Local Well-posedness for Semilinear Heat Equations on H type Groups

Yasuyuki Oka

Abstract. In this paper, we discuss the local existence and uniqueness for the Cauchy problem of semi heat equations with an initial data in the space L^q on H type group \mathbb{H}_p^d , which has the dimension p of the center, like the argument on the Euclidean space given by F. B. Weissler. That is, the Cauchy problem

$$\begin{cases} \left(\partial_t - \Delta_{\mathbb{H}_p^d}\right) u(g, t) = |u|^{r-1} u, \quad g \in \mathbb{H}_p^d, \ t > 0, \\ u(g, 0) = u_0(g) \in L^q(\mathbb{H}_p^d) \end{cases}$$

has a unique solution if q > N(r-1)/2 (q = N(r-1)/2) and $q \ge r$ (q > r), where r > 1 and N = 2d + 2p is the homogeneous dimension of \mathbb{H}_p^d .

1. Introduction

For $d = 1, 2, ..., \text{ let } \mathbb{H}_p^d$ (= \mathbb{R}^{2d+p}) be an H type group (the group of Heisenberg type) with the dimension $p \geq 1$ of center and $\Delta_{\mathbb{H}_p^d}$ be the sublaplacian on \mathbb{H}_p^d . H type groups were first introduced by A. Kaplan [6]. In this paper we consider the Cauchy problem of the form

(1.1)
$$\begin{cases} \left(\partial_t - \Delta_{\mathbb{H}_p^d}\right) u(g, t) = |u|^{r-1} u, \quad g \in \mathbb{H}_p^d, \ t > 0, \\ u(g, 0) = u_0(g) \in L^q(\mathbb{H}_p^d). \end{cases}$$

On the Euclidean space, there exist enormous investigations of local well-posed for the semi-linear heat equations. In [11], F. B. Weissler gave an existence and nonexistence theorem for local solutions of the Cauchy problem for the semi-linear heat equation with an initial value in $L^q(\mathbb{R}^n)$

(1.2)
$$\begin{cases} (\partial_t - \Delta) \, u(x,t) = |u|^{r-1} u, \quad x \in \mathbb{R}^n, \ t > 0, \\ u(x,0) = u_0(x) \in L^q(\mathbb{R}^n). \end{cases}$$

After [11], the argument of this direction has been deepened by many mathematicians (for example, [1,3,4,9,12] and so on).

Received October 10, 2017; Accepted March 6, 2018.

Communicated by Jann-Long Chern.

²⁰¹⁰ Mathematics Subject Classification. 35A01, 35A02.

Key words and phrases. H type group, semilinear heat equation, local well-posedness.

In this paper, our goal is to obtain the results of the Cauchy problem (1.1) like those of the Cauchy problem (1.2), following [1,11]. Roughly speaking, our results are as follows: if $q \ge N(r-1)/2$, N = 2d+2p is the homogeneous dimension of \mathbb{H}_p^d , then the problem (1.1) is locally well-posedness whenever initial functions $u_0(g) \in L^q(\mathbb{H}_p^d)$. As is standard method, we consider (1.1) via the corresponding integral equation

$$u(t) = e^{t\Delta_{\mathbb{H}^d_p}} u_0 + \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}^d_p}} (|u(\sigma)|^{r-1} u(\sigma)) \, d\sigma.$$

The statements of our results are as follows:

Theorem 1.1. Let q > N(r-1)/2 and $q \ge 1$, $N \ge 4$. Then for any $u_0 \in L^q(\mathbb{H}^d_p)$, there exists a positive T and a solution $u \in C([0,T]; L^q(\mathbb{H}^d_p))$ of (1.1). Moreover there exists a positive constant C, independent of t, such that

$$||u(t) - v(t)||_{L^q(\mathbb{H}_p^d)} \le C ||u_0 - v_0||_{L^q(\mathbb{H}_p^d)}$$

for almost all $t \in [0, T]$.

Theorem 1.2. Let q = N(r-1)/2 and q > 1, $N \ge 4$. Then for any $u_0 \in L^q(\mathbb{H}^d_p)$, there exists a positive T and a solution $u \in C([0,T]; L^q(\mathbb{H}^d_p))$ of (1.1). Moreover there exists a positive constant C, independent of t and T, such that

$$||u(t) - v(t)||_{L^q(\mathbb{H}^d_p)} \le C ||u_0 - v_0||_{L^q(\mathbb{H}^d_p)}$$

for all $t \in [0,T]$.

Uniqueness holds in that class:

Theorem 1.3. Assume that q > N(r-1)/2 (resp. q = N(r-1)/2) and $q \ge r$ (resp. q > r), $N \ge 4$. Then uniqueness for the solution

$$u(t) = e^{t\Delta}u_0 + \int_0^t e^{(t-\sigma)\Delta} |u(\sigma)|^{r-1} u(\sigma) \, d\sigma$$

holds in the class $C([0,T]; L^q(\mathbb{H}^d_p))$.

If N = 4 and 1 < r < 2 in the assumption of Theorems 1.1 and 1.3, then by these theorems, we see that for any $u_0 \in L^2(\mathbb{H}^1_1)$, $\mathbb{H}^1_1 (= \mathbb{R}^3)$ is called Heisenberg group, the solution u of the Cauchy problem

$$\begin{cases} \left(\partial_t - \Delta_{\mathbb{H}_1^1}\right) u(g, t) = |u|^{r-1} u, \quad g \in \mathbb{H}_1^1, \ t > 0, \\ u(g, 0) = u_0(g) \end{cases}$$

is locally wellposed. That is, the solution u of the Cauchy problem

$$\begin{cases} \left(\partial_t - \partial_x^2 - \partial_y^2 - \frac{1}{4}(x^2 + y^2)\partial_s^2 - (y\partial_x - x\partial_y)\partial_s\right)u(x, y, s, t) = |u|^{r-1}u, \\ u(x, y, s, 0) = u_0(x, y, s) \end{cases}$$

for $(x, y, s) \in \mathbb{H}^1_1$ and t > 0 is locally wellposed.

The outline of this paper is as follows. In Section 2, we recall the definition of H type groups. In Section 3, the needed lemmas are given. For example, $L^{\alpha}-L^{\beta}$ estimate, a singular Gronwall lemma and so on. In Sections 4 and 5, we prove local existence theorems and continuous dependence of the cases q > N(r-1)/2 (Theorem 1.1) and q = N(r-1)/2 (Theorem 1.2), respectively. Finally, in Section 6, we show a uniqueness theorem (Theorem 1.3).

2. H type group

Let \mathcal{G} be a two step nilpotent Lie algebra endowed with an inner product $\langle \cdot, \cdot \rangle$ and we denote by \mathfrak{z} its center. Then \mathcal{G} is said to be of H type if \mathcal{G} satisfies the following two conditions:

- 1. $[\mathfrak{z}^{\perp},\mathfrak{z}^{\perp}] = \mathfrak{z}.$
- 2. For any $S \in \mathfrak{z}$, we define the mapping J_S from \mathfrak{z}^{\perp} to \mathfrak{z}^{\perp} by $\langle J_S u, w \rangle = \langle S, [u, w] \rangle$, $u, w \in \mathfrak{z}^{\perp}$. If |S| = 1, J_S is an orthogonal mapping.

Let G be a connected and simply connected Lie group. Then G is said to be a group of H type if its Lie algebra \mathcal{G} is of H type. Let \mathfrak{z}^* be the dual of \mathfrak{z} . For a given $a \ (\neq 0) \in \mathfrak{z}^*$, a skew symmetric mapping B(a) on \mathfrak{z}^{\perp} is defined by

$$B(a)(u,w) := a([u,w]), \quad u,w \in \mathfrak{z}^{\perp}.$$

We denote by z_a an element of \mathfrak{z} determined by

$$B(a)(u,w) = a([u,w]) = \langle J_{z_a}u,w\rangle, \quad u,w \in \mathfrak{z}^{\perp}.$$

Since B(a) is non-degenerate and a symplectic form, we can see that the dimension of $\mathfrak{z}^{\perp} = 2d$. For a given $a \neq 0 \in \mathfrak{z}^*$, we can choose an orthonormal basis of \mathfrak{z}^{\perp}

$$\{E_1(a), E_2(a), \ldots, E_d(a), \overline{E}_1(a), \overline{E}_2(a), \ldots, \overline{E}_d(a)\}$$

such that

$$B(a)E_i(a) = |z_a|J_{z_a/|z_a|}E_i(a) = \varepsilon_i|z_a|E_i(a)$$

and

$$B(a)\overline{E}_i(a) = -\varepsilon_i |z_a| E_i(a),$$

where $\varepsilon_i = \pm 1$. Set $p = \dim \mathfrak{z}$. Then we can denote the elements of \mathcal{G} by

$$(z,s) = (x,y,s) = \sum_{i=1}^{d} (x_i E_i + y_i \overline{E}_i) + \sum_{j=1}^{p} s_j \widetilde{E}_j$$

where $\{\widetilde{E}_1, \ldots, \widetilde{E}_p\}$ is an orthonormal basis such that $a(\widetilde{E}_1) = |a|, a(\widetilde{E}_j) = 0, (j = 2, 3, \ldots, p)$. We identify the H type Lie algebra \mathcal{G} with the H type Lie group G. Then the group law on H type group has the form

(2.1)
$$(z,s) \circ (z',s') = \left(z+z',s+s'+\frac{1}{2}[z,z']\right)$$

where $[z, z']_j = \langle z, U^j z' \rangle$, j = 1, 2, ..., p and U^j satisfies the following conditions:

- 1. U^j is a $2d \times 2d$ skew symmetric and orthogonal matrix,
- 2. for any $i, j \in \{1, 2, \dots, p\}, i \neq j, U^i U^j + U^j U^i = 0.$

Remark 2.1. H type groups G must satisfy $p + 1 \leq 2d$ (see [7]).

Remark 2.2. If the matrix U^j is skew symmetric (linearly independent), G is called Carnot group.

By the definition, the unit element of H type groups is (0,0) and the inverse element is (-z, -s). Moreover the left invariant vector fields are given by

$$X_j = \frac{\partial}{\partial x_j} + \frac{1}{2} \sum_{k=1}^p \left(\sum_{l=1}^{2d} z_l U_{l,j}^k \right) \frac{\partial}{\partial s_k}, \quad Y_j = \frac{\partial}{\partial y_j} + \frac{1}{2} \sum_{k=1}^p \left(\sum_{l=1}^{2d} z_l U_{l,j+d}^k \right) \frac{\partial}{\partial s_k},$$

where, $z_l = x_l$, $z_{l+d} = y_l$ (l = 1, 2, ..., d) and $U_{i,j}^k$, $U_{i,j+d}^k$ are the (i, j) and (i, j + d) components of the matrix U^k , respectively. We denote by \mathbb{H}_p^d $(= \mathbb{R}^{2d+p})$ H type groups G to emphasize the dimension p of the center.

Example 2.3 (1-dimensional Heisenberg group $\mathbb{H} = \mathbb{H}_1^1$). Let U^1 be a (2×2) skew symmetric matrix defined by

$$U^1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

By (2.1), the group law of \mathbb{H} is given by

$$(z,s) \circ (z',s') = \left(z+z',s+s'+\frac{1}{2}(yx'-xy')\right),$$

1094

where, $z = (x, y), z' = (x', y') \in \mathfrak{z}^{\perp}, s \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$X = \frac{\partial}{\partial x} + \frac{1}{2}y\frac{\partial}{\partial s}, \quad Y = \frac{\partial}{\partial y} - \frac{1}{2}x\frac{\partial}{\partial s}.$$

Example 2.4 (2-dimensional Heisenberg group \mathbb{H}_1^2). Let U^1 be a (4×4) skew symmetric matrix defined by

$$U^{1} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

By (2.1), the group law of \mathbb{H}^2 is given by

$$(z,s) \circ (z',s') = \left(z+z',s+s'+\frac{1}{2}(-x_1y_1'-x_2y_2'+y_1x_1'+y_2x_2')\right),$$

where, $z = (x_1, x_2, y_1, y_2), z' = (x'_1, x'_2, y'_1, y'_2) \in \mathfrak{z}^{\perp}, s \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$X_1 = \frac{\partial}{\partial x_1} + \frac{1}{2}y_1\frac{\partial}{\partial s}, \quad X_2 = \frac{\partial}{\partial x_2} + \frac{1}{2}y_2\frac{\partial}{\partial s}, \quad Y_1 = \frac{\partial}{\partial y_1} - \frac{1}{2}x_1\frac{\partial}{\partial s}, \quad Y_2 = \frac{\partial}{\partial y_2} - \frac{1}{2}x_2\frac{\partial}{\partial s}$$

Example 2.5 (\mathbb{H}_2^2 case). Let U^1 and U^2 be (4×4) skew symmetric matrices defined by

$$U^{1} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad U^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

By (2.1), the group law of \mathbb{H}_2^2 is given by

$$(z,s) \circ (z',s') = \begin{pmatrix} z+z' \\ s_1 + s'_1 + \frac{1}{2}(-x_1x'_2 + x_2x'_1 - y_1y'_2 + y_2y'_1) \\ s_2 + s'_2 + \frac{1}{2}(x_1y'_1 - x_2y'_2 - x'_1y_1 + y_2x'_2) \end{pmatrix},$$

where, $z = (x_1, x_2, y_1, y_2), z' = (x'_1, x'_2, y'_1, y'_2) \in \mathfrak{z}^{\perp}, s = (s_1, s_2), s' = (s'_1, s'_2) \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$X_{1} = \frac{\partial}{\partial x_{1}} + \frac{1}{2} \left(x_{2} \frac{\partial}{\partial s_{1}} - y_{1} \frac{\partial}{\partial s_{2}} \right), \qquad X_{2} = \frac{\partial}{\partial x_{2}} + \frac{1}{2} \left(-x_{1} \frac{\partial}{\partial s_{1}} + y_{2} \frac{\partial}{\partial s_{2}} \right),$$
$$Y_{1} = \frac{\partial}{\partial y_{1}} - \frac{1}{2} \left(y_{2} \frac{\partial}{\partial s_{1}} + x_{1} \frac{\partial}{\partial s_{2}} \right), \qquad Y_{2} = \frac{\partial}{\partial y_{2}} - \frac{1}{2} \left(-y_{1} \frac{\partial}{\partial s_{1}} - x_{2} \frac{\partial}{\partial s_{2}} \right).$$

Let $\mathcal{B}_0 = (X_1, \ldots, X_{2d})$ be an orthonomal basis of \mathfrak{z} and $\mathcal{F}_0 = (T_1, \ldots, T_p)$ be an orthonomal basis \mathfrak{z} . By using these basis, we identify \mathfrak{z}^{\perp} with \mathbb{R}^{2d} and \mathfrak{z} with \mathbb{R}^p , respectively. The sublaplacian of \mathbb{H}_p^d is denoted by $\Delta_{\mathbb{H}_p^d} = \sum_{i=1}^{2d} X_i^2$. This essentially self adjoint positive operator does not depend on the choice of \mathcal{B}_0 . Thanks to Hörmander's result, the sublaplacian $\Delta_{\mathbb{H}_p^d}$ is subelliptic. H type groups \mathbb{H}_p^d have a Haar measure. This does not depend on the choice of \mathcal{B}_0 and \mathcal{F}_0 (see [2]). Let the homogeneous dimension $N = \dim \mathfrak{z}^{\perp} + 2 \dim \mathfrak{z} = 2d + 2p$.

3. Technical lemmas

We summarize the some lemmas to show our assertion. D. S. Jerison and A. Sánchez-Calle gave the estimate of the heat kernel associated to $\Delta_{\mathbb{H}^d}$ as follows:

Lemma 3.1. [5] Let $h_t(g)$ be the heat kernel associated to $\Delta_{\mathbb{H}_p^d}$. Then there exist positive constants C_1 and $C_{I,l}$ depending Δ such that

$$\left|\partial_t^l X_I h_t(g)\right| \le C_{I,l} t^{-l - \frac{|I|}{2} - \frac{N}{2}} e^{-\frac{c_1 \rho(g)^2}{t}},$$

where $I = (i_1, \ldots, i_m)$ with |I| = m and $X_I = X_{i_1} X_{i_2} \cdots X_{i_m}$. Moreover ρ is the Caratheodory distance on H type group.

By Young's inequality and Lemma 3.1, we have the following $L^{\alpha}-L^{\beta}$ estimate.

Lemma 3.2 ($L^{\alpha}-L^{\beta}$ estimate). Assume N = 2d + 2p, $1 \leq \alpha < \beta \leq \infty$ and $\frac{1}{\gamma} = \frac{1}{\alpha} - \frac{1}{\beta}$. Then there exists a positive constant C such that

$$\left\|e^{t\Delta_{\mathbb{H}^d_p}}\varphi\right\|_{L^{\beta}(\mathbb{H}^d_p)} \leq Ct^{-\frac{N}{2\gamma}}\|\varphi\|_{L^{\alpha}(\mathbb{H}^d_p)}, \quad t>0,$$

for any $\varphi \in L^{\alpha}(\mathbb{H}_p^d)$.

Proof. Let $\varphi \in \mathcal{S}(\mathbb{H}_p^d)$. By Young's inequality and Lemma 3.1, we have

$$\left\|e^{t\Delta_{\mathbb{H}_p^d}}\varphi\right\|_{L^{\infty}(\mathbb{H}_p^d)} \le Ct^{-\frac{N}{2}}\|\varphi\|_{L^1(\mathbb{H}_p^d)}.$$

On the other hand, by L^2 boundedness of the semigroup $e^{t\Delta}$, we obtain

$$\left\| e^{t\Delta_{\mathbb{H}_p^d}} \varphi \right\|_{L^2(\mathbb{H}_p^d)} \le C \|\varphi\|_{L^2(\mathbb{H}_p^d)}.$$

By Riesz-Thorin interpolation theorem, we have

$$\left\|e^{t\Delta_{\mathbb{H}^d_p}}\varphi\right\|_{L^{\beta}(\mathbb{H}^d_p)} \leq Ct^{-\frac{N}{2}(\frac{1}{\alpha}-\frac{1}{\beta})}\|\varphi\|_{L^{\alpha}(\mathbb{H}^d_p)}$$

Since the space $\mathcal{S}(\mathbb{H}_p^d)$ is dense subset of $L^{\alpha}(\mathbb{H}_p^d)$, this estimate holds for $\varphi \in L^{\alpha}(\mathbb{H}_p^d)$. \Box

We use the following singular Gronwall lemma to show the continuous dependence.

Lemma 3.3. [1] Let T > 0, $A \ge 0$, $0 \le \alpha, \beta \le 1$ and let f be a nonnegative function with $f \in L^p(0,T)$ for some p > 1 such that $p' \max\{\alpha, \beta\} < 1$. Consider a nonnegative function $\varphi \in L^{\infty}(0,T)$ such that

$$\varphi(t) \le At^{-\alpha} + \int_0^t (t-\sigma)^{-\beta} f(\sigma)\varphi(\sigma) \, d\sigma$$

for almost all $t \in [0,T]$. Then there exists a positive constant C, depending only on T, α , β , p and $||f||_{L^p}$, such that

$$\varphi(t) \le Ct^{-\alpha}$$

for almost all $t \in [0, T]$.

Similarly as Theorem A2 in [1], we have the following lemma.

Lemma 3.4. Let $N \ge 4$, T > 0 and $a \in C([0,T]; L^{N/2}(\mathbb{H}_p^d))$. If $u \in L^{\infty}((0,T); L^q(\mathbb{H}_p^d))$ with q > N/(N-2) satisfies

$$u(t) = \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}_p^d}} a(\sigma) u(\sigma) \, d\sigma$$

for any $t \in [0, T]$, then $u(t) \equiv 0$.

As for the proof, we refer to [1].

4. Proof of Theorem 1.1

Let T > 0 and $Y_T = L^{\infty}((0,T); L^q(\mathbb{H}^d_p)) \cap L^{\infty}((0,T); L^{qr}(\mathbb{H}^d_p))$ with a norm

$$\|u\|_{Y_T} = \max\left\{\sup_{0 < t < T} \|u(t)\|_{L^q(\mathbb{H}_p^d)}, \sup_{0 < t < T} t^\lambda \|u(t)\|_{L^{qr}(\mathbb{H}_p^d)}\right\}, \quad \lambda = \frac{N(r-1)}{2qr} < 1$$

and

$$B_{M+1} = \{ u \mid ||u||_{Y_T} \le M+1 \}$$

as a subset of Y_T , where $M = \max\{M_1, M_2\}$ such that

$$||u_0||_{Y_T} \le M_1$$
 and $||e^{t\Delta_{\mathbb{H}^d_p}}u_0||_{Y_T} (\le C||u_0||_{Y_T}) \le M_2.$

M depends on $||u_0||_{Y_T}$, independent of t. Moreover the mapping Φ from B_{M+1} to Y_T is defined by

$$\Phi[u](t) = e^{t\Delta_{\mathbb{H}^d_p}} u_0 + \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}^d_p}} (|u(\sigma)|^{r-1} u(\sigma)) \, d\sigma.$$

At first, we show that Φ is the mapping from B_{M+1} into B_{M+1} . By Lemma 3.2 ($L^q - L^m$ estimate) and q > N(r-1)/2, we have that for any $u \in B_{M+1}$,

$$\begin{split} \left\| \int_{0}^{t} e^{(t-\sigma)\Delta_{\mathbb{H}_{p}^{d}}} (|u(\sigma)|^{r-1}u(\sigma)) \, d\sigma \right\|_{L^{m}(\mathbb{H}_{p}^{d})} \\ &\leq C \int_{0}^{t} (t-\sigma)^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \|u(\sigma)\|_{L^{qr}(\mathbb{H}_{p}^{d})}^{r} \, d\sigma \\ &\leq C(M+1)^{r} \int_{0}^{t} (t-\sigma)^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \sigma^{-r\lambda} \, d\sigma \\ &= C(M+1)^{r} t^{1-r\lambda-\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \int_{0}^{1} (1-\sigma)^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \sigma^{-r\lambda} \, d\sigma \end{split}$$

for $m \ge q$. Since

$$\int_0^1 (1-\sigma)^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \sigma^{-r\lambda} \, d\sigma < \infty \quad \text{and} \quad 1-r\lambda > 0,$$

we see that

(4.1)
$$t^{\frac{N}{2}(\frac{1}{q}-\frac{1}{m})} \left\| \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}^d_p}}(|u(\sigma)|^{r-1}u(\sigma)) \, d\sigma \right\|_{L^m(\mathbb{H}^d_p)} \le C(M+1)^r T^{1-r\lambda}.$$

If we take m = q or m = qr in (4.1), then we have

$$\left\|\int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}^d_p}}(|u(\sigma)|^{r-1}u(\sigma))\,d\sigma\right\|_{L^q(\mathbb{H}^d_p)} \le C_1(M+1)^r T^{1-r\lambda}$$

or

$$t^{\lambda} \left\| \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}^d_p}} (|u(\sigma)|^{r-1} u(\sigma)) \, d\sigma \right\|_{L^{qr}(\mathbb{H}^d_p)} \le C_2 (M+1)^r T^{1-r\lambda}.$$

Hence we obtain

$$\|\Phi[u]\|_{Y_T} \le M + \max\{C_1, C_2\}(M+1)^r T^{1-r\lambda}.$$

For a sufficiently small T > 0, we have

$$\max\{C_1, C_2\}(M+1)^r T^{1-r\lambda} \le 1.$$

Therefore we see that Φ is the mapping from B_{M+1} into B_{M+1} .

Next we proceed to proving that the mapping Φ from B_{M+1} to Y_T is the contraction mapping. By the inequality

(4.2)
$$\||u|^{r-1}u - |v|^{r-1}v\|_{L^q(\mathbb{H}^d_p)} \le r\left(\|u\|_{L^{qr}(\mathbb{H}^d_p)}^{r-1} + \|v\|_{L^{qr}(\mathbb{H}^d_p)}^{r-1}\right)\|u - v\|_{L^{qr}(\mathbb{H}^d_p)}$$

and Lemma 3.2 ($L^{q}-L^{m}$ estimate), for $u_{1}, u_{2} \in B_{M+1}$, we obtain that

(4.3)
$$\|\Phi[u_1](t) - \Phi[u_2](t)\|_{L^m(\mathbb{H}^d_p)} \le C_3(M+1)^{r-1}t^{1-r\lambda - \frac{N}{2}(\frac{1}{q} - \frac{1}{m})}\|u_1 - u_2\|_{Y_T}$$

1098

for a constant $C_3 > 0$. If we take m = q or m = qr in (4.3), then we have that

$$\|\Phi[u_1](t) - \Phi[u_2](t)\|_{L^q(\mathbb{H}_p^d)} \le C_3(M+1)^{r-1}T^{1-r\lambda}\|u_1 - u_2\|_{Y_T}$$

or

$$t^{\lambda} \|\Phi[u_1](t) - \Phi[u_2](t)\|_{L^{qr}(\mathbb{H}_p^d)} \le C_3(M+1)^{r-1} T^{1-r\lambda} \|u_1 - u_2\|_{Y_T}$$

Hence we obtain

$$\|\Phi[u_1](t) - \Phi[u_2](t)\|_{Y_T} \le C_4 (M+1)^{r-1} T^{1-r\lambda} \|u_1 - u_2\|_{Y_T}$$

for a constant $C_4 > 0$. Since $1 - r\lambda > 0$, we have for a sufficient small T > 0,

$$C_4(M+1)^{r-1}T^{1-r\lambda} \le \frac{1}{2}.$$

Therefore we see that the mapping Φ is the contraction mapping for a sufficiently small T. By Banach fixed point theorem, there exists a unique fixed point u of the mapping Φ in B_{M+1} .

Similarly as [1], we see that $u \in C([0,T]; L^q(\mathbb{H}^d_p))$. Indeed by $u \in B_{M+1}$ and $r\lambda < 1$, $|u|^{r-1}u \in L^1((0,T); L^q(\mathbb{H}^d_p))$. This implies $u \in C([0,T]; L^q(\mathbb{H}^d_p))$.

Finally we show the continuous depending on the initial value. Let u(t) and v(t) be solutions of the Cauchy problem (1.1) with $u(0) = u_0$ and $v(0) = v_0$, respectively. By the inequality (4.2) and Lemma 3.2 ($L^q - L^{qr}$ estimate), we obtain

$$\begin{aligned} \|u(t) - v(t)\|_{L^{qr}(\mathbb{H}^{d}_{p})} \\ &\leq \left\| e^{t\Delta_{\mathbb{H}^{d}_{p}}}(u_{0} - v_{0}) \right\|_{L^{qr}(\mathbb{H}^{d}_{p})} + \int_{0}^{t} \left\| e^{(t-\sigma)\Delta_{\mathbb{H}^{d}_{p}}}(|u(\sigma)|^{r-1}u(\sigma) - |v(\sigma)|^{r-1}v(\sigma)) \right\|_{L^{qr}(\mathbb{H}^{d}_{p})} \, d\sigma \\ &\leq C_{5}t^{-\lambda} \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}^{d}_{p})} + C_{6}(M+1)^{r} \int_{0}^{t} (t-\sigma)^{-\lambda}\sigma^{(r-1)\lambda} \|u(\sigma) - v(\sigma)\|_{L^{qr}(\mathbb{H}^{d}_{p})} \, d\sigma \end{aligned}$$

for positive constants C_5 and C_6 . By Lemma 3.3 (Gronwall Lemma), we have

$$\|u(t) - v(t)\|_{L^{qr}(\mathbb{H}_p^d)} \le C_7 t^{-\lambda} \|u_0 - v_0\|_{L^q(\mathbb{H}_p^d)}, \quad \text{a.a. } t \in [0, T].$$

Hence we obtain

(4.4)
$$t^{\lambda} \| u(t) - v(t) \|_{L^{qr}(\mathbb{H}_p^d)} \le C_7 \| u_0 - v_0 \|_{L^q(\mathbb{H}_p^d)}, \quad \text{a.a. } t \in [0,T],$$

where a constant $C_7 > 0$ depends on T, q, r and N. By the inequality (4.2) and (4.4), we have

$$\begin{aligned} \|u(t) - v(t)\|_{L^{q}(\mathbb{H}_{p}^{d})} \\ &\leq \left\| e^{t\Delta_{\mathbb{H}_{p}^{d}}}(u_{0} - v_{0}) \right\|_{L^{q}(\mathbb{H}_{p}^{d})} + \int_{0}^{t} \left\| e^{(t-\sigma)\Delta_{\mathbb{H}_{p}^{d}}}(|u(\sigma)|^{r-1}u(\sigma) - |v(\sigma)|^{r-1}v(\sigma)) \right\|_{L^{q}(\mathbb{H}_{p}^{d})} \, d\sigma \\ &\leq \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + C_{8}(M+1)^{r-1} \sup_{0 \leq t \leq T} t^{\lambda} \|u(t) - v(t)\|_{L^{qr}(\mathbb{H}_{p}^{d})} \\ &\leq C_{9} \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} \end{aligned}$$

for positive constants C_8 and C_9 . Therefore we obtain

$$||u(t) - v(t)||_{L^q(\mathbb{H}_p^d)} \le C_9 ||u_0 - v_0||_{L^q(\mathbb{H}_p^d)}, \quad \text{a.a. } t \in [0, T].$$

This completes the proof of Theorem 1.1.

Remark 4.1. We can show $u \in C^1((0,T]; L^q(\mathbb{H}^d_p))$. Let $\nu(t) = u(t+\varepsilon)$ on the interval $(0, T-\varepsilon]$ for any $\varepsilon > 0$. Then we have

$$\nu(t) = e^{t\Delta_{\mathbb{H}^d_p}} u(\varepsilon) + \int_0^t e^{(t-\sigma)\Delta} |\nu(\sigma)|^{r-1} \nu(\sigma) \, d\sigma.$$

By the inequality (4.2), we can see $\sigma \mapsto |\nu(\sigma)|^{r-1}\nu(\sigma)$ is Hölder continuous from $[\varepsilon, T-\varepsilon]$ to $L^q(\mathbb{H}^d_p)$. If $\nu_1(t) = u(t+2\varepsilon)$, then $\sigma \mapsto |\nu_1(\sigma)|^{r-1}\nu_1(\sigma)$ is Hölder continuous from $[0, T-2\varepsilon]$ to $L^q(\mathbb{H}^d_p)$. By Theorem 1.27 in [8], ν_1 is continuously differentiable for t > 0 and satisfies $\nu'_1(t) = \Delta_{\mathbb{H}^d_p}\nu_1 + |\nu_1(t)|^{r-1}\nu_1(t)$. Since $\varepsilon > 0$ is arbitrary, $\nu \in C^1((0,T]; L^q(\mathbb{H}^d_p))$.

5. Proof of Theorem 1.2

Fix any θ such that $q < \theta < qr, \theta \ge r$ and set

$$\widetilde{E}_T = L^{\infty}((0,T); L^q(\mathbb{H}^d_p)) \cap \{ u \in L^{\infty}_{\text{loc}}((0,T); L^{\theta}(\mathbb{H}^d_p)), t^{\alpha}u \in L^{\infty}((0,T); L^{\theta}(\mathbb{H}^d_p)) \}$$

and

$$E_T = L^{\infty}((0,T); L^q(\mathbb{H}_p^d)) \cap \{ u \in L^{\infty}_{\text{loc}}((0,T); L^{\theta}(\mathbb{H}_p^d)), t^{\alpha}u \in C_0([0,T]; L^{\theta}(\mathbb{H}_p^d)) \}$$

where $\alpha = \frac{N}{2} \left(\frac{1}{q} - \frac{1}{\theta} \right) < 1$ and C_0 means the set of functions which vanish at t = 0 following [1]. Fix $M = \max\{M_1, M_2\}$ such that

$$\|u_0\|_{L^q(\mathbb{H}^d_p)} \le M_1$$
 and $\left\|e^{t\Delta_{\mathbb{H}^d_p}}u_0\right\|_{L^q(\mathbb{H}^d_p)} \le M_2.$

M is independent of t. For some $\delta > 0$ to be chosen later, let

$$\widetilde{K}_T = \{ u \in \widetilde{E}_T \mid ||u(t)||_{L^q(\mathbb{H}_p^d)} \le M + 1 \text{ and } t^\alpha ||u(t)||_{L^\theta(\mathbb{H}_p^d)} \le \delta \}$$

for $t \in (0, T)$ and

$$K_T = \widetilde{K}_T \cap E_T$$

with a norm

$$||u||_{\widetilde{K}_T} = \sup_{0 < t < T} t^{\alpha} ||u(t)||_{L^{\theta}(\mathbb{H}_p^d)}.$$

Let the mapping Φ be defined in Section 4 and

$$c = \frac{N}{2} \left(\frac{r}{\theta} - \frac{1}{q} \right).$$

For $u \in \widetilde{K}_T$, by Lemma 3.2 ($L^{\theta/r} - L^q$ estimate), we have

$$\begin{split} \|\Phi[u](t)\|_{L^{q}(\mathbb{H}_{p}^{d})} &\leq \left\|e^{t\Delta_{\mathbb{H}_{p}^{d}}}u_{0}\right\|_{L^{q}(\mathbb{H}_{p}^{d})} + \int_{0}^{t}\left\|e^{(t-\sigma)\Delta_{\mathbb{H}_{p}^{d}}}(|u(\sigma)|^{r-1}u(\sigma))\right\|_{L^{q}(\mathbb{H}_{p}^{d})} d\sigma \\ &\leq C\|u_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + \int_{0}^{t}(t-\sigma)^{-c}\|u(\sigma)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}^{r} d\sigma \\ &\leq C\|u_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + \left(\sup_{0 < t < T}t^{\alpha}\|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}\right)^{r} \int_{0}^{t}(t-\sigma)^{-c}\sigma^{-r\alpha} d\sigma \\ &\leq C\|u_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + C_{1}\delta^{r}, \end{split}$$

where C_1 depends only on N, q, θ and r. Therefore we obtain

$$\|\Phi[u](t)\|_{L^q(\mathbb{H}^d_p)} \le M+1$$

provided

 $(5.1) C_1 \delta^r \le 1.$

On the other hand, by Lemma 3.2 $(L^{\theta/r} - L^{\theta} \text{ estimate})$, we have

$$t^{\alpha} \|\Phi[u](t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}$$

$$\leq \sup_{0 < t < T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}_{p}^{d}}} u_{0} \right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + t^{\alpha} \int_{0}^{t} (t-\sigma)^{-\frac{N(r-1)}{2\theta}} \|u(\sigma)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}^{r} d\sigma$$

$$\leq \sup_{0 < t < T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}_{p}^{d}}} u_{0} \right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + \left(\sup_{0 < t < T} t^{\alpha} \|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \right)^{r} t^{\alpha} \int_{0}^{t} (t-\sigma)^{-\frac{N(r-1)}{2\theta}} \sigma^{-r\alpha} d\sigma$$

$$\leq \sup_{0 < t < T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}_{p}^{d}}} u_{0} \right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + C_{2}\delta^{r},$$

where C_2 also depends only on N, q, θ and r. Therefore we obtain

$$\sup_{0 < t < T} t^{\alpha} \|\Phi[u](t)\|_{L^{\theta}(\mathbb{H}_p^d)} \le \sup_{0 < t < T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}_p^d}} u_0 \right\|_{L^{\theta}(\mathbb{H}_p^d)} + \frac{\delta}{2}$$

provided

$$(5.3) C_2 \delta^{r-1} \le \frac{1}{2}.$$

Similarly, we have for $u, v \in \widetilde{K}_T$,

(5.4)
$$\sup_{0 < t < T} t^{\alpha} \|\Phi[u](t) - \Phi[v](t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \leq C_{3} \delta^{r-1} \sup_{0 < t < T} t^{\alpha} \|u(t) - v(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \\
\leq \frac{1}{2} \sup_{0 < t < T} t^{\alpha} \|u(t) - v(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}$$

provided

$$(5.5) C_3 \delta^{r-1} \le \frac{1}{2},$$

where C_3 depends only on N, q, θ and r. Therefore the mapping $\Phi \colon \widetilde{K}_T \to \widetilde{E}_T$ follows from the above estimates. We fix any $\delta > 0$ sufficiently small such that (5.1), (5.3) and (5.5) are satisfied. Furthermore, we fix T > 0 so that

(5.6)
$$\sup_{0 < t < T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}^d_p}} u_0 \right\|_{L^{\theta}(\mathbb{H}^d_p)} \le \frac{\delta}{2}.$$

T can be chosen independent of δ by the same reason as Lemma 8 in [1]. By (5.2), (5.4) and (5.6), we see that $\Phi \colon \widetilde{K}_T \to \widetilde{K}_T$ is a strict contraction. Hence Φ has a unique fixed point in \widetilde{K}_T .

Next we show that this fixed point belongs to K_T . It is sufficient to show that $\Phi: K_T \to K_T$. For this purpose, we check that $\Phi[u] \in C((0,T]; L^{\theta}(\mathbb{H}_p^d))$ and $\lim_{t\to 0} t^{\alpha} \Phi[u](t) = 0$ in $L^{\theta}(\mathbb{H}_p^d)$. Similarly as the proof of Lemma 2.1 in [10], we see that $\Phi[u] \in C((0,T]; L^{\theta}(\mathbb{H}_p^d))$. On the other hand, by Lemma 3.2 $(L^{\theta/r} - L^{\theta}$ estimate), we have that

$$\begin{split} t^{\alpha} \|\Phi[u](t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \\ &\leq t^{\alpha} \left\|e^{t\Delta_{\mathbb{H}_{p}^{d}}}u_{0}\right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + \left(\sup_{0 < t < T} t^{\alpha}\|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}\right)^{r} t^{\alpha} \int_{0}^{t} (t-\sigma)^{-\frac{N(r-1)}{2\theta}} \sigma^{-r\alpha} \, d\sigma \\ &\leq t^{\alpha} \left\|e^{t\Delta_{\mathbb{H}_{p}^{d}}}u_{0}\right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + \left(\sup_{0 < t < T} t^{\alpha}\|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}\right)^{r} \int_{0}^{1} (1-\sigma)^{-\frac{N(r-1)}{2\theta}} \sigma^{-r\alpha} \, d\sigma \\ &\rightarrow 0 \end{split}$$

as $t \to 0$, since $u \in E_T$ and $r\alpha + N(r-1)/(2\theta) = \alpha + 1$. Let any interval $[a, b] \subset (0, T)$ and $t \in [a, b]$. Then we obtain

$$\sup_{a \leq t \leq b} \|\Phi[u](t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}$$

$$\leq \left\|e^{t\Delta_{\mathbb{H}_{p}^{d}}}u_{0}\right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + \left(\sup_{a \leq t \leq b}\|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}\right)^{r} \int_{0}^{t} (t-\sigma)^{-\frac{N(r-1)}{2\theta}}\sigma^{-r\alpha} d\sigma$$

$$\leq C\|u_{0}\|_{L^{\theta}(\mathbb{H}_{p}^{d})} + a^{-\alpha} \left(\sup_{a \leq t \leq b}\|u(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}\right)^{r} \int_{0}^{1} (1-\sigma)^{-\frac{N(r-1)}{2\theta}}\sigma^{-r\alpha} d\sigma.$$

Hence we also see that $\Phi[u] \in L^{\infty}_{\text{loc}}((0,T); L^{\theta}(\mathbb{H}^{d}_{p}))$. Next we show that $u \in C([0,T], L^{q}(\mathbb{H}^{d}_{p}))$. It is sufficient to show that

$$\lim_{t \to 0} \left\| \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}_p^d}} |u(\sigma)|^{r-1} u(\sigma) \right\|_{L^q(\mathbb{H}_p^d)} = 0.$$

1102

Indeed, by Lemma 3.2 ($L^{\theta/r} - L^q$ estimate), we have

$$\left\| \int_0^t e^{(t-\sigma)\Delta_{\mathbb{H}_p^d}} |u(\sigma)|^{r-1} u(\sigma) \right\|_{L^q(\mathbb{H}_p^d)} \le \int_0^t (t-\sigma)^{-a} \|u(\sigma)\|_{L^\theta}^r \, d\sigma$$
$$\le C_4 \left(\sup_{0 < t < T} t^\alpha \|u(t)\|_{L^\theta(\mathbb{H}_p^d)} \right)^r \to 0$$

as $t \to 0$, since $u \in E_T$.

Finally we show the continuous depending on the initial value. Let u(t) and v(t) be solutions of the Cauchy problem (1.1) with $u(0) = u_0$ and $v(0) = v_0$, respectively. Similarly as the argument of (5.2), we have

$$\sup_{0 \le t \le T} t^{\alpha} \|u(t) - v(t)\|_{L^{\theta}(\mathbb{H}_p^d)}$$
$$\leq \sup_{0 \le t \le T} t^{\alpha} \left\| e^{t\Delta_{\mathbb{H}_p^d}} (u_0 - v_0) \right\|_{L^{\theta}(\mathbb{H}_p^d)} + \frac{1}{2} \sup_{0 \le t \le T} t^{\alpha} \|u(t) - v(t)\|_{L^{\theta}(\mathbb{H}_p^d)}.$$

By this, we obtain

(5.7)
$$\sup_{0 \le t \le T} t^{\alpha} \| u(t) - v(t) \|_{L^{\theta}(\mathbb{H}^d_p)} \le 2 \| u_0 - v_0 \|_{L^q(\mathbb{H}^d_p)}$$

On the other hand, by (4.2), (5.7) and Lemma 3.2 ($L^{\theta/r}-L^q$ estimate), we have

$$\begin{aligned} \|u(t) - v(t)\|_{L^{q}(\mathbb{H}_{p}^{d})} \\ &\leq \left\| e^{t\Delta_{\mathbb{H}_{p}^{d}}}(u_{0} - v_{0}) \right\|_{L^{q}(\mathbb{H}_{p}^{d})} + \int_{0}^{t} \left\| e^{(t-\sigma)\Delta_{\mathbb{H}_{p}^{d}}}(|u(\sigma)|^{r-1}u(\sigma) - |v(\sigma)|^{r-1}v(\sigma)) \right\|_{L^{q}(\mathbb{H}_{p}^{d})} \, d\sigma \\ &\leq \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + C_{5} \int_{0}^{t} (t-\sigma)^{-c} \left\| |u(\sigma)|^{r-1}u(\sigma) - |v(\sigma)|^{r-1}v(\sigma) \right\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \, d\sigma \\ &\leq \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + C_{6} \int_{0}^{t} (t-\sigma)^{-c} (\|u(\sigma)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}^{r-1} + \|v(\sigma)\|_{L^{\theta}(\mathbb{H}_{p}^{d})}^{r-1}) \|u(\sigma) - v(\sigma)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \, d\sigma \\ &\leq \|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} + C_{7}\delta^{r-1} \sup_{0 \leq t \leq T} t^{\alpha} \|u(t) - v(t)\|_{L^{\theta}(\mathbb{H}_{p}^{d})} \\ &\leq C_{8}\|u_{0} - v_{0}\|_{L^{q}(\mathbb{H}_{p}^{d})} \end{aligned}$$

for positive constants C_5 , C_6 , C_7 and C_8 . C_8 is independent of T. Therefore we obtain

$$||u(t) - v(t)||_{L^q(\mathbb{H}_p^d)} \le C_8 ||u_0 - v_0||_{L^q(\mathbb{H}_p^d)}, \quad t \in [0, T].$$

This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

We consider separately two cases: Case (i): q > N(r-1)/2 and $q \ge r$, Case (ii): q = N(r-1)/2 and q > r.

Case (i): Let $u, v \in C([0, T]; L^q(\mathbb{H}^d_p))$ be two solutions. Then we have

$$u(t) - v(t) = \int_0^t e^{(t-\sigma)\Delta} (|u(\sigma)|^{r-1} u(\sigma) - |v(\sigma)|^{r-1} v(\sigma)) \, d\sigma$$

By Lemma 3.2 $(L^{q/r}-L^q \text{ estimate})$ and by the inequality

$$\left\| |u|^{r-1}u - |v|^{r-1}v \right\|_{L^{\frac{q}{r}}(\mathbb{H}^{d}_{p})} \le r \left(\|u\|^{r-1}_{L^{q}(\mathbb{H}^{d}_{p})} + \|v\|^{r-1}_{L^{q}(\mathbb{H}^{d}_{p})} \right) \|u - v\|_{L^{q}(\mathbb{H}^{d}_{p})},$$

we obtain that

(6.1)
$$\begin{aligned} \|u(t) - v(t)\|_{L^{q}(\mathbb{H}_{p}^{d})} &\leq C \int_{0}^{t} (t - \sigma)^{-\theta} \left\| |u|^{r-1} u - |v|^{r-1} v \right\|_{L^{\frac{q}{r}}(\mathbb{H}_{p}^{d})} d\sigma \\ &\leq C' \int_{0}^{t} (t - \sigma)^{-\theta} \left(\|u\|_{L^{q}(\mathbb{H}_{p}^{d})}^{r-1} + \|v\|_{L^{q}(\mathbb{H}_{p}^{d})}^{r-1} \right) \|u - v\|_{L^{q}(\mathbb{H}_{p}^{d})} d\sigma, \end{aligned}$$

where $\theta = N(r-1)/(2q) < 1$ and positive constants C, C' are independent of t.

Let $M = \sup_{0 \le t \le T} \left(\|u\|_{L^q(\mathbb{H}^d_p)} + \|v\|_{L^q(\mathbb{H}^d_p)} \right)$ and $\psi(t) = \sup_{0 \le \sigma \le t} \|u(t) - v(t)\|_{L^q(\mathbb{H}^d_p)}$ for $t \in [0,T]$. By the estimate (6.1), we deduce that

(6.2)
$$\psi(t) \le CM^{r-1} \frac{T^{1-\theta}}{1-\theta} \psi(t).$$

Let T' be sufficiently small such that 0 < T' < T and let $t \in [0, T']$. Then by (6.2), we can see $\psi(t) = 0$. Finitely repeating the same argument, we can see that $\psi(t) = 0$ for $t \in [0, T]$.

Cases (ii): Let q = N(r-1)/2 > r and $N \ge 4$. Let u, v be two solutions and let w = u - v. We put

$$a(g,t) = \begin{cases} \frac{|u|^{r-1}u - |v|^{r-1}v}{u-v} & \text{if } u \neq v, \\ r|u|^{r-1} & \text{if } u = v \end{cases}$$

so that

$$w(t) = \int_0^t e^{(t-\sigma)\Delta} a(\sigma) w(\sigma) \, d\sigma.$$

By the same argument as in [1], we can see that $a \in C([0,T] : L^{N/2}(\mathbb{H}_p^d))$. By Lemma 3.4, we see that $w \equiv 0$. Note that q > N/(N-2).

References

- H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.
- [2] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples, Cambridge Studies in Advanced Mathematics 18, Cambridge University Press, Cambridge, 1990.

- [3] Y. Giga, Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), no. 2, 186–212.
- [4] A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), no. 2, 167-189.
- [5] D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835–854.
- [6] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153.
- [7] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Harmonic Analysis, 416–435, Lecture Notes in Math. 992, Springer, Berlin, 1983.
- [8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
- W.-M. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc. 287 (1985), no. 2, 657–671.
- [10] F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), no. 3, 277–296.
- [11] _____, Local existence and nonexistence for semilinear parabolic equations in L^p, Indiana Univ. Math. J. 29 (1980), no. 1, 79–102.
- [12] E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler equation, J. Differential Equations 127 (1996), no. 2, 561-570.

Yasuyuki Oka

Department of Creative Engineering, National Institute of Technology, Kushiro College, 2-32-1 Otanoshike-Nishi, Kushiro-Shi, Hokkaido 084-0916, Japan *E-mail address*: oka@kushiro-ct.ac.jp