = f(bv3) = v4, we have f(v) = v for all v ∈ 〈v1, v2, v4〉.
This means that f is the identity on Ker p = 〈v2 − v4〉. Since P is generated, as a left R-

module, by v1 and v3 and f2(v3) = v3, it follows that f2 is the identity map. Consequently

AutP ∼= C2 × C2.

Theorem 2.5. There exist pseudo projective modules which are not quasi projective over

a non-commutative perfect ring.

Proof. This follows from Lemma 2.1 and Examples 2.3 and 2.4 when the field K is the

field Z2. Note that in Examples 2.3 and 2.4, the R-modules M are also automorphism

coinvariant and R is a perfect ring.

Remark 2.6. We should point out that, under the assumption that K = Z2, the module

M in Example 2.3 is isomorphic to the module over a matrix algebra considered in [4, Ex-

ample 5.1], the dual of [4, Example 3.1]. On the other hand, the module M in Example 2.4

is the dual of the module considered in [4, Example 3.2] defined over a matrix algebra.

Remark 2.7. Any module M satisfying the hypotheses of Lemma 2.1 has finite length three

and at least two non-isomorphic composition factors. Moreover the modules I(3) = 1 2
3

in Example 2.3 and I(2) = 1 2
2 in Example 2.4 are the last terms of two Auslander-Reiten

sequences, involving all their submodules, of the form

0 −→ 3 −→
1

3
⊕

2

3
−→

1 2

3
−→ 0

and

0 −→ 2 −→
1

2
⊕

2

2
−→

1 2

2
−→ 0.

The middle term is always the projective cover of I(3) and I(2), respectively.

Theorem 2.8. There exist non injective modules satisfying the hypotheses of Lemma 2.1

and their injective dimensions may be either one or infinite.

Proof. Let R be the hereditary K-algebra given by the following quiver:

1 2 4

↘ ↓ ↙

3
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Then 1 2
3 satisfies the hypotheses of Lemma 2.1, but it is not a direct summand of the

R-module I(3) = 1 2 4
3 . Consequently the injective dimension of 1 2

3 is equal to one.

Similarly, let R be the K-algebra given by the quiver

1
a−→ 2 bb b

with relations ba = b3 = 0. Then 1 2
2 satisfies the hypotheses of Lemma 2.1, but it is

not a direct summand of the R-module I(2) =
2

1 2
2

. It is easy to check that the injective

dimension of 1 2
2 is infinite.

Remark 2.9. Let 1 2
3 be the module used in the proof of Theorem 2.8. Then the em-

bedding 1
3 ↪→ 1 2

3 has a factorization of the form 1
3 ↪→ 1 2 4

3 3 � 1 2
3 . Consequently,

1
3 ↪→ 1 2

3 is a reducible map.

Theorem 2.10. There exist a K-algebra R and R-modules M , N1, N2 as in Lemma 2.1

with the following properties:

(a) N1 and N2 are projective and Ni ↪→ M and N1 ∩ N2 ↪→ Ni are irreducible, for

i = 1, 2.

(b) N1 ∩N2 is projective and HomR(M,N1 ∩N2) = 0.

(c) N1 ∩N2 has infinite projective dimension and HomR(M,N1 ∩N2) ∼= K.

(d) M admits a projective cover (P, p) such that P ∼= N1 ⊕N2 and Ker p ∼= N1 ∩N2.

Proof. Let M be the R-module 1 2
3 of Example 2.3. As already observed, there is an

Auslander-Reiten sequence of the form

0 −→ 3 −→
1

3
⊕

2

3
−→

1 2

3
−→ 0.

Consequently (a), (b) and (d) hold. Next let M be the R-module 1 2
2 of Example 2.4.

In this case we already know that there is an Auslander-Reiten sequence of the form

0 −→ 2 −→
1

2
⊕

2

2
−→

1 2

2
−→ 0.

Since we clearly have pdim(2) =∞, we conclude that (a), (c) and (d) hold.

Example 2.11. There exist M , N1, N2 as in the hypotheses of Lemma 2.1 with the

following properties:

(a) N1 is projective and N2 is not projective.
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(b) N2 ↪→M and N1 ∩N2 ↪→ N1 are irreducible maps.

(c) N1 ↪→M and N1 ∩N2 ↪→ N2 are reducible maps.

Construction. Let R be the hereditary K-algebra given by the following quiver:

1 −→ 3←− 2 −→ 4.

Assume M = I(3) = 1 2
3 , N1 = P (1) = 1

3 and N2 = 2
3 . Then there exist Auslander-

Reiten sequences of the form

0 −→ 3 −→
1

3
⊕

2

3 4
−→

1 2

3 4
−→ 0

and

0 −→
2

3 4
−→

2

3
⊕

1 2

3 4
−→

1 2

3
−→ 0.

Hence M , N1, N2 satisfy the hypotheses of Lemma 2.1 and (a) and (b) clearly hold. On

the other hand the embeddings 1
3 ↪→ 1 2

3 and 3 ↪→ 2
3 have a factorization of the form

1
3 ↪→ 1 2

3 4 � 1 2
3 and 3 ↪→ 2

3 4 � 2
3 , respectively. Therefore (c) holds.
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