Pentavalent Arc-transitive Graphs of Order $2 p^{2} q$

Hailin Liu, Bengong Lou* and Bo Ling

Abstract

In this paper, we complete a classification of pentavalent arc-transitive graphs of order $2 p^{2} q$, where p and q are distinct odd primes. This result involves a subclass of pentavalent arc-transitive graphs of cube-free order.

1. Introduction

Throughout the paper, graphs considered are simple, connected, undirected and regular. For a graph Γ, we denote by $V \Gamma, E \Gamma, A \Gamma$ and $A u t \Gamma$ the vertex set, edge set, arc set and full automorphism group of Γ, respectively. Γ is called G-vertex-transitive, G-edgetransitive or G-arc-transitive if $G \leq$ Aut Γ is transitive on $V \Gamma, E \Gamma$ or $A \Gamma$, respectively. In particular, when $G=$ Aut Γ then Γ is called vertex-transitive, edge-transitive or arctransitive, respectively. As we all know, Γ is G-arc-transitive for some $G \leq$ Aut Γ if and only if G is vertex-transitive and the vertex stabilizer G_{v} of $v \in V \Gamma$ in G is transitive on the neighborhood $\Gamma(v)$ of v. Let Γ be a vertex-transitive graph, and let N be a subgroup of Aut Γ. Denote by Γ_{N} the quotient graph induced by N with $V \Gamma_{N}=\left\{v^{N} \mid v \in V \Gamma\right\}$ and two orbits are adjacent in Γ_{N} if and only if that there is an edge in Γ between these two orbits. If Γ and Γ_{N} have the same valency, then Γ is called a normal cover of Γ_{N}.

Let G be a group, and $H \leq G$. Then we use $G^{\prime}, \operatorname{Aut}(G)$ and $C_{G}(H)$ to denote the derived group, automorphism group and the centralizer of H in G, respectively. Let M and N be two groups. Then we use $M: N$ and $M \times N$ to denote a semidirect product and direct product of M by N. For a positive integer n, we denote by $D_{2 n}, A_{n}, S_{n}, \mathbb{Z}_{n}$ and \mathbb{Z}_{n}^{*} the dihedral group of order $2 n$, the alternating group and the symmetric group of degree n, the cyclic group of order n and the ring of integers modulo n (and for the field of order n if n is a prime), and the multiplicative group of units of \mathbb{Z}_{n} respectively.

A group G is called a generalized dihedral group, if there exists an abelian subgroup H and an involution τ such that $G=H:\langle\tau\rangle$ and $h^{\tau}=h^{-1}$ for each $h \in H$. This group is denoted by $\operatorname{Dih}(H)$.

[^0]In the literature, the classification of arc-transitive graphs of small valency have been extensively studied, for examples [5, 9, 14, 20, 24]. In particular, arc-transitive graphs of square-free order have been studied for a long time, for instance [2, 12, 13]. More recently, arc-transitive graphs of cube-free order are studied in various special case, for examples [4, 16-18, 22], which will be a long-term project. In this paper, we study a subclass of pentavalent arc-transitive graphs of cube-free order, and give a classification of pentavalent arc-transitive graphs of order $2 p^{2} q$ for distinct odd primes p and q. The special cases where $p=q, p=2$, and $q=2$ have been treated in [21], [8], and [10], respectively. The main result of this paper is the following theorem.

Theorem 1.1. Let Γ be a pentavalent arc-transitive graph of order $2 p^{2} q$, where p and q are distinct odd primes. Then either
(1) Γ is a Cayley graph on $\operatorname{Dih}(H)$, where $H \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q}$ or $\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$; or
(2) $\left(\Gamma,|V \Gamma|, \operatorname{Aut} \Gamma,(\operatorname{Aut} \Gamma)_{v}\right)$ lies in Table 1.1.

Row	Γ	$2 p^{2} q$	Aut Γ	$(\text { Aut } \Gamma)_{v}$	Remark
1	\mathcal{C}_{126}	126	S_{9}	$S_{4} \times S_{5}$	Example $3.2(1)$
2	\mathcal{C}_{342}^{1}	342	$\operatorname{PSL}(2,19)$	D_{10}	Example $3.2(2)$
3	\mathcal{C}_{342}^{2}	342	$\operatorname{PGL}(2,19)$	D_{20}	Example $3.2(3)$

Table 1.1

2. Preliminary results

In this section, we give some necessary preliminary results.
The following lemma determines the stabilizers of pentavalent arc-transitive graphs from (7,23].

Lemma 2.1. Let Γ be a pentavalent G-arc-transitive graph for some $G \leq$ Aut Γ. Let $v \in V \Gamma$. If G_{v} is soluble, then $\left|G_{v}\right| \mid 80$. If G_{v} is insoluble, then $\left|G_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$. Furthermore, $G_{v} \cong \mathbb{Z}_{5}, D_{10}, D_{20}, F_{20}, F_{20} \times \mathbb{Z}_{2}, A_{5}, S_{5}, F_{20} \times \mathbb{Z}_{4}, A_{4} \times A_{5},\left(A_{4} \times A_{5}\right): \mathbb{Z}_{2}$, $S_{4} \times S_{5}, \operatorname{ASL}(2,4), \operatorname{AGL}(2,4), A \Sigma L(2,4), A \Gamma L(2,4)$ or $\mathbb{Z}_{2}^{6}: \Gamma L(2,4)$.

We now give a result that will be useful.
Lemma 2.2. Let p and q be distinct odd primes, and let Γ be a connected pentavalent G-arc-transitive graph of order $2 p^{2} q$, where $G \leq \operatorname{Aut} \Gamma$. Let $N \triangleleft G$. If N is insoluble, then the following statements hold:
(1) N has at most two orbits on $V \Gamma$;
(2) For each $v \in V \Gamma, 5| | N_{v}^{\Gamma(v)} \mid$.

Proof. (1) Suppose that N has at least three orbits on $V \Gamma$. Then, by [15, Theorem 9], N is semiregular on $V \Gamma$. Hence $|N| \mid 2 p^{2} q$. Since a group of order $2 p^{2} q$ is soluble, N is soluble, a contradiction.
(2) Let $v \in V \Gamma$. If $N_{v}=1$, then N is a group with order divising $2 p^{2} q$. It follows that N is soluble, which is a contradiction to our hypothesis. Thus $N_{v} \neq 1$. Since G is transitive on $V \Gamma, N_{v}^{\Gamma(v)} \neq 1$ by connectivity of Γ. Note that $G_{v}^{\Gamma(v)}$ acts primitively on $\Gamma(v)$ and $N_{v}^{\Gamma(v)} \unlhd G_{v}^{\Gamma(v)}$, so $5\left|\left|N_{v}^{\Gamma(v)}\right|\right.$.

By checking order of nonabelian simple groups (see [3, pp. 303-304]), we have the following lemma.

Lemma 2.3. Let p and q be distinct odd primes. Let T be a nonabelian simple group of order $|T|=2^{i} \cdot 3^{j} \cdot 5 \cdot p^{s} \cdot q$, where $1 \leq i \leq 10,0 \leq j \leq 2$ and $0 \leq s \leq 2$. Then either T is in the following Table 2.1, or $T \cong \operatorname{PSL}(2,121)$ if $p \neq q>5$ and $5 p^{2} q| | T \mid$.

T	$\|T\|$	T	$\|T\|$
A_{5}	$2^{2} \cdot 3 \cdot 5$	A_{6}	$2^{3} \cdot 3^{2} \cdot 5$
$\operatorname{PSp}(4,3)$	$2^{6} \cdot 3^{4} \cdot 5$		
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$
$\operatorname{PSL}(3,4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	$\operatorname{PSL}(3,5)$	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$
$\operatorname{PSp}(4,4)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$	$\operatorname{PSp}(6,2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$
$\operatorname{PSU}(3,4)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	$\operatorname{PSU}(3,5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	$\operatorname{PSL}(2,11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$
$\operatorname{PSL}(2,16)$	$2^{4} \cdot 3 \cdot 5 \cdot 17$	$\operatorname{PSL}(2,19)$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$
$\operatorname{PSL}(2,25)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	$\operatorname{PSL}(2,31)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$
$\operatorname{PSL}(2,49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	$\operatorname{PSL}(2,81)$	$2^{4} \cdot 3^{4} \cdot 5 \cdot 41$
$\operatorname{Sz}(8)$	$2^{6} \cdot 5 \cdot 7 \cdot 13$		

Table 2.1

A graph Γ is said a Cayley graph if there exists a group G and a subset $S \subset G$ with $1 \notin S=S^{-1}:=\left\{g^{-1} \mid g \in S\right\}$ such that the vertices of Γ may be identified with the
elements of G in such a way that x is adjacent to y if and only if $y x^{-1} \in S$. The Cayley graph Γ is denoted by Cay (G, S). As we all known, a graph Γ is a Cayley graph if and only if Aut Γ contains a subgroup which is regular on $V \Gamma$.

Lemma 2.4. Let Γ be a connected and regular G-edge-transitive graph, where $G \leq$ Aut Γ. Suppose that G contains an abelian normal subgroup H which acts semiregularly and has exactly two orbits on $V \Gamma$. Then Γ is a Cayley graph of the generalized dihedral $\operatorname{Dih}(H)$.

Proof. Note that H is normal in G, and is semiregular and has exactly two orbits on $V \Gamma$, so $\Gamma_{H} \cong K_{2}$ by the connectivity of Γ. It follows that there exists a edge $\{\alpha, \beta\} \in E \Gamma$ such that $V \Gamma=\alpha^{H} \cup \beta^{H}$. We conclude that α^{H} is an independent set of Γ. Actually, if α^{H} is not an independent set of Γ, then there exist $h_{1}, h_{2} \in H$ such that $\left\{\alpha^{h_{1}}, \alpha^{h_{2}}\right\} \in E \Gamma$. Since Γ is G-edge transitive, there exists $g \in G$ such that $\left\{\alpha^{h_{1}}, \alpha^{h_{2}}\right\}^{g}=\{\alpha, \beta\}$. Therefore $\left(\alpha^{H}\right)^{g} \cap \alpha^{H} \neq \emptyset$ and $\left(\alpha^{H}\right)^{g} \neq \alpha^{H}$, a contrary to the fact that α^{H} is a block of the action of G on $V \Gamma$. With the same reason, β^{H} is an independent set of Γ too. It follows that Γ is a bipartite graph with two parts α^{H} and β^{H}.

For any $h \in H$, define a map

$$
\sigma: \alpha^{h} \mapsto \beta^{h^{-1}}, \beta^{h} \mapsto \alpha^{h^{-1}}
$$

Clearly, σ is a permutation on $V \Gamma$ with order 2 .
Since Γ is G-edge transitive, $E \Gamma=\{\alpha, \beta\}^{G}$. Let $g \in G$. Then there exist $h_{1}, h_{2} \in H$ such that $\alpha^{g}=\alpha^{h_{1}}\left(\right.$ or $\left.\beta^{h_{2}}\right)$ and $\beta^{g}=\beta^{h_{2}}$ (or $\alpha^{h_{1}}$). Since H is abelian, $\left\{\alpha^{g}, \beta^{g}\right\}^{\sigma}=\left\{\alpha^{h_{1}}, \beta^{h_{2}}\right\}^{\sigma}=\left\{\beta^{h_{1}^{-1}}, \alpha^{h_{2}^{-1}}\right\}=\left\{\alpha^{g h_{1}^{-1} h_{2}^{-1}}, \beta^{g h_{2}^{-1} h_{1}^{-1}}\right\}=\left\{\alpha^{g h_{1}^{-1} h_{2}^{-1}}, \beta^{g h_{1}^{-1} h_{2}^{-1}}\right\}$ for each $\left\{\alpha^{g}, \beta^{g}\right\} \in E \Gamma$. Therefore, $\left\{\alpha^{g}, \beta^{g}\right\}^{\sigma} \in E \Gamma$, and so σ is an automorphism of Γ. Further, $\left(\alpha^{h^{\prime}}\right)^{\sigma h \sigma}=\left(\alpha^{h^{\prime-1}}\right)^{h \sigma}=\left(\alpha^{h^{\prime-1} h}\right)^{\sigma}=\alpha^{h^{-1} h^{\prime}}=\left(\alpha^{h^{\prime}}\right)^{h^{-1}}$, and $\left(\beta^{h^{\prime}}\right)^{\sigma h \sigma}=\left(\beta^{h^{\prime}}\right)^{h^{-1}}$ for any $h, h^{\prime} \in H$. Thus $\sigma^{-1} h \sigma=h^{-1}$ for any $h \in H$. So $\langle H, \alpha\rangle \cong \operatorname{Dih}(H)$. Since σ interchanges α^{H} and $\beta^{H},\langle H, \sigma\rangle$ acts regularly on $V \Gamma$. Hence Γ is a Cayley graph on Dih (H).

3. Examples

In this section, we give some examples which are appearing in Theorem 1.1.
Example 3.1. (1) Let $H_{1}=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q}$, and let $G_{1}=\operatorname{Dih}\left(H_{1}\right)=\langle a, b, h|$ $\left.a^{p^{2}}=b^{q}=h^{2}=[a, b]=1, h^{-1} a h=a^{-1}, h^{-1} b h=b^{-1}\right\rangle$.
(1.1) Let $l=1$ if $p=5$, and let l be an element of order 5 in \mathbb{Z}_{p}^{*} if $5 \mid(p-1)$. Define

$$
\mathcal{C G} \mathcal{D}_{2 p^{2} q}^{1}=\operatorname{Cay}\left(G_{1}, S_{1}\right),
$$

where $S_{1}=\left\{h, a h, a^{l(l+1)^{-1}} b^{l^{-1}} h, a^{l} b^{(l+1)^{-1}} h, b h\right\}$. Note that $\alpha: h \mapsto a h, a \mapsto$ $a^{l(l+1)^{-1}-1} b^{l^{-1}}, b \mapsto a^{-1}$ induces an automorphism of order 5 of G_{1} permuting the elements in $\left\{h, a h, a^{l(l+1)^{-1}} b^{l^{-1}} h, a^{l} b^{(l+1)^{-1}} h, b h\right\}$ cyclicly, so $\operatorname{Aut}\left(G_{1}, S_{1}\right)$ is transitive on S_{1}. Hence $\mathcal{C G} \mathcal{D}_{2 p^{2} q}^{1}$ is an arc-transitive Cayley graphs of order $2 p^{2} q$.
(1.2) For $5 \mid(p \pm 1)$, let λ be an element in \mathbb{Z}_{p}^{*} such that $\lambda^{2}=5$. Define

$$
\mathcal{C G D}{ }_{2 p^{2} q}^{2}=\operatorname{Cay}\left(G_{1}, S_{2}\right),
$$

where $S_{2}=\left\{h, a h, a^{2^{-1}(1+\lambda)} b h, a b^{2^{-1}(1+\lambda)} h, b h\right\}$. Note that $\beta: h \mapsto a h, a \mapsto$ $a^{2^{-1}(1+\lambda)-1} b, b \mapsto a^{-1}$ induces an automorphism of G_{1} permuting the elements in $\left\{h, a h, a^{2^{-1}(1+\lambda)} b h, a b^{2^{-1}(1+\lambda)} h, b h\right\}$ cyclicly, so $\operatorname{Aut}\left(G_{1}, S_{2}\right)$ is transitive on S_{3}. Hence $\mathcal{C G D}_{2 p^{2} q}^{2}$ is an arc-transitive Cayley graphs of order $2 p^{2} q$.
(2) Let $H_{2}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$, and let $G_{2}=\operatorname{Dih}\left(H_{2}\right)=\langle a, b, c, h| a^{p}=b^{p}=$ $\left.c^{q}=h^{2}=[a, b]=[a, c]=[b, c]=1, h^{-1} a h=a^{-1}, h^{-1} b h=b^{-1}, h^{-1} c h=c^{-1}\right\rangle$. Let $l=1$ if $p=5$, and let l be an element of order 5 in \mathbb{Z}_{p}^{*} if $5 \mid(p-1)$. Define

$$
\mathcal{C G D}_{2 p^{2} q}^{3}=\operatorname{Cay}\left(G_{2}, S_{3}\right),
$$

where $S_{3}=\left\{h, a h, a^{-l^{2}} b^{-l} c^{-l^{-1}} h, b h, c h\right\}$. Note that $\gamma: h \mapsto a h, a \mapsto b a^{-1}, b \mapsto$ $a^{-l^{2}-1} b^{-l} c^{-l^{-1}}, c \mapsto a^{-1}$ induces an automorphism of G_{2} permuting the elements in $\left\{h, a h, a^{-l^{2}} b^{-l} c^{-l^{-1}} h, b h, c h\right\}$ cyclicly, so $\operatorname{Aut}\left(G_{2}, S_{3}\right)$ is transitive on S_{3}. Hence $\mathcal{C G D} \mathcal{D}_{2 p^{2} q}^{3}$ is an arc-transitive Cayley graphs of order $2 p^{2} q$.
By using Magma program [1], we have the following example.
Example 3.2. (1) There exists a unique connected pentavalent graph of order 126 which admits A_{9} as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{126}, which satisfies the conditions in Row 1 of Table 1.1 .
(2) There is a unique connected pentavalent graph of order 342 which admits $\operatorname{PSL}(2,19)$ as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{342}^{1}, which satisfies the conditions in Row 2 of Table 1.1.
(3) There is a unique connected pentavalent graph of order 342 which admits PGL(2, 19) as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{342}^{2}, which satisfies the conditions in Row 3 of Table 1.1.

4. Proof of Theorem 1.1

Let Γ be a pentavalent arc-transitive graph of order $2 p^{2} q$, where p and q are distinct odd primes. Let $A=\operatorname{Aut} \Gamma$. Then $\left|A_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$ for each $v \in V \Gamma$ by Lemma 2.1, and so $|A| \mid 2^{10} \cdot 3^{2} \cdot 5 \cdot p^{2} \cdot q$. Let N be a minimal normal subgroup of A.

We first consider the case where N is soluble.

Lemma 4.1. If N is soluble, then part (1) of Theorem 1.1 holds.
Proof. Since N is soluble, $N \cong \mathbb{Z}_{r}^{d}$ for some prime r and integer $d \geq 1$. Note that $|N| /\left|N_{v}\right|| | 2 p^{2} q \mid$, so N has at least 3 orbits on $V \Gamma$. It follows that N is semiregular and Γ is a normal cover of Γ_{N} by [15, Theorem 9]. Thus $|N| \mid 2 p^{2} q$, and then $N \cong \mathbb{Z}_{p}, \mathbb{Z}_{q}$ or \mathbb{Z}_{p}^{2}. In what follows, we divide our proof into three cases:

Case 1. Assume that $N \cong \mathbb{Z}_{p}^{2}$. Then $\Gamma_{N} \cong K_{6}, K_{5,5}$ or $G(2 q, 5)$ with $q \equiv 1(\bmod 5)$ by [9, Proposition 2.7].

Suppose that $\Gamma_{N} \cong K_{6}$. Then $q=3$ and $A / N \lesssim S_{6}$. Since 5•6||A/N|,A/N؟ A_{5}, S_{5}, A_{6} or S_{6}. If $A / N \cong A_{5}$ or A_{6}, then $A=N . T$ is a central extension by [11]; further $A^{\prime} \cong T, \mathbb{Z}_{2} \cdot T$ or $\mathbb{Z}_{3} \cdot T$, where $T=A_{5}$ or A_{6}. By Lemma 2.2, A^{\prime} has at most two orbits on $V \Gamma$, and so $3 \cdot p^{2}| | A^{\prime} \mid$, which is impossible. If $A / N \cong S_{5}$ or S_{6}, then A / N contains a normal subgroup $M / N \cong A_{5}$ or A_{6}. Arguing as the above discussion, a contradiction occurs.

Suppose that $\Gamma_{N} \cong K_{5,5}$. Then $q=5$ and $A / N \lesssim S_{5}$ 2 S_{2}. Let M / N be a minimal normal subgroup of A / N. If M / N is insoluble, then $M / N \cong A_{5}$ or A_{5}^{2}. Obviously, M / N has two orbits on $V \Gamma_{N}$ and $5\left|\left|(M / N)_{w}\right|\right.$ for any $w \in V \Gamma_{N}$, implying that 25$||M / N|$. Thus, $M / N \cong A_{5}^{2}$. Let $B / N \unlhd M / N$ such that $B / N \cong A_{5}$. Then B / N has two orbits on $V \Gamma_{N}$ and $5\left|\left|(B / N)_{w}\right|\right.$. Thus, 25$||B / N|$, a contradiction. If M / N is soluble, then $M / N \cong \mathbb{Z}_{5}$ or \mathbb{Z}_{5}^{2}. Therefore $M_{v} \cong 1$ or \mathbb{Z}_{5}. It follows that $\Gamma \cong p^{2} K_{5,5}$, which contradicts the connectivity of Γ.

Thus $\Gamma_{N} \cong G(2 q, 5)$. Assume that $q>11$. Then $A / N=\operatorname{Aut} \Gamma_{N}:=(Q: F):$ $\langle t\rangle \cong\left(\mathbb{Z}_{q}: \mathbb{Z}_{5}\right): \mathbb{Z}_{2}$. Now Γ is a pentavalent 1-regular graph of order $2 p^{2} q$. Since Q is characteristic in $Q: F$ and $Q: F \unlhd \operatorname{Aut} \Gamma_{N}, Q \unlhd \operatorname{Aut} \Gamma_{N}$. Thus A contains a normal subgroup H such that $H / N \cong \mathbb{Z}_{q}$, that is, $H=N . Q \cong \mathbb{Z}_{p}^{2}: \mathbb{Z}_{q}$. If $p=5$, then $H=N \times Q \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$ as $\operatorname{GL}(2,5)$ has no cyclic subgroups of order more than 11. If $p \neq 5$, then $A=N .((Q: F):\langle t\rangle) \cong \mathbb{Z}_{p}^{2} \cdot\left(\left(\mathbb{Z}_{q}: \mathbb{Z}_{5}\right): \mathbb{Z}_{2}\right)=\mathbb{Z}_{p}^{2} \times\left(\left(\mathbb{Z}_{q}: \mathbb{Z}_{5}\right): \mathbb{Z}_{2}\right)$ by the groups structures of the $\mathrm{GL}(2, p)$. Thus $H=N \cdot Q \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$. Now $H \triangleleft A$ is abelian, and has exactly two orbits on $V \Gamma$. So Γ is a Cayley graph on the generalized dihedral $\operatorname{Dih}(H)$ by Lemma 2.4. Assume that $q=11$. Note that $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{PSL}(2,11): \mathbb{Z}_{2}$ is arc-transitive on Γ_{N}, and $\operatorname{PSL}(2,11)$ has no subgroups of order 30 , so $\operatorname{PSL}(2,11)$ has exactly two orbits on $V \Gamma_{N}$. It concludes that $A / N=\operatorname{Aut} \Gamma_{N} \cong \operatorname{PSL}(2,11): \mathbb{Z}_{2}$. Let $B / N \triangleleft A / N$ such that $B / N \cong \operatorname{PSL}(2,11)$. Then $B^{\prime} N / N \triangleleft B / N \cong \operatorname{PSL}(2,11)$. Thus $B^{\prime} N / N=1$ or B / N. If $B^{\prime} N / N=1$, then $B^{\prime} \leq N$ is soluble, which is impossible as B is insoluble. If $B^{\prime} N / N=B / N$, then $B=B^{\prime} N=B^{\prime} \times N$. Obviously, $B^{\prime} \triangleleft A$ has exactly two orbits on $V \Gamma$. So $\left|B^{\prime}\right|=p^{2} q$, implying that B^{\prime} is soluble, a contradiction.

Case 2. Assume that $N \cong \mathbb{Z}_{p}$. Then $\Gamma_{N} \cong \mathcal{C}_{66}, \mathcal{C}_{114}, \mathcal{C}_{406}, \mathcal{C}_{3422}, \mathcal{C}_{3782}, \mathcal{C}_{574}, \mathcal{C}_{42}, \mathcal{C}_{170}$, or $\mathcal{C} \mathcal{D}_{2 p q}^{l}$ for some l satisfying $l^{4}+l^{3}+l^{2}+l \equiv 0(\bmod p q)$ by 9, Theorem 4.2].

Suppose that $\Gamma_{N} \cong \mathcal{C}_{66}$. Then $\{p, q\}=\{3,11\}$ and $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{PGL}(2,11)$. Since $5 \cdot 66\left||A / N|, A / N \cong \operatorname{PSL}(2,11) . O\right.$, where $O \leq \mathbb{Z}_{2}$. Thus A / N contains a normal subgroup M / N isomorphic to $\operatorname{PSL}(2,11)$. Then $M=N \times M^{\prime} \cong \mathbb{Z}_{p} \times \operatorname{PSL}(2,11)$ by [11]. Note that M^{\prime} is a normal subgroup of A, so M^{\prime} has at most two orbits on $V \Gamma$ by Lemma 2.2 . Thus $\left|M_{v}^{\prime}\right|=2 p^{2} q$ or $p^{2} q$. But $\operatorname{PSL}(2,11)$ has no subgroups of these order, a contradiction. Similarly, we can exclude the cases where $\Gamma_{N} \cong \mathcal{C}_{406}, \mathcal{C}_{3422}, \mathcal{C}_{3782}$ and \mathcal{C}_{574}.

Suppose that $\Gamma_{N} \cong \mathcal{C}_{114}$. Then $\{p, q\}=\{3,19\}$, and $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{PGL}(2,19)$. Thus A / N contains a normal subgroup $M / N \cong \operatorname{PSL}(2,19)$, and so $M^{\prime} \unlhd A$ and $M^{\prime} \cong$ $\operatorname{PSL}(2,19)$. It follows that M^{\prime} has at most two orbits on $V \Gamma$ by Lemma 2.2. Obviously, we can exclude case where $(p, q)=(19,3)$ by the same discussion above. If $(p, q)=(3,19)$, then either $\Gamma \cong \mathcal{C}_{342}^{1}$ and Aut $\Gamma \cong \operatorname{PSL}(2,19)$ or $\Gamma \cong \mathcal{C}_{342}^{2}$ and Aut $\Gamma \cong \operatorname{PGL}(2,19)$. So $1 \leq\left|\operatorname{Aut} \Gamma_{N}\right| /|\operatorname{Aut} \Gamma| \leq 2$, which is impossible. Suppose that $\Gamma_{N} \cong \mathcal{C}_{170}$. Then $A / N \cong$ $\operatorname{PSp}(4,4) . O$, where $O \leq \mathbb{Z}_{4}$. Thus A / N contains a normal subgroup $M / N \cong \operatorname{PSp}(4,4)$, and so $M^{\prime} \unlhd A$ and $M^{\prime} \cong \operatorname{PSp}(4,4)$. By Lemma 2.2 , M^{\prime} has at most two orbits on $V \Gamma$. So $p=5$ and $q=17$. It follows that $\left|M_{v}^{\prime}\right|=1152$ or 2304 . On the one hand, the subgroups of M^{\prime} with order 1152 or 2304 are all soluble by Magma 1]. On the other hand, A_{v} has no such normal subgroups that are isomorphic to M_{v} by Lemma 2.1, a contradiction. Similarly, we can exclude the case where $\Gamma_{N} \cong \mathcal{C}_{42}$.

Suppose that $\Gamma_{N} \cong \mathcal{C} \mathcal{D}_{2 p q}^{l}$. Then $A / N \leq$ Aut $\Gamma_{N} \cong D_{2 p q}: \mathbb{Z}_{5}$. Since $5 \cdot 2 p q||A / N|$, $A / N=\operatorname{Aut}\left(\Gamma_{N}\right) \cong D_{2 p q}: \mathbb{Z}_{5}$. Note that $D_{2 p q}$ is regular on $V \Gamma_{N}$, so A has a normal regular subgroup $G \cong \mathbb{Z}_{p} . D_{2 p q}$. Thus, by 19 . Theprem 3.9], either $G \cong\left(\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}\right): \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q}\right): \mathbb{Z}_{2}$, that is, $G \cong \operatorname{Dih}\left(\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}\right)$ or $\operatorname{Dih}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q}\right)$. Hence Γ is a Cayley graph on $\operatorname{Dih}(H)$, where $H \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$ or $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q}$.

Case 3. Assume that $N \cong \mathbb{Z}_{q}$. Then $\Gamma_{N} \cong \mathcal{C G \mathcal { D }}{ }_{2 p^{2}}^{1}(p=5$ or $5 \mid(p-1)), \mathcal{C G D}_{2 p^{2}}^{2}$ $(5 \mid(p \pm 1))$ or $\mathcal{C D}_{2 p^{2}}(5 \mid(p-1))$ by [6. Theorems 4.3 and 6.1].

Suppose that $\Gamma_{N} \cong \mathcal{C} \mathcal{D}_{2 p^{2}}$. Then $A / N=\operatorname{Aut} \mathcal{C D}_{p^{2}} \cong R\left(D_{2 p^{2}}\right): \mathbb{Z}_{5}$. Since $\mathbb{Z}_{p^{2}}$ is characteristic in $R\left(D_{2 p^{2}}\right)$ and $R\left(D_{2 p^{2}}\right) \unlhd$ Aut $\Gamma_{N}, A / N$ has a normal subgroup isomorphic to $\mathbb{Z}_{p^{2}}$. Thus A has a normal subgroup H such that $H \cong \mathbb{Z}_{q} \cdot \mathbb{Z}_{p^{2}}$. If $p=5$, then $H \cong \mathbb{Z}_{q} \times \mathbb{Z}_{p^{2}}$. If $p \equiv 1(\bmod 5)$, then $H \cong \mathbb{Z}_{q} \times \mathbb{Z}_{p^{2}}$ as $A \cong \mathbb{Z}_{q} \times\left(R\left(D_{2 p^{2}}\right): \mathbb{Z}_{5}\right)$. Thus H is abelian. Obviously, H has two orbits on $V \Gamma$. So Γ is a Cayley graph on $\operatorname{Dih}(H)$ by Lemma 2.4 . Similarly, when $\Gamma_{N} \cong \mathcal{C G} \mathcal{D}_{2 p^{2}}^{2}, \mathcal{C G} \mathcal{D}_{5^{2}}^{1}$ or $\mathcal{C G D}{ }_{2 p^{2}}^{1}$, then Γ is also a Cayley graph on $\operatorname{Dih}(H)$, where $H \cong \mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$.

Next we consider the case where N is insoluble.
Lemma 4.2. If N is insoluble, then part (2) of Theorem 1.1 holds.

Proof. Since N is insoluble, $N \cong T^{d}$ with T a nonabelian simple group and integer $d \geq 1$. By Lemma 2.2, N has at most two orbits on $V \Gamma$ and $5\left|\left|N_{v}\right|\right.$ for each $v \in V \Gamma$. Thus $5 p^{2} q| | N \mid$. In the following, we process our analysis by several cases.

Case 1. Assume that $p \neq q>5$. Then $5 p q\left||T|\right.$. If $d \geq 2$, then $\left.5^{d} p^{d} q^{d}\right||N|$. But $|N|||A|| 2^{10} \cdot 3^{2} \cdot 5 \cdot p^{2} \cdot q$, a contradiction. Hence $d=1$ and $N \cong T$. By Lemma 2.3 , $N \cong$ $\operatorname{PSL}(2,121)(p=11, q=61)$. Set $C:=C_{A}(N)$. Since $C \cap N=1, N \times C \leq A$, and so C is a $\{2,3\}$-group. Therefore C is soluble, implying that $C=1$ by the analysis of Lemma 4.1. Thus $A \leq \operatorname{Aut}(N)$. If N has two orbits on $V \Gamma$, then $\left|N_{v}\right|=|N| /(121 \cdot 61)=120$. On the one hand, since $N \leq A \lesssim \operatorname{PSL}\left(2,11^{2}\right) \cdot \mathbb{Z}_{2}^{2},\left|A_{v}: N_{v}\right|=2$ or 4 . Thus A_{v} is insoluble because $\left|A_{v}\right| \nmid 80$, forcing that N_{v} is insoluble. On the other hand, N has no insoluble subgroups of order 120 by Magma [1], a contradiction. Hence N is transitive on $V \Gamma$. Further Γ is N-arc-transitive. But a computation by Magma [1] shows that no graph Γ appears.

Case 2. Assume that $(p, q)=(3,5)$ or $(p, q)=(5,3)$. Since there exists no graph of order 90 by 20 and 150 by [14], we can exclude this case.

Case 3. Assume that $p=3$ and $q>5$. Then $5 \cdot 3^{2} \cdot q| | N| ||A| \mid 2^{10} \cdot 3^{4} \cdot 5 \cdot q$. By Lemma 2.3, $N \cong M_{11}, M_{12}, A_{7}, A_{8}, A_{9}, \operatorname{PSL}(2,19), \operatorname{PSL}(2,81), \operatorname{PSL}(3,4)$ or $\operatorname{PSp}(6,2)$. Suppose that $N \cong M_{11}$. Then $q=11$ and $\left|N_{v}\right|=80$ or 40 . But N has no subgroups of order 80 or 40 by [1], a contradiction. Similarly, we can exclude the cases where $N \cong M_{12}$ and A_{8}. Suppose that $N \cong \operatorname{PSL}(3,4)$. Then $q=7$ and $\left|N_{v}\right|=320$ or 160 . But N has no subgroups of order 320 by Magma [1]. Thus N is transitive on $V \Gamma$. It follows that N is arc-transitive on Γ. On the one hand, the subgroups of N with order 160 are soluble by Magma [1]. On the other hand, $N_{v} \triangleleft A_{v}$ is insoluble by Lemma 2.1, a contradiction. Suppose that $N \cong \operatorname{PSp}(6,2)$. Then $q=7$ and $\left|N_{v}\right|=23040$ or 11520 . For the former, since $N_{v} \triangleleft A_{v}, N_{v}=A_{v} \cong \mathbb{Z}_{2}^{6}: \Gamma L(2,4)$ by Lemma 2.1, which is insoluble. But all the subgroups of N with order 23040 are soluble by Magma [1], a contradiction. For the latter, since A_{v} has no such normal subgroups of order 11520 by Lemma 2.1, we can exclude this case. Similarly, we can exclude the cases where $N \cong \operatorname{PSL}(2,81)$ and A_{7}. Suppose that $N \cong A_{9}$. Then $q=7$ and $\left|N_{v}\right|=40$ or 20 . Since N has no subgroups of order 40 by Magma [1], N is transitive on $V \Gamma$. Thus N is arc-transitive on Γ. Hence $\Gamma \cong \mathcal{C}_{126}$ by Example 3.2, Suppose that $N \cong \operatorname{PSL}(2,19)$. Then $q=19$ and $\operatorname{PSL}(2,19) \leq A \leq \operatorname{PGL}(2,19)$. So $\Gamma \cong \mathcal{C}_{342}^{1}$ or \mathcal{C}_{342}^{2} by Example 3.2 ,

Case 4. Assume that $p=5$ and $q>5$. Then $5^{3} \cdot q| | N| ||A| \mid 2^{10} \cdot 3^{2} \cdot 5^{3} \cdot q$. By Lemma 2.3, $N \cong \operatorname{PSL}(3,5)$ or $\operatorname{PSU}(3,5)$. Suppose that $N \cong \operatorname{PSL}(3,5)$. Then $q=31$ and $\left|N_{v}\right|=480$ or 240 , which is impossible as A_{v} has no such normal subgroups which is isomorphic to N_{v} by Lemma 2.1 and Magma [1]. Similarly, we can also exclude the case where $N \cong \operatorname{PSU}(3,5)$.

Case 5. Assume that $q=3$ and $p>5$. Then $3 \cdot 5 \cdot p^{2}| | N| ||A| \mid 2^{10} \cdot 3^{3} \cdot 5 \cdot p^{2}$.

It follows that $N \cong T$, which is impossible as there exists no nonabelian simple group satisfying the conditions by Lemma 2.3 .

Case 6. Assume that $q=5$ and $p>5$. Then $5^{2} \cdot p^{2}| | N| ||A| \mid 2^{10} \cdot 3^{2} \cdot 5^{2} \cdot p^{2}$. It follows that $N \cong T^{2}$, and $T=\operatorname{PSL}(2,11), \operatorname{PSL}(2,16)$ or $\operatorname{PSL}(2,31)$ by Lemma 2.3. Assume that N is transitive on $V \Gamma$. Then N is arc-transitive on Γ. By Lemma 2.2, $5\left|\left|T_{v}\right|\right.$, and so $5^{2}| | N_{v} \mid$, which is a contradiction as $\left|N_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$. Hence N has exactly two orbits on $V \Gamma$. Suppose that $T=\operatorname{PSL}(2,11)$. Then $p=11$ and $\left|N_{v}\right|=|N| /\left(5 p^{2}\right)=720$. By Lemma 2.1, $A_{v} \cong A_{4} \times A_{5},\left(A_{4} \times A_{5}\right): \mathbb{Z}_{2}$ or $S_{4} \times S_{5}$, and so $|A|=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$, $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ or $2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$. Thus $A \cong \operatorname{PSL}(2,11)^{2}$. O, where $O=\mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}. But a calculation by Magma [1] shows no graph Γ in this case. Suppose that $T=\operatorname{PSL}(2,16)$. Then $p=17$ and $\left|N_{v}\right|=|N| /\left(5 p^{2}\right)=11520$. But all of the subgroups with order 11520 of N are soluble by Magma [1], a contradiction. Suppose that $T=\operatorname{PSL}(2,31)$. Then $p=31$ and $\left|N_{v}\right|=46080$, which is not possible as $\left|A_{v}\right| \leq 23040$ by Lemma 2.1.

Combining Lemmas 4.1 and 4.2, we complete the proof of Theorem 1.1 .

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265.
[2] S. Ding, B. Ling, B. Lou and J. Pan, Arc-transitive pentavalent graphs of square-free order, Graphs Combin. 32 (2016), no. 6, 2355-2366.
[3] J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996.
[4] Y.-Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Sci. China Ser. A 49 (2006), no. 3, 300-319.
[5] \qquad , Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), no. 4, 627-646.
[6] Y.-Q. Feng, J.-X. Zhou and Y.-T. Li, Pentavalent symmetric graphs of order twice a prime power, Discrete Math. 339 (2016), no. 11, 2640-2651.
[7] S.-T. Guo and Y.-Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math. 312 (2012), no. 15, 2214-2216.
[8] X.-H. Hua and Y.-Q. Feng, Pentavalent symmetric graphs of order $8 p$, J. Beijing Jiaotong University 35 (2011), 132-135.
[9] X.-H. Hua, Y.-Q. Feng and J. Lee, Pentavalent symmetric graphs of order 2pq, Discrete Math. 311 (2011), no. 20, 2259-2267.
[10] Z. H. Huang, C. H. Li and J. M. Pan, Pentavalent symmetric graphs of order four times a prime power, Ars Combinatoria, accepted.
[11] G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs. New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987.
[12] C. H. Li, Z. P. Lu and G. X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014), no. 1, 1-19.
[13] , The vertex-transitive and edge-transitive tetravalent graphs of square-free order, J. Algebraic Combin. 42 (2015), no. 1, 25-50.
[14] B. Ling, C. X. Wu and B. G. Lou, Pentavalent symmetric graphs of order 30p, Bull. Aust. Math. Soc. 90 (2014), no. 3, 353-362.
[15] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55-68.
[16] J.-M. Oh, A classification of cubic s-regular graphs of order 14p, Discrete Math. 309 (2009), no. 9, 2721-2726.
[17] J. Pan, Z. Liu and X. Yu, Pentavalent symmetric graphs of order twice a prime square, Algebra Colloq. 22 (2015), no. 3, 383-394.
[18] J. Pan, B. Lou and C. Liu, Arc-transitive pentavalent graphs of order 4pq, Electron. J. Combin. 20 (2013), no. 1, Paper 36, 9 pp.
[19] S. Qiao and C. H. Li, The finite groups of cube-free order, J. Algebra 334 (2011), 101-108.
[20] C. X. Wu, Q. Y. Yang and J. Pan, Arc-transitive pentavalent graphs of order eighteen times a prime, Acta Mathematica Sinica, accepted.
[21] D.-W. Yang and Y.-Q. Feng, Pentavalent symmetric graphs of order $2 p^{3}$, Sci. China Math. 59 (2016), no. 9, 1851-1868.
[22] J.-X. Zhou, Tetravalent s-transitive graphs of order $4 p$, Discrete Math. 309 (2009), no. 20, 6081-6086.
[23] J.-X. Zhou and Y.-Q. Feng, On symmetric graphs of valency five, Discrete Math. 310 (2010), no. 12, 1725-1732.
[24] , Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010), no. 2, 277-288.

Hailin Liu
School of science, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
and
School of Mathematics and Statistics, Yunnan University, Kunming 650091, P. R. China E-mail address: hailinliuqp@163.com

Bengong Lou
School of Mathematics and Statistics, Yunnan University, Kunming 650091, P. R. China E-mail address: bengong188@163.com

Bo Ling
School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, P. R. China
E-mail address: bolinggxu@163.com

[^0]: Received January 12, 2017; Accepted December 13, 2017.
 Communicated by Xuding Zhu.
 2010 Mathematics Subject Classification. 20B25, 05C25.
 Key words and phrases. arc-transitive graph, Cayley graph, cube-free order.
 This work was partially supported by the NNSF of China (11231008, 11761079, 11701503).
 *Corresponding author.

