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Pentavalent Arc-transitive Graphs of Order 2p2q

Hailin Liu, Bengong Lou* and Bo Ling

Abstract. In this paper, we complete a classification of pentavalent arc-transitive

graphs of order 2p2q, where p and q are distinct odd primes. This result involves a

subclass of pentavalent arc-transitive graphs of cube-free order.

1. Introduction

Throughout the paper, graphs considered are simple, connected, undirected and regular.

For a graph Γ, we denote by V Γ, EΓ, AΓ and Aut Γ the vertex set, edge set, arc set

and full automorphism group of Γ, respectively. Γ is called G-vertex-transitive, G-edge-

transitive or G-arc-transitive if G ≤ Aut Γ is transitive on V Γ, EΓ or AΓ, respectively.

In particular, when G = Aut Γ then Γ is called vertex-transitive, edge-transitive or arc-

transitive, respectively. As we all know, Γ is G-arc-transitive for some G ≤ Aut Γ if and

only if G is vertex-transitive and the vertex stabilizer Gv of v ∈ V Γ in G is transitive on

the neighborhood Γ(v) of v. Let Γ be a vertex-transitive graph, and let N be a subgroup

of Aut Γ. Denote by ΓN the quotient graph induced by N with V ΓN = {vN | v ∈ V Γ}
and two orbits are adjacent in ΓN if and only if that there is an edge in Γ between these

two orbits. If Γ and ΓN have the same valency, then Γ is called a normal cover of ΓN .

Let G be a group, and H ≤ G. Then we use G′, Aut(G) and CG(H) to denote the

derived group, automorphism group and the centralizer of H in G, respectively. Let M

and N be two groups. Then we use M : N and M × N to denote a semidirect product

and direct product of M by N . For a positive integer n, we denote by D2n, An, Sn, Zn
and Z∗n the dihedral group of order 2n, the alternating group and the symmetric group of

degree n, the cyclic group of order n and the ring of integers modulo n (and for the field

of order n if n is a prime), and the multiplicative group of units of Zn respectively.

A group G is called a generalized dihedral group, if there exists an abelian subgroup H

and an involution τ such that G = H : 〈τ〉 and hτ = h−1 for each h ∈ H. This group is

denoted by Dih(H).

Received January 12, 2017; Accepted December 13, 2017.

Communicated by Xuding Zhu.

2010 Mathematics Subject Classification. 20B25, 05C25.

Key words and phrases. arc-transitive graph, Cayley graph, cube-free order.

This work was partially supported by the NNSF of China (11231008, 11761079, 11701503).

*Corresponding author.

767



768 Hailin Liu, Bengong Lou and Bo Ling

In the literature, the classification of arc-transitive graphs of small valency have been

extensively studied, for examples [5, 9, 14, 20, 24]. In particular, arc-transitive graphs

of square-free order have been studied for a long time, for instance [2, 12, 13]. More

recently, arc-transitive graphs of cube-free order are studied in various special case, for

examples [4, 16–18, 22], which will be a long-term project. In this paper, we study a

subclass of pentavalent arc-transitive graphs of cube-free order, and give a classification

of pentavalent arc-transitive graphs of order 2p2q for distinct odd primes p and q. The

special cases where p = q, p = 2, and q = 2 have been treated in [21], [8], and [10],

respectively. The main result of this paper is the following theorem.

Theorem 1.1. Let Γ be a pentavalent arc-transitive graph of order 2p2q, where p and q

are distinct odd primes. Then either

(1) Γ is a Cayley graph on Dih(H), where H ∼= Zp2 × Zq or Z2
p × Zq; or

(2) (Γ, |V Γ|,Aut Γ, (Aut Γ)v) lies in Table 1.1.

Row Γ 2p2q Aut Γ (Aut Γ)v Remark

1 C126 126 S9 S4 × S5 Example 3.2(1)

2 C1
342 342 PSL(2, 19) D10 Example 3.2(2)

3 C2
342 342 PGL(2, 19) D20 Example 3.2(3)

Table 1.1

2. Preliminary results

In this section, we give some necessary preliminary results.

The following lemma determines the stabilizers of pentavalent arc-transitive graphs

from [7,23].

Lemma 2.1. Let Γ be a pentavalent G-arc-transitive graph for some G ≤ Aut Γ. Let

v ∈ V Γ. If Gv is soluble, then |Gv| | 80. If Gv is insoluble, then |Gv|
∣∣ 29 · 32 · 5.

Furthermore, Gv ∼= Z5, D10, D20, F20, F20×Z2, A5, S5, F20×Z4, A4×A5, (A4×A5) : Z2,

S4 × S5, ASL(2, 4), AGL(2, 4), AΣL(2, 4), AΓL(2, 4) or Z6
2 : ΓL(2, 4).

We now give a result that will be useful.

Lemma 2.2. Let p and q be distinct odd primes, and let Γ be a connected pentavalent

G-arc-transitive graph of order 2p2q, where G ≤ Aut Γ. Let NCG. If N is insoluble, then

the following statements hold:
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(1) N has at most two orbits on V Γ;

(2) For each v ∈ V Γ, 5
∣∣ |NΓ(v)

v |.

Proof. (1) Suppose that N has at least three orbits on V Γ. Then, by [15, Theorem 9],

N is semiregular on V Γ. Hence |N |
∣∣ 2p2q. Since a group of order 2p2q is soluble, N is

soluble, a contradiction.

(2) Let v ∈ V Γ. If Nv = 1, then N is a group with order divising 2p2q. It follows

that N is soluble, which is a contradiction to our hypothesis. Thus Nv 6= 1. Since G is

transitive on V Γ, N
Γ(v)
v 6= 1 by connectivity of Γ. Note that G

Γ(v)
v acts primitively on

Γ(v) and N
Γ(v)
v EG

Γ(v)
v , so 5

∣∣ |NΓ(v)
v |.

By checking order of nonabelian simple groups (see [3, pp. 303–304]), we have the

following lemma.

Lemma 2.3. Let p and q be distinct odd primes. Let T be a nonabelian simple group of

order |T | = 2i · 3j · 5 · ps · q, where 1 ≤ i ≤ 10, 0 ≤ j ≤ 2 and 0 ≤ s ≤ 2. Then either T is

in the following Table 2.1, or T ∼= PSL(2, 121) if p 6= q > 5 and 5p2q
∣∣ |T |.

T |T | T |T |

A5 22 · 3 · 5 A6 23 · 32 · 5

PSp(4, 3) 26 · 34 · 5

M11 24 · 32 · 5 · 11 M12 26 · 33 · 5 · 11

PSL(3, 4) 26 · 32 · 5 · 7 PSL(3, 5) 25 · 3 · 53 · 31

PSp(4, 4) 28 · 32 · 52 · 17 PSp(6, 2) 29 · 34 · 5 · 7

PSU(3, 4) 26 · 3 · 52 · 13 PSU(3, 5) 24 · 32 · 53 · 7

A7 23 · 32 · 5 · 7 A8 26 · 32 · 5 · 7

A9 26 · 34 · 5 · 7 PSL(2, 11) 22 · 3 · 5 · 11

PSL(2, 16) 24 · 3 · 5 · 17 PSL(2, 19) 22 · 32 · 5 · 19

PSL(2, 25) 23 · 3 · 52 · 13 PSL(2, 31) 25 · 3 · 5 · 31

PSL(2, 49) 24 · 3 · 52 · 72 PSL(2, 81) 24 · 34 · 5 · 41

Sz(8) 26 · 5 · 7 · 13

Table 2.1

A graph Γ is said a Cayley graph if there exists a group G and a subset S ⊂ G with

1 /∈ S = S−1 := {g−1 | g ∈ S} such that the vertices of Γ may be identified with the
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elements of G in such a way that x is adjacent to y if and only if yx−1 ∈ S. The Cayley

graph Γ is denoted by Cay(G,S). As we all known, a graph Γ is a Cayley graph if and

only if Aut Γ contains a subgroup which is regular on V Γ.

Lemma 2.4. Let Γ be a connected and regular G-edge-transitive graph, where G ≤ Aut Γ.

Suppose that G contains an abelian normal subgroup H which acts semiregularly and has

exactly two orbits on V Γ. Then Γ is a Cayley graph of the generalized dihedral Dih(H).

Proof. Note that H is normal in G, and is semiregular and has exactly two orbits on V Γ,

so ΓH ∼= K2 by the connectivity of Γ. It follows that there exists a edge {α, β} ∈ EΓ such

that V Γ = αH ∪ βH . We conclude that αH is an independent set of Γ. Actually, if αH

is not an independent set of Γ, then there exist h1, h2 ∈ H such that {αh1 , αh2} ∈ EΓ.

Since Γ is G-edge transitive, there exists g ∈ G such that {αh1 , αh2}g = {α, β}. Therefore

(αH)g ∩ αH 6= ∅ and (αH)g 6= αH , a contrary to the fact that αH is a block of the action

of G on V Γ. With the same reason, βH is an independent set of Γ too. It follows that Γ

is a bipartite graph with two parts αH and βH .

For any h ∈ H, define a map

σ : αh 7→ βh
−1
, βh 7→ αh

−1
.

Clearly, σ is a permutation on V Γ with order 2.

Since Γ is G-edge transitive, EΓ = {α, β}G. Let g ∈ G. Then there exist h1, h2 ∈ H
such that αg = αh1 (or βh2) and βg = βh2 (or αh1). Since H is abelian,

{αg, βg}σ = {αh1 , βh2}σ =
{
βh
−1
1 , αh

−1
2

}
=
{
αgh

−1
1 h−1

2 , βgh
−1
2 h−1

1

}
=
{
αgh

−1
1 h−1

2 , βgh
−1
1 h−1

2

}
for each {αg, βg} ∈ EΓ. Therefore, {αg, βg}σ ∈ EΓ, and so σ is an automorphism of Γ.

Further, (αh
′
)σhσ = (αh

′−1
)hσ = (αh

′−1h)σ = αh
−1h′ = (αh

′
)h
−1

, and (βh
′
)σhσ = (βh

′
)h
−1

for any h, h′ ∈ H. Thus σ−1hσ = h−1 for any h ∈ H. So 〈H,α〉 ∼= Dih(H). Since σ

interchanges αH and βH , 〈H,σ〉 acts regularly on V Γ. Hence Γ is a Cayley graph on

Dih(H).

3. Examples

In this section, we give some examples which are appearing in Theorem 1.1.

Example 3.1. (1) Let H1 = 〈a〉 × 〈b〉 ∼= Zp2 × Zq, and let G1 = Dih(H1) = 〈a, b, h |
ap

2
= bq = h2 = [a, b] = 1, h−1ah = a−1, h−1bh = b−1〉.

(1.1) Let l = 1 if p = 5, and let l be an element of order 5 in Z∗p if 5 | (p− 1). Define

CGD1
2p2q = Cay(G1, S1),
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where S1 = {h, ah, al(l+1)−1
bl
−1
h, alb(l+1)−1

h, bh}. Note that α : h 7→ ah, a 7→
al(l+1)−1−1bl

−1
, b 7→ a−1 induces an automorphism of order 5 of G1 permuting

the elements in {h, ah, al(l+1)−1
bl
−1
h, alb(l+1)−1

h, bh} cyclicly, so Aut(G1, S1) is

transitive on S1. Hence CGD1
2p2q is an arc-transitive Cayley graphs of order

2p2q.

(1.2) For 5 | (p± 1), let λ be an element in Z∗p such that λ2 = 5. Define

CGD2
2p2q = Cay(G1, S2),

where S2 = {h, ah, a2−1(1+λ)bh, ab2
−1(1+λ)h, bh}. Note that β : h 7→ ah, a 7→

a2−1(1+λ)−1b, b 7→ a−1 induces an automorphism of G1 permuting the elements

in {h, ah, a2−1(1+λ)bh, ab2
−1(1+λ)h, bh} cyclicly, so Aut(G1, S2) is transitive on

S3. Hence CGD2
2p2q is an arc-transitive Cayley graphs of order 2p2q.

(2) Let H2 = 〈a〉 × 〈b〉 × 〈c〉 ∼= Z2
p × Zq, and let G2 = Dih(H2) = 〈a, b, c, h | ap = bp =

cq = h2 = [a, b] = [a, c] = [b, c] = 1, h−1ah = a−1, h−1bh = b−1, h−1ch = c−1〉. Let

l = 1 if p = 5, and let l be an element of order 5 in Z∗p if 5 | (p− 1). Define

CGD3
2p2q = Cay(G2, S3),

where S3 = {h, ah, a−l2b−lc−l−1
h, bh, ch}. Note that γ : h 7→ ah, a 7→ ba−1, b 7→

a−l
2−1b−lc−l

−1
, c 7→ a−1 induces an automorphism of G2 permuting the elements

in {h, ah, a−l2b−lc−l−1
h, bh, ch} cyclicly, so Aut(G2, S3) is transitive on S3. Hence

CGD3
2p2q is an arc-transitive Cayley graphs of order 2p2q.

By using Magma program [1], we have the following example.

Example 3.2. (1) There exists a unique connected pentavalent graph of order 126

which admits A9 as an arc-transitive automorphism group. This graph is denoted

by C126, which satisfies the conditions in Row 1 of Table 1.1.

(2) There is a unique connected pentavalent graph of order 342 which admits PSL(2, 19)

as an arc-transitive automorphism group. This graph is denoted by C1
342, which

satisfies the conditions in Row 2 of Table 1.1.

(3) There is a unique connected pentavalent graph of order 342 which admits PGL(2, 19)

as an arc-transitive automorphism group. This graph is denoted by C2
342, which

satisfies the conditions in Row 3 of Table 1.1.

4. Proof of Theorem 1.1

Let Γ be a pentavalent arc-transitive graph of order 2p2q, where p and q are distinct odd

primes. Let A = Aut Γ. Then |Av|
∣∣ 29 · 32 · 5 for each v ∈ V Γ by Lemma 2.1, and so

|A|
∣∣ 210 · 32 · 5 · p2 · q. Let N be a minimal normal subgroup of A.
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We first consider the case where N is soluble.

Lemma 4.1. If N is soluble, then part (1) of Theorem 1.1 holds.

Proof. Since N is soluble, N ∼= Zdr for some prime r and integer d ≥ 1. Note that

|N |/|Nv|
∣∣ |2p2q|, so N has at least 3 orbits on V Γ. It follows that N is semiregular and

Γ is a normal cover of ΓN by [15, Theorem 9]. Thus |N |
∣∣ 2p2q, and then N ∼= Zp, Zq or

Z2
p. In what follows, we divide our proof into three cases:

Case 1. Assume that N ∼= Z2
p. Then ΓN ∼= K6, K5,5 or G(2q, 5) with q ≡ 1 (mod 5)

by [9, Proposition 2.7].

Suppose that ΓN ∼= K6. Then q = 3 and A/N . S6. Since 5 · 6
∣∣ |A/N |, A/N ∼= A5,

S5, A6 or S6. If A/N ∼= A5 or A6, then A = N.T is a central extension by [11]; further

A′ ∼= T , Z2.T or Z3.T , where T = A5 or A6. By Lemma 2.2, A′ has at most two orbits

on V Γ, and so 3 · p2
∣∣ |A′|, which is impossible. If A/N ∼= S5 or S6, then A/N contains

a normal subgroup M/N ∼= A5 or A6. Arguing as the above discussion, a contradiction

occurs.

Suppose that ΓN ∼= K5,5. Then q = 5 and A/N . S5 o S2. Let M/N be a minimal

normal subgroup of A/N . If M/N is insoluble, then M/N ∼= A5 or A2
5. Obviously, M/N

has two orbits on V ΓN and 5
∣∣ |(M/N)w| for any w ∈ V ΓN , implying that 25

∣∣ |M/N |.
Thus, M/N ∼= A2

5. Let B/N EM/N such that B/N ∼= A5. Then B/N has two orbits

on V ΓN and 5
∣∣ |(B/N)w|. Thus, 25

∣∣ |B/N |, a contradiction. If M/N is soluble, then

M/N ∼= Z5 or Z2
5. Therefore Mv

∼= 1 or Z5. It follows that Γ ∼= p2K5,5, which contradicts

the connectivity of Γ.

Thus ΓN ∼= G(2q, 5). Assume that q > 11. Then A/N = Aut ΓN := (Q : F ) :

〈t〉 ∼= (Zq : Z5) : Z2. Now Γ is a pentavalent 1-regular graph of order 2p2q. Since

Q is characteristic in Q : F and Q : F E Aut ΓN , Q E Aut ΓN . Thus A contains a

normal subgroup H such that H/N ∼= Zq, that is, H = N.Q ∼= Z2
p : Zq. If p = 5, then

H = N × Q ∼= Z2
p × Zq as GL(2, 5) has no cyclic subgroups of order more than 11. If

p 6= 5, then A = N.((Q : F ) : 〈t〉) ∼= Z2
p.((Zq : Z5) : Z2) = Z2

p × ((Zq : Z5) : Z2) by the

groups structures of the GL(2, p). Thus H = N.Q ∼= Z2
p × Zq. Now H C A is abelian,

and has exactly two orbits on V Γ. So Γ is a Cayley graph on the generalized dihedral

Dih(H) by Lemma 2.4. Assume that q = 11. Note that A/N ≤ Aut ΓN ∼= PSL(2, 11) : Z2

is arc-transitive on ΓN , and PSL(2, 11) has no subgroups of order 30, so PSL(2, 11) has

exactly two orbits on V ΓN . It concludes that A/N = Aut ΓN ∼= PSL(2, 11) : Z2. Let

B/N C A/N such that B/N ∼= PSL(2, 11). Then B′N/N C B/N ∼= PSL(2, 11). Thus

B′N/N = 1 or B/N . If B′N/N = 1, then B′ ≤ N is soluble, which is impossible as B is

insoluble. If B′N/N = B/N , then B = B′N = B′ × N . Obviously, B′ C A has exactly

two orbits on V Γ. So |B′| = p2q, implying that B′ is soluble, a contradiction.
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Case 2. Assume that N ∼= Zp. Then ΓN ∼= C66, C114, C406, C3422, C3782, C574, C42, C170,

or CDl2pq for some l satisfying l4 + l3 + l2 + l ≡ 0 (mod pq) by [9, Theorem 4.2].

Suppose that ΓN ∼= C66. Then {p, q} = {3, 11} and A/N ≤ Aut ΓN ∼= PGL(2, 11).

Since 5 · 66
∣∣ |A/N |, A/N ∼= PSL(2, 11).O, where O ≤ Z2. Thus A/N contains a normal

subgroup M/N isomorphic to PSL(2, 11). Then M = N ×M ′ ∼= Zp × PSL(2, 11) by [11].

Note thatM ′ is a normal subgroup of A, soM ′ has at most two orbits on V Γ by Lemma 2.2.

Thus |M ′v| = 2p2q or p2q. But PSL(2, 11) has no subgroups of these order, a contradiction.

Similarly, we can exclude the cases where ΓN ∼= C406, C3422, C3782 and C574.

Suppose that ΓN ∼= C114. Then {p, q} = {3, 19}, and A/N ≤ Aut ΓN ∼= PGL(2, 19).

Thus A/N contains a normal subgroup M/N ∼= PSL(2, 19), and so M ′ E A and M ′ ∼=
PSL(2, 19). It follows that M ′ has at most two orbits on V Γ by Lemma 2.2. Obviously,

we can exclude case where (p, q) = (19, 3) by the same discussion above. If (p, q) = (3, 19),

then either Γ ∼= C1
342 and Aut Γ ∼= PSL(2, 19) or Γ ∼= C2

342 and Aut Γ ∼= PGL(2, 19). So

1 ≤ |Aut ΓN |/|Aut Γ| ≤ 2, which is impossible. Suppose that ΓN ∼= C170. Then A/N ∼=
PSp(4, 4).O, where O ≤ Z4. Thus A/N contains a normal subgroup M/N ∼= PSp(4, 4),

and so M ′EA and M ′ ∼= PSp(4, 4). By Lemma 2.2, M ′ has at most two orbits on V Γ. So

p = 5 and q = 17. It follows that |M ′v| = 1152 or 2304. On the one hand, the subgroups

of M ′ with order 1152 or 2304 are all soluble by Magma [1]. On the other hand, Av

has no such normal subgroups that are isomorphic to Mv by Lemma 2.1, a contradiction.

Similarly, we can exclude the case where ΓN ∼= C42.

Suppose that ΓN ∼= CDl2pq. Then A/N ≤ Aut ΓN ∼= D2pq : Z5. Since 5 · 2pq
∣∣ |A/N |,

A/N = Aut(ΓN ) ∼= D2pq : Z5. Note that D2pq is regular on V ΓN , so A has a normal

regular subgroup G ∼= Zp.D2pq. Thus, by [19, Theprem 3.9], either G ∼= (Z2
p × Zq) : Z2 or

(Zp2 × Zq) : Z2, that is, G ∼= Dih(Z2
p × Zq) or Dih(Zp2 × Zq). Hence Γ is a Cayley graph

on Dih(H), where H ∼= Z2
p × Zq or Zp2 × Zq.

Case 3. Assume that N ∼= Zq. Then ΓN ∼= CGD1
2p2 (p = 5 or 5 | (p − 1)), CGD2

2p2

(5 | (p± 1)) or CD2p2 (5 | (p− 1)) by [6, Theorems 4.3 and 6.1].

Suppose that ΓN ∼= CD2p2 . Then A/N = Aut CDp2 ∼= R(D2p2) : Z5. Since Zp2 is

characteristic inR(D2p2) andR(D2p2)EAut ΓN , A/N has a normal subgroup isomorphic to

Zp2 . Thus A has a normal subgroup H such that H ∼= Zq.Zp2 . If p = 5, then H ∼= Zq×Zp2 .

If p ≡ 1 (mod 5), then H ∼= Zq × Zp2 as A ∼= Zq × (R(D2p2) : Z5). Thus H is abelian.

Obviously, H has two orbits on V Γ. So Γ is a Cayley graph on Dih(H) by Lemma 2.4.

Similarly, when ΓN ∼= CGD2
2p2 , CGD1

52 or CGD1
2p2 , then Γ is also a Cayley graph on Dih(H),

where H ∼= Z2
p × Zq.

Next we consider the case where N is insoluble.

Lemma 4.2. If N is insoluble, then part (2) of Theorem 1.1 holds.
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Proof. Since N is insoluble, N ∼= T d with T a nonabelian simple group and integer d ≥ 1.

By Lemma 2.2, N has at most two orbits on V Γ and 5
∣∣ |Nv| for each v ∈ V Γ. Thus

5p2q
∣∣ |N |. In the following, we process our analysis by several cases.

Case 1. Assume that p 6= q > 5. Then 5pq
∣∣ |T |. If d ≥ 2, then 5dpdqd

∣∣ |N |. But

|N |
∣∣ |A| ∣∣ 210 ·32 ·5 ·p2 · q, a contradiction. Hence d = 1 and N ∼= T . By Lemma 2.3, N ∼=

PSL(2, 121) (p = 11, q = 61). Set C := CA(N). Since C ∩N = 1, N ×C ≤ A, and so C is

a {2, 3}-group. Therefore C is soluble, implying that C = 1 by the analysis of Lemma 4.1.

Thus A ≤ Aut(N). If N has two orbits on V Γ, then |Nv| = |N |/(121 · 61) = 120. On the

one hand, since N ≤ A . PSL(2, 112).Z2
2, |Av : Nv| = 2 or 4. Thus Av is insoluble because

|Av| - 80, forcing that Nv is insoluble. On the other hand, N has no insoluble subgroups

of order 120 by Magma [1], a contradiction. Hence N is transitive on V Γ. Further Γ is

N -arc-transitive. But a computation by Magma [1] shows that no graph Γ appears.

Case 2. Assume that (p, q) = (3, 5) or (p, q) = (5, 3). Since there exists no graph of

order 90 by [20] and 150 by [14], we can exclude this case.

Case 3. Assume that p = 3 and q > 5. Then 5 · 32 · q
∣∣ |N | ∣∣ |A| ∣∣ 210 · 34 · 5 · q. By

Lemma 2.3, N ∼= M11, M12, A7, A8, A9, PSL(2, 19), PSL(2, 81), PSL(3, 4) or PSp(6, 2).

Suppose that N ∼= M11. Then q = 11 and |Nv| = 80 or 40. But N has no subgroups of

order 80 or 40 by [1], a contradiction. Similarly, we can exclude the cases where N ∼= M12

and A8. Suppose that N ∼= PSL(3, 4). Then q = 7 and |Nv| = 320 or 160. But N has

no subgroups of order 320 by Magma [1]. Thus N is transitive on V Γ. It follows that N

is arc-transitive on Γ. On the one hand, the subgroups of N with order 160 are soluble

by Magma [1]. On the other hand, Nv C Av is insoluble by Lemma 2.1, a contradiction.

Suppose that N ∼= PSp(6, 2). Then q = 7 and |Nv| = 23040 or 11520. For the former, since

NvCAv, Nv = Av ∼= Z6
2 : ΓL(2, 4) by Lemma 2.1, which is insoluble. But all the subgroups

of N with order 23040 are soluble by Magma [1], a contradiction. For the latter, since

Av has no such normal subgroups of order 11520 by Lemma 2.1, we can exclude this case.

Similarly, we can exclude the cases where N ∼= PSL(2, 81) and A7. Suppose that N ∼= A9.

Then q = 7 and |Nv| = 40 or 20. Since N has no subgroups of order 40 by Magma [1],

N is transitive on V Γ. Thus N is arc-transitive on Γ. Hence Γ ∼= C126 by Example 3.2.

Suppose that N ∼= PSL(2, 19). Then q = 19 and PSL(2, 19) ≤ A ≤ PGL(2, 19). So

Γ ∼= C1
342 or C2

342 by Example 3.2.

Case 4. Assume that p = 5 and q > 5. Then 53 · q
∣∣ |N | ∣∣ |A| ∣∣ 210 · 32 · 53 · q. By

Lemma 2.3, N ∼= PSL(3, 5) or PSU(3, 5). Suppose that N ∼= PSL(3, 5). Then q = 31

and |Nv| = 480 or 240, which is impossible as Av has no such normal subgroups which is

isomorphic to Nv by Lemma 2.1 and Magma [1]. Similarly, we can also exclude the case

where N ∼= PSU(3, 5).

Case 5. Assume that q = 3 and p > 5. Then 3 · 5 · p2
∣∣ |N | ∣∣ |A| ∣∣ 210 · 33 · 5 · p2.
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It follows that N ∼= T , which is impossible as there exists no nonabelian simple group

satisfying the conditions by Lemma 2.3.

Case 6. Assume that q = 5 and p > 5. Then 52 ·p2
∣∣ |N | ∣∣ |A| ∣∣ 210 ·32 ·52 ·p2. It follows

that N ∼= T 2, and T = PSL(2, 11), PSL(2, 16) or PSL(2, 31) by Lemma 2.3. Assume that

N is transitive on V Γ. Then N is arc-transitive on Γ. By Lemma 2.2, 5
∣∣ |Tv|, and so

52
∣∣ |Nv|, which is a contradiction as |Nv|

∣∣ 29 · 32 · 5. Hence N has exactly two orbits

on V Γ. Suppose that T = PSL(2, 11). Then p = 11 and |Nv| = |N |/(5p2) = 720. By

Lemma 2.1, Av ∼= A4 × A5, (A4 × A5) : Z2 or S4 × S5, and so |A| = 25 · 32 · 52 · 112,

26 · 32 · 52 · 112 or 27 · 32 · 52 · 112. Thus A ∼= PSL(2, 11)2.O, where O = Z2, Z4 or Z2
2. But

a calculation by Magma [1] shows no graph Γ in this case. Suppose that T = PSL(2, 16).

Then p = 17 and |Nv| = |N |/(5p2) = 11520. But all of the subgroups with order 11520 of

N are soluble by Magma [1], a contradiction. Suppose that T = PSL(2, 31). Then p = 31

and |Nv| = 46080, which is not possible as |Av| ≤ 23040 by Lemma 2.1.

Combining Lemmas 4.1 and 4.2, we complete the proof of Theorem 1.1.
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