Local Well-posedness for Semilinear Heat Equations on H type Groups

Yasuyuki Oka

Abstract. In this paper, we discuss the local existence and uniqueness for the Cauchy problem of semi heat equations with an initial data in the space L^{q} on H type group \mathbb{H}_{p}^{d}, which has the dimension p of the center, like the argument on the Euclidean space given by F. B. Weissler. That is, the Cauchy problem

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta_{\mathbb{H}_{p}^{d}}\right) u(g, t)=|u|^{r-1} u, \quad g \in \mathbb{H}_{p}^{d}, t>0 \\
u(g, 0)=u_{0}(g) \in L^{q}\left(\mathbb{H}_{p}^{d}\right)
\end{array}\right.
$$

has a unique solution if $q>N(r-1) / 2(q=N(r-1) / 2)$ and $q \geq r(q>r)$, where $r>1$ and $N=2 d+2 p$ is the homogeneous dimension of \mathbb{H}_{p}^{d}.

1. Introduction

For $d=1,2, \ldots$, let $\mathbb{H}_{p}^{d}\left(=\mathbb{R}^{2 d+p}\right)$ be an H type group (the group of Heisenberg type) with the dimension $p \geq 1$ of center and $\Delta_{\mathbb{H}_{p}^{d}}$ be the sublaplacian on \mathbb{H}_{p}^{d}. H type groups were first introduced by A. Kaplan [6]. In this paper we consider the Cauchy problem of the form

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta_{\mathbb{H}_{p}^{d}}\right) u(g, t)=|u|^{r-1} u, \quad g \in \mathbb{H}_{p}^{d}, t>0 \tag{1.1}\\
u(g, 0)=u_{0}(g) \in L^{q}\left(\mathbb{H}_{p}^{d}\right)
\end{array}\right.
$$

On the Euclidean space, there exist enormous investigations of local well-posed for the semi-linear heat equations. In [11], F. B. Weissler gave an existence and nonexistence theorem for local solutions of the Cauchy problem for the semi-linear heat equation with an initial value in $L^{q}\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta\right) u(x, t)=|u|^{r-1} u, \quad x \in \mathbb{R}^{n}, t>0 \tag{1.2}\\
u(x, 0)=u_{0}(x) \in L^{q}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

After [11], the argument of this direction has been deepened by many mathematicians (for example, $[1,3,4,9,12$ and so on).

[^0]In this paper, our goal is to obtain the results of the Cauchy problem (1.1) like those of the Cauchy problem (1.2), following [1, 11]. Roughly speaking, our results are as follows: if $q \geq N(r-1) / 2, N=2 d+2 p$ is the homogeneous dimension of \mathbb{H}_{p}^{d}, then the problem (1.1) is locally well-posedness whenever initial functions $u_{0}(g) \in L^{q}\left(\mathbb{H}_{p}^{d}\right)$. As is standard method, we consider (1.1) via the corresponding integral equation

$$
u(t)=e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}+\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma .
$$

The statements of our results are as follows:
Theorem 1.1. Let $q>N(r-1) / 2$ and $q \geq 1, N \geq 4$. Then for any $u_{0} \in L^{q}\left(\mathbb{H}_{p}^{d}\right)$, there exists a positive T and a solution $u \in C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$ of (1.1). Moreover there exists a positive constant C, independent of t, such that

$$
\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}
$$

for almost all $t \in[0, T]$.
Theorem 1.2. Let $q=N(r-1) / 2$ and $q>1, N \geq 4$. Then for any $u_{0} \in L^{q}\left(\mathbb{H}_{p}^{d}\right)$, there exists a positive T and a solution $u \in C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$ of (1.1). Moreover there exists a positive constant C, independent of t and T, such that

$$
\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}
$$

for all $t \in[0, T]$.
Uniqueness holds in that class:
Theorem 1.3. Assume that $q>N(r-1) / 2($ resp. $q=N(r-1) / 2)$ and $q \geq r($ resp. $q>r)$, $N \geq 4$. Then uniqueness for the solution

$$
u(t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-\sigma) \Delta}|u(\sigma)|^{r-1} u(\sigma) d \sigma
$$

holds in the class $C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$.
If $N=4$ and $1<r<2$ in the assumption of Theorems 1.1 and 1.3 , then by these theorems, we see that for any $u_{0} \in L^{2}\left(\mathbb{H}_{1}^{1}\right), \mathbb{H}_{1}^{1}\left(=\mathbb{R}^{3}\right)$ is called Heisenberg group, the solution u of the Cauchy problem

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta_{\mathbb{H}_{1}^{1}}\right) u(g, t)=|u|^{r-1} u, \quad g \in \mathbb{H}_{1}^{1}, t>0 \\
u(g, 0)=u_{0}(g)
\end{array}\right.
$$

is locally wellposed. That is, the solution u of the Cauchy problem

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\partial_{x}^{2}-\partial_{y}^{2}-\frac{1}{4}\left(x^{2}+y^{2}\right) \partial_{s}^{2}-\left(y \partial_{x}-x \partial_{y}\right) \partial_{s}\right) u(x, y, s, t)=|u|^{r-1} u \\
u(x, y, s, 0)=u_{0}(x, y, s)
\end{array}\right.
$$

for $(x, y, s) \in \mathbb{H}_{1}^{1}$ and $t>0$ is locally wellposed.
The outline of this paper is as follows. In Section 2, we recall the definition of H type groups. In Section 3, the needed lemmas are given. For example, $L^{\alpha}-L^{\beta}$ estimate, a singular Gronwall lemma and so on. In Sections 4 and 5, we prove local existence theorems and continuous dependence of the cases $q>N(r-1) / 2$ (Theorem 1.1) and $q=N(r-$ 1)/2 (Theorem 1.2), respectively. Finally, in Section 6, we show a uniqueness theorem (Theorem 1.3).

2. H type group

Let \mathcal{G} be a two step nilpotent Lie algebra endowed with an inner product $\langle\cdot, \cdot\rangle$ and we denote by \mathfrak{z} its center. Then \mathcal{G} is said to be of H type if \mathcal{G} satisfies the following two conditions:

1. $\left[\mathfrak{z}^{\perp}, \mathfrak{z}^{\perp}\right]=\mathfrak{z}$.
2. For any $S \in \mathfrak{z}$, we define the mapping J_{S} from \mathfrak{z}^{\perp} to \mathfrak{z}^{\perp} by $\left\langle J_{S} u, w\right\rangle=\langle S,[u, w]\rangle$, $u, w \in \mathfrak{z}^{\perp}$. If $|S|=1, J_{S}$ is an orthogonal mapping.

Let G be a connected and simply connected Lie group. Then G is said to be a group of H type if its Lie algebra \mathcal{G} is of H type. Let \mathfrak{z}^{*} be the dual of \mathfrak{z}. For a given $a(\neq 0) \in \mathfrak{z}^{*}$, a skew symmetric mapping $B(a)$ on \mathfrak{z}^{\perp} is defined by

$$
B(a)(u, w):=a([u, w]), \quad u, w \in \mathfrak{z}^{\perp} .
$$

We denote by z_{a} an element of \mathfrak{z} determined by

$$
B(a)(u, w)=a([u, w])=\left\langle J_{z_{a}} u, w\right\rangle, \quad u, w \in \mathfrak{z}^{\perp}
$$

Since $B(a)$ is non-degenerate and a symplectic form, we can see that the dimension of $\mathfrak{z}^{\perp}=2 d$. For a given $a(\neq 0) \in \mathfrak{z}^{*}$, we can choose an orthonormal basis of \mathfrak{z}^{\perp}

$$
\left\{E_{1}(a), E_{2}(a), \ldots, E_{d}(a), \bar{E}_{1}(a), \bar{E}_{2}(a), \ldots, \bar{E}_{d}(a)\right\}
$$

such that

$$
B(a) E_{i}(a)=\left|z_{a}\right| J_{z_{a} / z_{a} \mid} E_{i}(a)=\varepsilon_{i}\left|z_{a}\right| \bar{E}_{i}(a)
$$

and

$$
B(a) \bar{E}_{i}(a)=-\varepsilon_{i}\left|z_{a}\right| E_{i}(a),
$$

where $\varepsilon_{i}= \pm 1$. Set $p=\operatorname{dim} \mathfrak{z}$. Then we can denote the elements of \mathcal{G} by

$$
(z, s)=(x, y, s)=\sum_{i=1}^{d}\left(x_{i} E_{i}+y_{i} \bar{E}_{i}\right)+\sum_{j=1}^{p} s_{j} \widetilde{E}_{j},
$$

where $\left\{\widetilde{E}_{1}, \ldots, \widetilde{E}_{p}\right\}$ is an orthonormal basis such that $a\left(\widetilde{E}_{1}\right)=|a|, a\left(\widetilde{E}_{j}\right)=0,(j=$ $2,3, \ldots, p)$. We identify the H type Lie algebra \mathcal{G} with the H type Lie group G. Then the group law on H type group has the form

$$
\begin{equation*}
(z, s) \circ\left(z^{\prime}, s^{\prime}\right)=\left(z+z^{\prime}, s+s^{\prime}+\frac{1}{2}\left[z, z^{\prime}\right]\right), \tag{2.1}
\end{equation*}
$$

where $\left[z, z^{\prime}\right]_{j}=\left\langle z, U^{j} z^{\prime}\right\rangle, j=1,2, \ldots, p$ and U^{j} satisfies the following conditions:

1. U^{j} is a $2 d \times 2 d$ skew symmetric and orthogonal matrix,
2. for any $i, j \in\{1,2, \ldots, p\}, i \neq j, U^{i} U^{j}+U^{j} U^{i}=0$.

Remark 2.1. H type groups G must satisfy $p+1 \leq 2 d$ (see (7).
Remark 2.2. If the matrix U^{j} is skew symmetric (linearly independent), G is called Carnot group.

By the definition, the unit element of H type groups is $(0,0)$ and the inverse element is $(-z,-s)$. Moreover the left invariant vector fields are given by

$$
X_{j}=\frac{\partial}{\partial x_{j}}+\frac{1}{2} \sum_{k=1}^{p}\left(\sum_{l=1}^{2 d} z_{l} U_{l, j}^{k}\right) \frac{\partial}{\partial s_{k}}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}+\frac{1}{2} \sum_{k=1}^{p}\left(\sum_{l=1}^{2 d} z_{l} U_{l, j+d}^{k}\right) \frac{\partial}{\partial s_{k}}
$$

where, $z_{l}=x_{l}, z_{l+d}=y_{l}(l=1,2, \ldots, d)$ and $U_{i, j}^{k}, U_{i, j+d}^{k}$ are the (i, j) and $(i, j+d)$ components of the matrix U^{k}, respectively. We denote by $\mathbb{H}_{p}^{d}\left(=\mathbb{R}^{2 d+p}\right)$ H type groups G to emphasize the dimension p of the center.

Example 2.3 (1-dimensional Heisenberg group $\mathbb{H}=\mathbb{H}_{1}^{1}$). Let U^{1} be a (2×2) skew symmetric matrix defined by

$$
U^{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

By (2.1), the group law of \mathbb{H} is given by

$$
(z, s) \circ\left(z^{\prime}, s^{\prime}\right)=\left(z+z^{\prime}, s+s^{\prime}+\frac{1}{2}\left(y x^{\prime}-x y^{\prime}\right)\right),
$$

where, $z=(x, y), z^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in \mathfrak{z}^{\perp}, s \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$
X=\frac{\partial}{\partial x}+\frac{1}{2} y \frac{\partial}{\partial s}, \quad Y=\frac{\partial}{\partial y}-\frac{1}{2} x \frac{\partial}{\partial s} .
$$

Example 2.4 (2-dimensional Heisenberg group \mathbb{H}_{1}^{2}). Let U^{1} be a (4×4) skew symmetric matrix defined by

$$
U^{1}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

By (2.1), the group law of \mathbb{H}^{2} is given by

$$
(z, s) \circ\left(z^{\prime}, s^{\prime}\right)=\left(z+z^{\prime}, s+s^{\prime}+\frac{1}{2}\left(-x_{1} y_{1}^{\prime}-x_{2} y_{2}^{\prime}+y_{1} x_{1}^{\prime}+y_{2} x_{2}^{\prime}\right)\right)
$$

where, $z=\left(x_{1}, x_{2}, y_{1}, y_{2}\right), z^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right) \in \mathfrak{z}^{\perp}, s \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$
X_{1}=\frac{\partial}{\partial x_{1}}+\frac{1}{2} y_{1} \frac{\partial}{\partial s}, \quad X_{2}=\frac{\partial}{\partial x_{2}}+\frac{1}{2} y_{2} \frac{\partial}{\partial s}, \quad Y_{1}=\frac{\partial}{\partial y_{1}}-\frac{1}{2} x_{1} \frac{\partial}{\partial s}, \quad Y_{2}=\frac{\partial}{\partial y_{2}}-\frac{1}{2} x_{2} \frac{\partial}{\partial s}
$$

Example $2.5\left(\mathbb{H}_{2}^{2}\right.$ case $)$. Let U^{1} and U^{2} be (4×4) skew symmetric matrices defined by

$$
U^{1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad U^{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

By (2.1), the group law of \mathbb{H}_{2}^{2} is given by

$$
(z, s) \circ\left(z^{\prime}, s^{\prime}\right)=\left(\begin{array}{c}
z+z^{\prime} \\
s_{1}+s_{1}^{\prime}+\frac{1}{2}\left(-x_{1} x_{2}^{\prime}+x_{2} x_{1}^{\prime}-y_{1} y_{2}^{\prime}+y_{2} y_{1}^{\prime}\right) \\
s_{2}+s_{2}^{\prime}+\frac{1}{2}\left(x_{1} y_{1}^{\prime}-x_{2} y_{2}^{\prime}-x_{1}^{\prime} y_{1}+y_{2} x_{2}^{\prime}\right)
\end{array}\right)
$$

where, $z=\left(x_{1}, x_{2}, y_{1}, y_{2}\right), z^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right) \in \mathfrak{z}^{\perp}, s=\left(s_{1}, s_{2}\right), s^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathfrak{z}$. Moreover the left invariant vector fields are given by

$$
\begin{aligned}
X_{1} & =\frac{\partial}{\partial x_{1}}+\frac{1}{2}\left(x_{2} \frac{\partial}{\partial s_{1}}-y_{1} \frac{\partial}{\partial s_{2}}\right), & X_{2} & =\frac{\partial}{\partial x_{2}}+\frac{1}{2}\left(-x_{1} \frac{\partial}{\partial s_{1}}+y_{2} \frac{\partial}{\partial s_{2}}\right) \\
Y_{1} & =\frac{\partial}{\partial y_{1}}-\frac{1}{2}\left(y_{2} \frac{\partial}{\partial s_{1}}+x_{1} \frac{\partial}{\partial s_{2}}\right), & Y_{2} & =\frac{\partial}{\partial y_{2}}-\frac{1}{2}\left(-y_{1} \frac{\partial}{\partial s_{1}}-x_{2} \frac{\partial}{\partial s_{2}}\right)
\end{aligned}
$$

Let $\mathcal{B}_{0}=\left(X_{1}, \ldots, X_{2 d}\right)$ be an orthonomal basis of \mathfrak{z} and $\mathcal{F}_{0}=\left(T_{1}, \ldots, T_{p}\right)$ be an orthonomal basis \mathfrak{z}. By using these basis, we identify \mathfrak{z}^{\perp} with $\mathbb{R}^{2 d}$ and \mathfrak{z} with \mathbb{R}^{p}, respectively. The sublaplacian of \mathbb{H}_{p}^{d} is denoted by $\Delta_{\mathbb{H}_{p}^{d}}=\sum_{i=1}^{2 d} X_{i}^{2}$. This essentially self adjoint positive operator does not depend on the choice of \mathcal{B}_{0}. Thanks to Hörmander's result, the sublaplacian $\Delta_{\mathbb{H}_{p}^{d}}$ is subelliptic. H type groups \mathbb{H}_{p}^{d} have a Haar measure. This does not depend on the choice of \mathcal{B}_{0} and \mathcal{F}_{0} (see $\sqrt{2}$). Let the homogeneous dimension $N=\operatorname{dim} \mathfrak{z}^{\perp}+2 \operatorname{dim} \mathfrak{z}=2 d+2 p$.

3. Technical lemmas

We summarize the some lemmas to show our assertion. D. S. Jerison and A. Sánchez-Calle gave the estimate of the heat kernel associated to $\Delta_{\mathbb{H}_{p}^{d}}$ as follows:

Lemma 3.1. [5] Let $h_{t}(g)$ be the heat kernel associated to $\Delta_{\mathbb{H}_{p}^{d}}$. Then there exist positive constants C_{1} and $C_{I, l}$ depending Δ such that

$$
\left|\partial_{t}^{l} X_{I} h_{t}(g)\right| \leq C_{I, l} t^{-l-\frac{|I|}{2}-\frac{N}{2}} e^{-\frac{c_{1} \rho(g)^{2}}{t}},
$$

where $I=\left(i_{1}, \ldots, i_{m}\right)$ with $|I|=m$ and $X_{I}=X_{i_{1}} X_{i_{2}} \cdots X_{i_{m}}$. Moreover ρ is the Caratheodory distance on H type group.

By Young's inequality and Lemma 3.1, we have the following $L^{\alpha}-L^{\beta}$ estimate.
Lemma 3.2 ($L^{\alpha}-L^{\beta}$ estimate). Assume $N=2 d+2 p, 1 \leq \alpha<\beta \leq \infty$ and $\frac{1}{\gamma}=\frac{1}{\alpha}-\frac{1}{\beta}$. Then there exists a positive constant C such that

$$
\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} \varphi\right\|_{L^{\beta}\left(\mathbb{H}_{p}^{d}\right)} \leq C t^{-\frac{N}{2 \gamma}}\|\varphi\|_{L^{\alpha}\left(\mathbb{H}_{p}^{d}\right)}, \quad t>0,
$$

for any $\varphi \in L^{\alpha}\left(\mathbb{H}_{p}^{d}\right)$.
Proof. Let $\varphi \in \mathcal{S}\left(\mathbb{H}_{p}^{d}\right)$. By Young's inequality and Lemma 3.1, we have

$$
\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} \varphi\right\|_{L^{\infty}\left(\mathbb{H}_{p}^{d}\right)} \leq C t^{-\frac{N}{2}}\|\varphi\|_{L^{1}\left(\mathbb{H}_{p}^{d}\right)} .
$$

On the other hand, by L^{2} boundedness of the semigroup $e^{t \Delta}$, we obtain

$$
\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} \varphi\right\|_{L^{2}\left(\mathbb{H}_{p}^{d}\right)} \leq C\|\varphi\|_{L^{2}\left(\mathbb{H}_{p}^{d}\right)}
$$

By Riesz-Thorin interpolation theorem, we have

$$
\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} \varphi\right\|_{L^{\beta}\left(\mathbb{H}_{p}^{d}\right)} \leq C t^{-\frac{N}{2}\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)}\|\varphi\|_{L^{\alpha}\left(\mathbb{H}_{p}^{d}\right)}
$$

Since the space $\mathcal{S}\left(\mathbb{H}_{p}^{d}\right)$ is dense subset of $L^{\alpha}\left(\mathbb{H}_{p}^{d}\right)$, this estimate holds for $\varphi \in L^{\alpha}\left(\mathbb{H}_{p}^{d}\right)$.

We use the following singular Gronwall lemma to show the continuous dependence.
Lemma 3.3. [1] Let $T>0, A \geq 0,0 \leq \alpha, \beta \leq 1$ and let f be a nonnegative function with $f \in L^{p}(0, T)$ for some $p>1$ such that $p^{\prime} \max \{\alpha, \beta\}<1$. Consider a nonnegative function $\varphi \in L^{\infty}(0, T)$ such that

$$
\varphi(t) \leq A t^{-\alpha}+\int_{0}^{t}(t-\sigma)^{-\beta} f(\sigma) \varphi(\sigma) d \sigma
$$

for almost all $t \in[0, T]$. Then there exists a positive constant C, depending only on T, α, β, p and $\|f\|_{L^{p}}$, such that

$$
\varphi(t) \leq C t^{-\alpha}
$$

for almost all $t \in[0, T]$.
Similarly as Theorem A2 in [1], we have the following lemma.
Lemma 3.4. Let $N \geq 4, T>0$ and $a \in C\left([0, T] ; L^{N / 2}\left(\mathbb{H}_{p}^{d}\right)\right)$. If $u \in L^{\infty}\left((0, T) ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$ with $q>N /(N-2)$ satisfies

$$
u(t)=\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}} a(\sigma) u(\sigma) d \sigma
$$

for any $t \in[0, T]$, then $u(t) \equiv 0$.
As for the proof, we refer to [1].

4. Proof of Theorem 1.1

Let $T>0$ and $Y_{T}=L^{\infty}\left((0, T) ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right) \cap L^{\infty}\left((0, T) ; L^{q r}\left(\mathbb{H}_{p}^{d}\right)\right)$ with a norm

$$
\|u\|_{Y_{T}}=\max \left\{\sup _{0<t<T}\|u(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}, \sup _{0<t<T} t^{\lambda}\|u(t)\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)}\right\}, \quad \lambda=\frac{N(r-1)}{2 q r}<1
$$

and

$$
B_{M+1}=\left\{u \mid\|u\|_{Y_{T}} \leq M+1\right\}
$$

as a subset of Y_{T}, where $M=\max \left\{M_{1}, M_{2}\right\}$ such that

$$
\left\|u_{0}\right\|_{Y_{T}} \leq M_{1} \quad \text { and } \quad\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{Y_{T}}\left(\leq C\left\|u_{0}\right\|_{Y_{T}}\right) \leq M_{2}
$$

M depends on $\left\|u_{0}\right\|_{Y_{T}}$, independent of t. Moreover the mapping Φ from B_{M+1} to Y_{T} is defined by

$$
\Phi[u](t)=e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}+\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma .
$$

At first, we show that Φ is the mapping from B_{M+1} into B_{M+1}. By Lemma 3.2 ($L^{q}-L^{m}$ estimate) and $q>N(r-1) / 2$, we have that for any $u \in B_{M+1}$,

$$
\begin{aligned}
& \left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma\right\|_{L^{m}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & C \int_{0}^{t}(t-\sigma)^{-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)}\|u(\sigma)\|_{L^{r r}(\mathbb{H} d}^{r} d \sigma \\
\leq & C(M+1)^{r} \int_{0}^{t}(t-\sigma)^{-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)} \sigma^{-r \lambda} d \sigma \\
= & C(M+1)^{r} t^{1-r \lambda-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)} \int_{0}^{1}(1-\sigma)^{-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)} \sigma^{-r \lambda} d \sigma
\end{aligned}
$$

for $m \geq q$. Since

$$
\int_{0}^{1}(1-\sigma)^{-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)} \sigma^{-r \lambda} d \sigma<\infty \quad \text { and } \quad 1-r \lambda>0
$$

we see that

$$
\begin{equation*}
t^{\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)}\left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma\right\|_{L^{m}\left(\mathbb{H}_{p}^{d}\right)} \leq C(M+1)^{r} T^{1-r \lambda} . \tag{4.1}
\end{equation*}
$$

If we take $m=q$ or $m=q r$ in (4.1), then we have

$$
\left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{1}(M+1)^{r} T^{1-r \lambda}
$$

or

$$
t^{\lambda}\left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) d \sigma\right\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{2}(M+1)^{r} T^{1-r \lambda} .
$$

Hence we obtain

$$
\|\Phi[u]\|_{Y_{T}} \leq M+\max \left\{C_{1}, C_{2}\right\}(M+1)^{r} T^{1-r \lambda}
$$

For a sufficiently small $T>0$, we have

$$
\max \left\{C_{1}, C_{2}\right\}(M+1)^{r} T^{1-r \lambda} \leq 1
$$

Therefore we see that Φ is the mapping from B_{M+1} into B_{M+1}.
Next we proceed to proving that the mapping Φ from B_{M+1} to Y_{T} is the contraction mapping. By the inequality

$$
\begin{equation*}
\left\||u|^{r-1} u-|v|^{r-1} v\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq r\left(\|u\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}+\|v\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}\right)\|u-v\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \tag{4.2}
\end{equation*}
$$

and Lemma 3.2 ($L^{q}-L^{m}$ estimate), for $u_{1}, u_{2} \in B_{M+1}$, we obtain that

$$
\begin{equation*}
\left\|\Phi\left[u_{1}\right](t)-\Phi\left[u_{2}\right](t)\right\|_{L^{m}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{3}(M+1)^{r-1} t^{1-r \lambda-\frac{N}{2}\left(\frac{1}{q}-\frac{1}{m}\right)}\left\|u_{1}-u_{2}\right\|_{Y_{T}} \tag{4.3}
\end{equation*}
$$

for a constant $C_{3}>0$. If we take $m=q$ or $m=q r$ in (4.3), then we have that

$$
\left\|\Phi\left[u_{1}\right](t)-\Phi\left[u_{2}\right](t)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{3}(M+1)^{r-1} T^{1-r \lambda}\left\|u_{1}-u_{2}\right\|_{Y_{T}}
$$

or

$$
t^{\lambda}\left\|\Phi\left[u_{1}\right](t)-\Phi\left[u_{2}\right](t)\right\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{3}(M+1)^{r-1} T^{1-r \lambda}\left\|u_{1}-u_{2}\right\|_{Y_{T}}
$$

Hence we obtain

$$
\left\|\Phi\left[u_{1}\right](t)-\Phi\left[u_{2}\right](t)\right\|_{Y_{T}} \leq C_{4}(M+1)^{r-1} T^{1-r \lambda}\left\|u_{1}-u_{2}\right\|_{Y_{T}}
$$

for a constant $C_{4}>0$. Since $1-r \lambda>0$, we have for a sufficient small $T>0$,

$$
C_{4}(M+1)^{r-1} T^{1-r \lambda} \leq \frac{1}{2}
$$

Therefore we see that the mapping Φ is the contraction mapping for a sufficiently small T. By Banach fixed point theorem, there exists a unique fixed point u of the mapping Φ in B_{M+1}.

Similarly as [1], we see that $u \in C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$. Indeed by $u \in B_{M+1}$ and $r \lambda<1$, $|u|^{r-1} u \in L^{1}\left((0, T) ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$. This implies $u \in C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$.

Finally we show the continuous depending on the initial value. Let $u(t)$ and $v(t)$ be solutions of the Cauchy problem (1.1) with $u(0)=u_{0}$ and $v(0)=v_{0}$, respectively. By the inequality 4.2) and Lemma 3.2 ($L^{q}-L^{q r}$ estimate), we obtain

$$
\begin{aligned}
&\|u(t)-v(t)\|_{L^{q r\left(\mathbb{H}_{p}^{d}\right)}} \\
& \leq\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}}\left(u_{0}-v_{0}\right)\right\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)}+\int_{0}^{t} \| e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}\left(|u(\sigma)|^{r-1} u(\sigma)-|v(\sigma)|^{r-1} v(\sigma)\right) \|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} d \sigma} \text { } \\
& \leq C_{5} t^{-\lambda}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{6}(M+1)^{r} \int_{0}^{t}(t-\sigma)^{-\lambda} \sigma^{(r-1) \lambda}\|u(\sigma)-v(\sigma)\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} d \sigma
\end{aligned}
$$

for positive constants C_{5} and C_{6}. By Lemma 3.3 (Gronwall Lemma), we have

$$
\|u(t)-v(t)\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{7} t^{-\lambda}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}, \quad \text { a.a. } t \in[0, T] .
$$

Hence we obtain

$$
\begin{equation*}
t^{\lambda}\|u(t)-v(t)\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{7}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}, \quad \text { a.a. } t \in[0, T], \tag{4.4}
\end{equation*}
$$

where a constant $C_{7}>0$ depends on T, q, r and N. By the inequality (4.2) and (4.4), we have

$$
\begin{aligned}
& \|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & \left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}}\left(u_{0}-v_{0}\right)\right\|_{L^{q\left(\mathbb{H}_{p}^{d}\right)}}+\int_{0}^{t}\left\|e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)-|v(\sigma)|^{r-1} v(\sigma)\right)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} d \sigma \\
\leq & \left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{8}(M+1)^{r-1} \sup _{0 \leq t \leq T} t^{\lambda}\|u(t)-v(t)\|_{L^{q r}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & C_{9}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}
\end{aligned}
$$

for positive constants C_{8} and C_{9}. Therefore we obtain

$$
\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{9}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}, \quad \text { a.a. } t \in[0, T] .
$$

This completes the proof of Theorem 1.1.
Remark 4.1. We can show $u \in C^{1}\left((0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$. Let $\nu(t)=u(t+\varepsilon)$ on the interval $(0, T-\varepsilon]$ for any $\varepsilon>0$. Then we have

$$
\nu(t)=e^{t \Delta_{\mathbb{H}_{p}^{d}}} u(\varepsilon)+\int_{0}^{t} e^{(t-\sigma) \Delta}|\nu(\sigma)|^{r-1} \nu(\sigma) d \sigma .
$$

By the inequality 4.2), we can see $\sigma \mapsto|\nu(\sigma)|^{r-1} \nu(\sigma)$ is Hölder continuous from $[\varepsilon, T-\varepsilon]$ to $L^{q}\left(\mathbb{H}_{p}^{d}\right)$. If $\nu_{1}(t)=u(t+2 \varepsilon)$, then $\sigma \mapsto\left|\nu_{1}(\sigma)\right|^{r-1} \nu_{1}(\sigma)$ is Hölder continuous from $[0, T-2 \varepsilon]$ to $L^{q}\left(\mathbb{H}_{p}^{d}\right)$. By Theorem 1.27 in [8], ν_{1} is continuously differentiable for $t>0$ and satisfies $\nu_{1}^{\prime}(t)=\Delta_{\mathbb{H}_{p}^{d}} \nu_{1}+\left|\nu_{1}(t)\right|^{r-1} \nu_{1}(t)$. Since $\varepsilon>0$ is arbitrary, $\nu \in C^{1}\left((0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$.

5. Proof of Theorem 1.2

Fix any θ such that $q<\theta<q r, \theta \geq r$ and set

$$
\widetilde{E}_{T}=L^{\infty}\left((0, T) ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right) \cap\left\{u \in L_{\mathrm{loc}}^{\infty}\left((0, T) ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right), t^{\alpha} u \in L^{\infty}\left((0, T) ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right)\right\}
$$

and

$$
E_{T}=L^{\infty}\left((0, T) ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right) \cap\left\{u \in L_{\mathrm{loc}}^{\infty}\left((0, T) ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right), t^{\alpha} u \in C_{0}\left([0, T] ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right)\right\}
$$

where $\alpha=\frac{N}{2}\left(\frac{1}{q}-\frac{1}{\theta}\right)<1$ and C_{0} means the set of functions which vanish at $t=0$ following [1]. Fix $M=\max \left\{M_{1}, M_{2}\right\}$ such that

$$
\left\|u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq M_{1} \quad \text { and } \quad\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq M_{2}
$$

M is independent of t. For some $\delta>0$ to be chosen later, let

$$
\widetilde{K}_{T}=\left\{u \in \widetilde{E}_{T} \mid\|u(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq M+1 \text { and } t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \leq \delta\right\}
$$

for $t \in(0, T)$ and

$$
K_{T}=\widetilde{K}_{T} \cap E_{T}
$$

with a norm

$$
\|u\|_{\widetilde{K}_{T}}=\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} .
$$

Let the mapping Φ be defined in Section 4 and

$$
c=\frac{N}{2}\left(\frac{r}{\theta}-\frac{1}{q}\right) .
$$

For $u \in \widetilde{K}_{T}$, by Lemma 3.2 ($L^{\theta / r}-L^{q}$ estimate), we have

$$
\begin{aligned}
\|\Phi[u](t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} & \leq\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+\int_{0}^{t} \| e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}\left(|u(\sigma)|^{r-1} u(\sigma)\right) \|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} d \sigma} \text { } \\
& \leq C\left\|u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+\int_{0}^{t}(t-\sigma)^{-c}\|u(\sigma)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}^{r} d \sigma \\
& \leq C\left\|u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+\left(\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} \int_{0}^{t}(t-\sigma)^{-c} \sigma^{-r \alpha} d \sigma \\
& \leq C\left\|u_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{1} \delta^{r},
\end{aligned}
$$

where C_{1} depends only on N, q, θ and r. Therefore we obtain

$$
\|\Phi[u](t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq M+1
$$

provided

$$
\begin{equation*}
C_{1} \delta^{r} \leq 1 \tag{5.1}
\end{equation*}
$$

On the other hand, by Lemma $3.2\left(L^{\theta / r}-L^{\theta}\right.$ estimate), we have

$$
\begin{align*}
& t^{\alpha}\|\Phi[u](t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & \sup _{0<t<T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+t^{\alpha} \int_{0}^{t}(t-\sigma)^{-\frac{N(r-1)}{2 \theta}}\|u(\sigma)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}^{r} d \sigma \\
\leq & \sup _{0<t<T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \tag{5.2}\\
& +\left(\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} t^{\alpha} \int_{0}^{t}(t-\sigma)^{-\frac{N(r-1)}{2 \theta}} \sigma^{-r \alpha} d \sigma \\
\leq & \sup _{0<t<T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+C_{2} \delta^{r}
\end{align*}
$$

where C_{2} also depends only on N, q, θ and r. Therefore we obtain

$$
\sup _{0<t<T} t^{\alpha}\|\Phi[u](t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \leq \sup _{0<t<T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+\frac{\delta}{2}
$$

provided

$$
\begin{equation*}
C_{2} \delta^{r-1} \leq \frac{1}{2} \tag{5.3}
\end{equation*}
$$

Similarly, we have for $u, v \in \widetilde{K}_{T}$,

$$
\begin{align*}
\sup _{0<t<T} t^{\alpha}\|\Phi[u](t)-\Phi[v](t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} & \leq C_{3} \delta^{r-1} \sup _{0<t<T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
& \leq \frac{1}{2} \sup _{0<t<T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \tag{5.4}
\end{align*}
$$

provided

$$
\begin{equation*}
C_{3} \delta^{r-1} \leq \frac{1}{2} \tag{5.5}
\end{equation*}
$$

where C_{3} depends only on N, q, θ and r. Therefore the mapping $\Phi: \widetilde{K}_{T} \rightarrow \widetilde{E}_{T}$ follows from the above estimates. We fix any $\delta>0$ sufficiently small such that (5.1), (5.3) and (5.5) are satisfied. Furthermore, we fix $T>0$ so that

$$
\begin{equation*}
\sup _{0<t<T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \leq \frac{\delta}{2} . \tag{5.6}
\end{equation*}
$$

T can be chosen independent of δ by the same reason as Lemma 8 in [1]. By (5.2), (5.4) and (5.6), we see that $\Phi: \widetilde{K}_{T} \rightarrow \widetilde{K}_{T}$ is a strict contraction. Hence Φ has a unique fixed point in \widetilde{K}_{T}.

Next we show that this fixed point belongs to K_{T}. It is sufficient to show that $\Phi: K_{T} \rightarrow$ K_{T}. For this purpose, we check that $\Phi[u] \in C\left((0, T] ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right)$ and $\lim _{t \rightarrow 0} t^{\alpha} \Phi[u](t)=0$ in $L^{\theta}\left(\mathbb{H}_{p}^{d}\right)$. Similarly as the proof of Lemma 2.1 in 10$]$, we see that $\Phi[u] \in C\left((0, T] ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right)$. On the other hand, by Lemma 3.2 ($L^{\theta / r}-L^{\theta}$ estimate), we have that

$$
\begin{aligned}
& t^{\alpha}\|\Phi[u](t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+\left(\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} t^{\alpha} \int_{0}^{t}(t-\sigma)^{-\frac{N(r-1)}{2 \theta}} \sigma^{-r \alpha} d \sigma \\
\leq & t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+\left(\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} \int_{0}^{1}(1-\sigma)^{-\frac{N(r-1)}{2 \theta}} \sigma^{-r \alpha} d \sigma \\
\rightarrow & 0
\end{aligned}
$$

as $t \rightarrow 0$, since $u \in E_{T}$ and $r \alpha+N(r-1) /(2 \theta)=\alpha+1$. Let any interval $[a, b] \subset(0, T)$ and $t \in[a, b]$. Then we obtain

$$
\begin{aligned}
& \sup _{a \leq t \leq b}\|\Phi[u](t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & \left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}} u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+\left(\sup _{a \leq t \leq b}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} \int_{0}^{t}(t-\sigma)^{-\frac{N(r-1)}{2 \theta}} \sigma^{-r \alpha} d \sigma \\
\leq & C\left\|u_{0}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+a^{-\alpha}\left(\sup _{a \leq t \leq b}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} \int_{0}^{1}(1-\sigma)^{-\frac{N(r-1)}{2 \theta}} \sigma^{-r \alpha} d \sigma .
\end{aligned}
$$

Hence we also see that $\Phi[u] \in L_{\text {loc }}^{\infty}\left((0, T) ; L^{\theta}\left(\mathbb{H}_{p}^{d}\right)\right)$. Next we show that $u \in C\left([0, T], L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$. It is sufficient to show that

$$
\lim _{t \rightarrow 0}\left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}|u(\sigma)|^{r-1} u(\sigma)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}=0
$$

Indeed, by Lemma 3.2 ($L^{\theta / r}-L^{q}$ estimate), we have

$$
\begin{aligned}
\left\|\int_{0}^{t} e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}|u(\sigma)|^{r-1} u(\sigma)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} & \leq \int_{0}^{t}(t-\sigma)^{-a}\|u(\sigma)\|_{L^{\theta}}^{r} d \sigma \\
& \leq C_{4}\left(\sup _{0<t<T} t^{\alpha}\|u(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}\right)^{r} \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0$, since $u \in E_{T}$.
Finally we show the continuous depending on the initial value. Let $u(t)$ and $v(t)$ be solutions of the Cauchy problem (1.1) with $u(0)=u_{0}$ and $v(0)=v_{0}$, respectively. Similarly as the argument of (5.2), we have

$$
\begin{aligned}
& \sup _{0 \leq t \leq T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
\leq & \sup _{0 \leq t \leq T} t^{\alpha}\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}\left(u_{0}-v_{0}\right)}\right\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}+\frac{1}{2} \sup _{0 \leq t \leq T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}
\end{aligned}
$$

By this, we obtain

$$
\begin{equation*}
\sup _{0 \leq t \leq T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \leq 2\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \tag{5.7}
\end{equation*}
$$

On the other hand, by (4.2), 5.7) and Lemma $3.2\left(L^{\theta / r}-L^{q}\right.$ estimate), we have

$$
\begin{aligned}
&\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \\
& \leq\left\|e^{t \Delta_{\mathbb{H}_{p}^{d}}}\left(u_{0}-v_{0}\right)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+\int_{0}^{t}\left\|e^{(t-\sigma) \Delta_{\mathbb{H}_{p}^{d}}}\left(|u(\sigma)|^{r-1} u(\sigma)-|v(\sigma)|^{r-1} v(\sigma)\right)\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} d \sigma \\
& \leq\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{5} \int_{0}^{t}(t-\sigma)^{-c}\left\||u(\sigma)|^{r-1} u(\sigma)-|v(\sigma)|^{r-1} v(\sigma)\right\|_{L^{\theta / r}\left(\mathbb{H}_{p}^{d}\right)} d \sigma \\
& \leq\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{6} \int_{0}^{t}(t-\sigma)^{-c}\left(\|u(\sigma)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}+\|v(\sigma)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}\right)\|u(\sigma)-v(\sigma)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} d \sigma \\
& \leq\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+C_{7} \delta^{r-1} \sup _{0 \leq t \leq T} t^{\alpha}\|u(t)-v(t)\|_{L^{\theta}\left(\mathbb{H}_{p}^{d}\right)} \\
& \leq C_{8}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}
\end{aligned}
$$

for positive constants C_{5}, C_{6}, C_{7} and $C_{8} . C_{8}$ is independent of T. Therefore we obtain

$$
\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} \leq C_{8}\left\|u_{0}-v_{0}\right\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}, \quad t \in[0, T] .
$$

This completes the proof of Theorem 1.2.
6. Proof of Theorem 1.3

We consider separately two cases: Case (i): $q>N(r-1) / 2$ and $q \geq r$, Case (ii): $q=$ $N(r-1) / 2$ and $q>r$.

Case (i): Let $u, v \in C\left([0, T] ; L^{q}\left(\mathbb{H}_{p}^{d}\right)\right)$ be two solutions. Then we have

$$
u(t)-v(t)=\int_{0}^{t} e^{(t-\sigma) \Delta}\left(|u(\sigma)|^{r-1} u(\sigma)-|v(\sigma)|^{r-1} v(\sigma)\right) d \sigma
$$

By Lemma 3.2 ($L^{q / r}-L^{q}$ estimate) and by the inequality

$$
\left\||u|^{r-1} u-|v|^{r-1} v\right\|_{L^{\frac{q}{r}\left(\mathbb{H}_{p}^{d}\right)}} \leq r\left(\|u\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}+\|v\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}\right)\|u-v\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)},
$$

we obtain that

$$
\begin{align*}
\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} & \leq C \int_{0}^{t}(t-\sigma)^{-\theta}\left\||u|^{r-1} u-|v|^{r-1} v\right\|_{L^{\frac{q}{r}\left(\mathbb{H}_{p}^{d}\right)}} d \sigma \tag{6.1}\\
& \leq C^{\prime} \int_{0}^{t}(t-\sigma)^{-\theta}\left(\|u\|_{L^{q\left(\mathbb{H}_{p}^{d}\right)}}^{r-1}+\|v\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}^{r-1}\right)\|u-v\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)} d \sigma
\end{align*}
$$

where $\theta=N(r-1) /(2 q)<1$ and positive constants C, C^{\prime} are independent of t.
Let $M=\sup _{0 \leq t \leq T}\left(\|u\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}+\|v\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}\right)$ and $\psi(t)=\sup _{0 \leq \sigma \leq t}\|u(t)-v(t)\|_{L^{q}\left(\mathbb{H}_{p}^{d}\right)}$ for $t \in[0, T]$. By the estimate (6.1), we deduce that

$$
\begin{equation*}
\psi(t) \leq C M^{r-1} \frac{T^{1-\theta}}{1-\theta} \psi(t) \tag{6.2}
\end{equation*}
$$

Let T^{\prime} be sufficiently small such that $0<T^{\prime}<T$ and let $t \in\left[0, T^{\prime}\right]$. Then by 6.2), we can see $\psi(t)=0$. Finitely repeating the same argument, we can see that $\psi(t)=0$ for $t \in[0, T]$.

Cases (ii): Let $q=N(r-1) / 2>r$ and $N \geq 4$. Let u, v be two solutions and let $w=u-v$. We put

$$
a(g, t)= \begin{cases}\frac{|u|^{r-1} u-|v|^{r-1} v}{u-v} & \text { if } u \neq v, \\ r|u|^{r-1} & \text { if } u=v\end{cases}
$$

so that

$$
w(t)=\int_{0}^{t} e^{(t-\sigma) \Delta} a(\sigma) w(\sigma) d \sigma
$$

By the same argument as in 1$]$, we can see that $a \in C\left([0, T]: L^{N / 2}\left(\mathbb{H}_{p}^{d}\right)\right)$. By Lemma 3.4. we see that $w \equiv 0$. Note that $q>N /(N-2)$.

References

[1] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304.
[2] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples, Cambridge Studies in Advanced Mathematics 18, Cambridge University Press, Cambridge, 1990.
[3] Y. Giga, Solutions for semilinear parabolic equations in L^{p} and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), no. 2, 186-212.
[4] A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), no. 2, 167-189.
[5] D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835-854.
[6] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147-153.
[7] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Harmonic Analysis, 416-435, Lecture Notes in Math. 992, Springer, Berlin, 1983.
[8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[9] W.-M. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc. 287 (1985), no. 2, 657-671.
[10] F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), no. 3, 277-296.
[11] , Local existence and nonexistence for semilinear parabolic equations in L^{p}, Indiana Univ. Math. J. 29 (1980), no. 1, 79-102.
[12] E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler equation, J. Differential Equations 127 (1996), no. 2, 561-570.

Yasuyuki Oka
Department of Creative Engineering, National Institute of Technology, Kushiro College, 2-32-1 Otanoshike-Nishi, Kushiro-Shi, Hokkaido 084-0916, Japan
E-mail address: oka@kushiro-ct.ac.jp

[^0]: Received October 10, 2017; Accepted March 6, 2018.
 Communicated by Jann-Long Chern.
 2010 Mathematics Subject Classification. 35A01, 35A02.
 Key words and phrases. H type group, semilinear heat equation, local well-posedness.

