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Variable Anisotropic Hardy Spaces and Their Applications

Jun Liu, Ferenc Weisz, Dachun Yang* and Wen Yuan

Abstract. Let p(·) : Rn → (0,∞] be a variable exponent function satisfying the glob-

ally log-Hölder continuous condition and A a general expansive matrix on Rn. In this

article, the authors first introduce the variable anisotropic Hardy space H
p(·)
A (Rn) as-

sociated with A, via the non-tangential grand maximal function, and then establish its

radial or non-tangential maximal function characterizations. Moreover, the authors

also obtain various equivalent characterizations of H
p(·)
A (Rn), respectively, by means

of atoms, finite atoms, the Lusin area function, the Littlewood-Paley g-function or

g∗λ-function. As applications, the authors first establish a criterion on the bounded-

ness of sublinear operators from H
p(·)
A (Rn) into a quasi-Banach space. Then, applying

this criterion, the authors show that the maximal operators of the Bochner-Riesz

and the Weierstrass means are bounded from H
p(·)
A (Rn) to Lp(·)(Rn) and, as conse-

quences, some almost everywhere and norm convergences of these Bochner-Riesz and

Weierstrass means are also obtained. These results on the Bochner-Riesz and the

Weierstrass means are new even in the isotropic case.

1. Introduction

The main purpose of this article is to introduce and to investigate the variable anisotropic

Hardy space on Rn. Due to the celebrated work [11–13] of Calderón and Torchinsky

on parabolic Hardy spaces, there has been an increasing interest in extending classical

function spaces from Euclidean spaces to some more general underlying spaces; see, for

example, [28, 31, 32, 58, 59, 61, 65, 76]. Let A be a general expansive matrix on Rn. Recall

that the anisotropic Hardy space Hp
A(Rn) with p ∈ (0,∞) was first introduced by Bownik

[6], which is a generalization of the parabolic Hardy space studied in [11]. Later on,

Bownik et al. [7] further extended the anisotropic Hardy space to the weighted setting.

For more progresses about this theory, we refer the reader to [25, 38, 44–48, 65, 66] and

their references.
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On the other hand, as we all know, the variable function spaces have found their

applications in fluid dynamics [1, 2, 57], image processing [14, 33, 64], partial differential

equations and variational calculus [9, 23, 63] and harmonic analysis [4, 18, 21, 75]. Recall

that, as a generalization of the classical Lebesgue space Lp(Rn), the variable Lebesgue

space Lp(·)(Rn), in which the constant exponent p is replaced by an exponent function

p(·) : Rn → (0,∞], can be traced back to the well-known article [56] of Orlicz and was

also systematically studied by Musielak [51] and Nakano [53, 54]. Since then, a lot of

interesting work on the theory of function spaces with variable exponents arose (see, for

example, [17, 20, 26, 36]). In particular, the variable Hardy space Hp(·)(Rn) with p(·)
satisfying the so-called globally log-Hölder continuous condition was first introduced and

investigated by Nakai and Sawano [52]. Then Sawano [60], Zhuo et al. [84] and Yang

et al. [81] further completed the theory of this space. Independently, Cruz-Uribe and

Wang [19], with some slightly weaker conditions on p(·) than those used in [52], also

studied the variable Hardy space Hp(·)(Rn). For more progresses about function spaces

with variable exponents, we refer the reader to [5,22,34,35,55,69,73–75,82,83,85] and their

references. In particular, Zhuo et al. [83] introduced the variable Hardy space Hp(·)(X )

on an RD-space X , with p(·) ∈ (n/(n + 1),∞), and established the real-variable theory

of this space. Recall that a metric measure space of homogeneous type X is called an

RD-space if it is a metric measure space of homogeneous type in the sense of Coifman

and Weiss [15,16] and satisfies some reverse doubling property, which originates from Han

et al. [32] (see also [31] and [80] for some equivalent characterizations). However, the

real-variable theory of Hp(·)(X ), with p(·) ∈ (0, n/(n+ 1)], is still unknown.

To give a complete real-variable theory of variable Hardy spaces in anisotropic setting,

in this article, we first introduce the variable anisotropic Hardy space H
p(·)
A (Rn) associated

with some expansive matrix A, via the non-tangential grand maximal function, and then

establish its radial or non-tangential maximal function characterizations. In addition,

we also obtain various real-variable characterizations of H
p(·)
A (Rn), respectively, by means

of atoms, finite atoms, the Lusin area function, the Littlewood-Paley g-function or g∗λ-

function. As applications, we first establish a criterion on the boundedness of sublinear

operators from H
p(·)
A (Rn) into a quasi-Banach space. Then, applying this criterion, we

further show that the maximal operators of the Bochner-Riesz and the Weierstrass means

are bounded from H
p(·)
A (Rn) to Lp(·)(Rn). This implies some almost everywhere and norm

convergences of these Bochner-Riesz and Weierstrass means. We point out that all results

on the Bochner-Riesz and the Weierstrass means are new even in the isotropic case and

the real-variable characterizations of H
p(·)
A (Rn) have proved important in [46] in the study

on the real interpolation between H
p(·)
A (Rn) and L∞(Rn).

To be precise, this article is organized as follows.
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In Section 2, we first present some notation and notions used in this article, including

variable Lebesgue spaces and some known facts on expansive matrixes from [6]. Then

we introduce the variable anisotropic Hardy space H
p(·)
A (Rn) via the non-tangential grand

maximal function.

The aim of Section 3 is to establish the characterizations of H
p(·)
A (Rn) by means of

the radial or the non-tangential maximal functions (see Theorem 3.10 below). To this

end, via an auxiliary inequality (see Lemma 3.2 below), which originates from [3], and

the boundedness of the Hardy-Littlewood maximal function as in (3.1) below on Lp(·)(Rn)

(see Lemma 3.3 below) with p(·) satisfying the so-called globally log-Hölder continuous

condition (see (2.5) and (2.6) below) and 1 < p− ≤ p+ < ∞, where p− and p+ are as

in (2.4) below, we first show that the Lp(·)(Rn) quasi-norm of the tangential maximal

function T
N(K,L)
φ (f) can be controlled by that of the non-tangential maximal function

M
(K,L)
φ (f) for any f ∈ S ′(Rn) (see Lemma 3.6 below), where K is the truncation level, L

the decay level and S ′(Rn) denotes the set of all tempered distributions on Rn. Using this,

the monotone convergence property for increasing sequences on Lp(·)(Rn) (see Lemma 3.5

below) and the boundedness of the Hardy-Littlewood maximal function on Lp(·)(Rn) again,

we then prove Theorem 3.10.

In Section 4, via borrowing some ideas from those used in the proofs of [6, p. 38,

Theorem 6.4] and [52, Theorems 4.5 and 4.6] as well as [83, Theorem 4.3], we obtain the

atomic characterization of H
p(·)
A (Rn). For this purpose, we first introduce the variable

anisotropic atomic Hardy space H
p(·),q,s
A (Rn) in Definition 4.2 below and then prove

H
p(·)
A (Rn) = H

p(·),q,s
A (Rn)

with equivalent quasi-norms (see Theorem 4.8 below). Indeed, we first present the density

of the subset Lq(Rn)∩Hp(·)
A (Rn) in H

p(·)
A (Rn) for any q ∈ [1,∞]∩ (p+,∞] (see Lemma 4.7

below). By this density and the Calderón-Zygmund decomposition associated with non-

tangential grand maximal functions on anisotropic Rn from [6, p. 9, Lemma 2.7] as well

as an argument similar to that used in the proofs of [6, p. 38, Theorem 6.4] and [52,

Theorem 4.5], we then prove that H
p(·)
A (Rn) is continuously embedded into H

p(·),∞,s
A (Rn)

and hence also into H
p(·),q,s
A (Rn) due to the fact that each (p(·),∞, s)-atom is also a

(p(·), q, s)-atom for any q ∈ (1,∞). Conversely, as a special case of [83, Proposition 2.11],

we first obtain that some estimates related to Lp(·)(Rn) norms for some series of functions

can be reduced into dealing with the Lq(Rn) norms of the corresponding functions (see

Lemma 4.6 below), which plays a key role in the proof of Theorem 4.8 and is also of

independent interest. Then, using this key lemma and the anisotropic Fefferman-Stein

vector-valued inequality of the Hardy-Littlewood maximal operator MHL on Lp(·)(Rn)

(see Lemma 4.4 below), we prove that H
p(·),q,s
A (Rn) ⊂ H

p(·)
A (Rn) and the inclusion is

continuous.



1176 Jun Liu, Ferenc Weisz, Dachun Yang and Wen Yuan

Section 5 is aimed to establish a finite atomic characterization of H
p(·)
A (Rn) (see The-

orem 5.4 below). To be precise, via borrowing some ideas from those used in the proofs

of [45, Theorem 5.7] and [44, Theorem 2.14], we prove that, for any given finite linear

combination of (p, q, s)-atoms with q ∈ (max{p+, 1},∞) (or continuous (p,∞, s)-atoms),

its quasi-norm in H
p(·)
A (Rn) can be achieved via all its finite atomic decompositions. This

extends [50, Theorem 3.1 and Remark 3.3] and [30, Theorem 5.6] to the present setting

of variable anisotropic Hardy spaces.

In Section 6, by the anisotropic Calderón reproducing formula (see Lemma 6.6 below)

and the way same as that used in the proof of Theorem 4.8, we first establish the Lusin

area function characterization of H
p(·)
A (Rn) (see Theorem 6.1 below). Then, using this

and an approach initiated by Ullrich [68] and further developed by Liang et al. [43] and

Liu et al. [48], together with the anisotropic Fefferman-Stein vector-valued inequality of

the Hardy-Littlewood maximal operator MHL on Lp(·)(Rn) (see Lemma 4.4 below), we

establish the Littlewood-Paley g-function and g∗λ-function characterizations of H
p(·)
A (Rn)

(see Theorems 6.2 and 6.3 below). We point out that the aforementioned approach, via

a key lemma (see Lemma 6.9 below) and an auxiliary function gt,∗(f) (see (6.6) below),

shows that the Lp(·)(Rn) quasi-norm of the Lusin area function can be controlled by that

of the Littlewood-Paley g-function.

As applications, in Section 7, we first establish a criterion on the boundedness of

some sublinear operators from H
p(·)
A (Rn) into a quasi-Banach space (see Theorem 7.1 be-

low). Then we recall a general summability method, namely, the so-called anisotropic

θ-summation defined by a single function θ (see (7.2) and (7.3) below). Moreover, under

some assumptions on θ, using the criterion established in Theorem 7.1, we show that

the maximal operator of the θ-summability means is bounded from H
p(·)
A (Rn) to Lp(·)(Rn)

when p− satisfies (7.5) below. As consequences, some almost everywhere and also Lp(·)(Rn)

norm convergences of the θ-means σθmf are presented. In addition, two special cases of the

θ-summation are investigated, namely, the Bochner-Riesz and the Weierstrass summabil-

ities.

Finally, we make some conventions on notation. We always let N := {1, 2, . . .}, Z+ :=

{0}∪N and ~0n be the origin of Rn. For any multi-index β := (β1, . . . , βn) ∈ (Z+)n =: Zn+,

let |β| := β1 + · · ·+ βn. We denote by C a positive constant which is independent of the

main parameters, but may vary from line to line. The notation f . g means f ≤ Cg and,

if f . g . f , then we write f ∼ g. For any q ∈ [1,∞], we denote by q′ its conjugate index,

namely, 1/q+ 1/q′ = 1. In addition, for any set E ⊂ Rn, we denote by E{ the set Rn \E,

by χE its characteristic function, by |E| the n-dimensional Lebesgue measure of E and by

]E the cardinality of E. For any s ∈ R, we denote by bsc the largest integer not greater

than s.
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2. Preliminaries

In this section, we first recall some notation and notions on dilations and variable Lebesgue

spaces (see, for example, [6, 18, 21]). Then we introduce the variable anisotropic Hardy

space via the non-tangential grand maximal function.

We begin with recalling the notion of expansive matrixes from [6].

Definition 2.1. A real n× n matrix A is called an expansive matrix (shortly, a dilation)

if

min
λ∈σ(A)

|λ| > 1,

here and hereafter, σ(A) denotes the set of all eigenvalues of A.

Let b := |detA|. Then it follows, from [6, p. 6, (2.7)], that b ∈ (1,∞). From the

fact that there exist an open ellipsoid ∆, with |∆| = 1, and r ∈ (1,∞) such that ∆ ⊂
r∆ ⊂ A∆ (see [6, p. 5, Lemma 2.2]), we deduce that, for any k ∈ Z, Bk := Ak∆ is open,

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk. For any x ∈ Rn and k ∈ Z, an ellipsoid x+Bk is called

a dilated ball. In what follows, we always let B be the set of all such dilated balls, namely,

(2.1) B := {x+Bk : x ∈ Rn, k ∈ Z}

and

(2.2) τ := inf{` ∈ Z : r` ≥ 2}.

The following notion of the homogeneous quasi-norm is just [6, p. 6, Definition 2.3].

Definition 2.2. A homogeneous quasi-norm, associated with a dilation A, is a measurable

mapping ρ : Rn → [0,∞) satisfying

(i) if x 6= ~0n, then ρ(x) ∈ (0,∞);

(ii) for each x ∈ Rn, ρ(Ax) = bρ(x);

(iii) there exists an H ∈ [1,∞) such that, for any x, y ∈ Rn, ρ(x+ y) ≤ H[ρ(x) + ρ(y)].

For a given dilation A, by [6, p. 6, Lemma 2.4], we may use the step homogeneous

quasi-norm ρ defined by setting, for any x ∈ Rn,

(2.3) ρ(x) :=
∑
j∈Z

bjχBj+1\Bj (x) when x 6= ~0n, or else ρ(~0n) := 0

for convenience.

For any measurable function p(·) : Rn → (0,∞], let

(2.4) p− := ess infx∈Rn p(x), p+ := ess supx∈Rn p(x) and p := min{p−, 1}.
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Denote by P(Rn) the set of all measurable functions p(·) satisfying 0 < p− ≤ p+ <∞.

For any p(·) ∈ P(Rn), the variable Lebesgue space Lp(·)(Rn) is defined to be the set

of all measurable functions f such that %p(·)(f) < ∞, equipped with the quasi-norm

‖f‖Lp(·)(Rn), where, for any measurable function f , the modular functional %p(·)(f) and

the Luxemburg (also called Luxemburg-Nakano) quasi-norm ‖f‖Lp(·)(Rn) of f are defined,

respectively, as %p(·)(f) :=
∫
Rn |f(x)|p(x) dx and

‖f‖Lp(·)(Rn) := inf{λ ∈ (0,∞) : %p(·)(f/λ) ≤ 1}.

Let C log(Rn) be the set of all functions p(·) ∈ P(Rn) satisfying the globally log-Hölder

continuous condition, namely, there exist Clog(p), C∞ ∈ (0,∞) and p∞ ∈ R such that, for

any x, y ∈ Rn,

(2.5) |p(x)− p(y)| ≤
Clog(p)

log(e+ 1/ρ(x− y))

and

(2.6) |p(x)− p∞| ≤
C∞

log(e+ ρ(x))
.

Recall that a Schwartz function is a C∞(Rn) function ϕ satisfying, for any m ∈ Z+

and multi-index α ∈ Zn+,

‖ϕ‖α,m := sup
x∈Rn

[ρ(x)]m|∂αϕ(x)| <∞.

Denote by S(Rn) the set of all Schwartz functions, equipped with the topology determined

by {‖ · ‖α,m}α∈Zn+,m∈Z+ , and S ′(Rn) the dual space of S(Rn), equipped with the weak-∗
topology. For any N ∈ Z+, let

SN (Rn) := {ϕ ∈ S(Rn) : ‖ϕ‖α,` ≤ 1, |α| ≤ N, ` ≤ N},

equivalently,

ϕ ∈ SN (Rn) ⇐⇒ ‖ϕ‖SN (Rn) := sup
|α|≤N

sup
x∈Rn

[
|∂αϕ(x)|max{1, [ρ(x)]N}

]
≤ 1.

In what follows, for any ϕ ∈ S(Rn) and k ∈ Z, let ϕk(·) := bkϕ(Ak · ).
Let λ−, λ+ ∈ (0,∞) be two numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

We should point out that, if A is diagonalizable over C, then we may let λ− := min{|λ| :
λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}. Otherwise, we may choose them sufficiently

close to these equalities in accordance with what we need in our arguments.
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Definition 2.3. Let ϕ ∈ S(Rn) and f ∈ S ′(Rn). The non-tangential maximal function

Mϕ(f) with respect to ϕ is defined by setting, for any x ∈ Rn,

(2.7) Mϕ(f)(x) := sup
y∈x+Bk,k∈Z

|f ∗ ϕk(y)|.

Moreover, for any given N ∈ N, the non-tangential grand maximal function MN (f) of

f ∈ S ′(Rn) is defined by setting, for any x ∈ Rn,

MN (f)(x) := sup
ϕ∈SN (Rn)

Mϕ(f)(x).

We now introduce variable anisotropic Hardy spaces as follows.

Definition 2.4. Let p(·) ∈ C log(Rn) and N ∈ N ∩ [b(1/p− 1) ln b/ lnλ−c+ 2,∞), where

p is as in (2.4). The variable anisotropic Hardy space H
p(·)
A (Rn) is defined as

H
p(·)
A (Rn) := {f ∈ S ′(Rn) : MN (f) ∈ Lp(·)(Rn)}

and, for any f ∈ Hp(·)
A (Rn), let ‖f‖

H
p(·)
A (Rn)

:= ‖MN (f)‖Lp(·)(Rn).

Remark 2.5. (i) The quasi-norm of H
p(·)
A (Rn) in Definition 2.4 depends on N , however, by

Theorem 3.10 below, we conclude that the space H
p(·)
A (Rn) is independent of the choice of

N as long as N ∈ N∩ [b(1/p− 1) ln b/ lnλ−c+ 2,∞). In addition, when p(·) ≡ p ∈ (0,∞),

the space H
p(·)
A (Rn) becomes the anisotropic Hardy space Hp

A(Rn) from [6] and, when

A := d In×n for some d ∈ R with |d| ∈ (1,∞), here and hereafter, In×n denotes the n× n
unit matrix, the space H

p(·)
A (Rn) goes back to the variable Hardy space studied in [19,52].

(ii) Very recently, via the variable Lorentz spaces Lp(·),q(·)(Rn) in [24], where

p(·), q(·) : (0,∞)→ (0,∞)

are two measurable functions, Almeida et al. [3] introduced the variable anisotropic Hardy-

Lorentz spaces Hp(·),q(·)(Rn, A) on Rn. As was mentioned in [35, Remark 2.6] (see also [46,

Remark 2.11(ii)]), the space Lp(·),q(·)(Rn) in [24] never goes back to the space Lp(·)(Rn),

since the variable exponent p(·) in Lp(·),q(·)(Rn) is only defined on (0,∞) while not on Rn.

Thus, it is easy to see that the space H
p(·)
A (Rn), in this article, is not covered by the space

Hp(·),q(·)(Rn, A) in [3]. We should also point out that the space H
p(·)
A (Rn), in this article, is

also not covered by the variable anisotropic Hardy-Lorentz space H
p(·),q
A (Rn) investigated

in [44,46], since the exponent q ∈ (0,∞] in H
p(·),q
A (Rn) is only a constant.

(iii) Recall that Li et al. [39–41] studied the anisotropic Musielak-Orlicz Hardy space

Hϕ
A(Rn) with a Musielak-Orlicz growth function ϕ : Rn × [0,∞) → [0,∞). Similarly

to [74, Remark 2.8], we know that, if

(2.8) ϕ(x, t) := tp(x) for any x ∈ Rn and t ∈ (0,∞),
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then Hϕ
A(Rn) = H

p(·)
A (Rn). However, a general Musielak-Orlicz growth function ϕ sat-

isfying all the assumptions in [39–41] may not have the form as in (2.8). On the other

hand, as was pointed out in [74, Remark 2.14(iii)], it was proved in [77] that there exists

a variable exponent function p(·) satisfying (2.5) and (2.6) which were required in this

article, but tp(·) is not a uniformly Muckenhoupt weight which was required in [39–41].

Thus, the anisotropic Musielak-Orlicz Hardy space Hϕ
A(Rn) in [39–41] and the variable

anisotropic Hardy space H
p(·)
A (Rn) in this article can not cover each other.

3. Maximal function characterizations of H
p(·)
A (Rn)

In this section, we characterize H
p(·)
A (Rn) by means of the radial maximal function M0

ϕ

(see Definition 3.9 below) or the non-tangential maximal function Mϕ (see (2.7)). We

begin with the following notions of some auxiliary maximal functions from [6].

Definition 3.1. Let K ∈ Z, L ∈ [0,∞) and N ∈ N. For any φ ∈ S, the maximal functions

M
0(K,L)
φ (f), M

(K,L)
φ (f) and T

N(K,L)
φ (f) of f ∈ S ′(Rn) are, respectively, defined by setting,

for any x ∈ Rn,

M
0(K,L)
φ (f)(x) := sup

k∈Z,k≤K
|(f ∗ φk)(x)|

[
max{1, ρ(A−Kx)}

]−L
(1 + b−k−K)−L,

M
(K,L)
φ (f)(x) := sup

k∈Z,k≤K
sup

y∈x+Bk

|(f ∗ φk)(y)|
[
max{1, ρ(A−Ky)}

]−L
(1 + b−k−K)−L

and

T
N(K,L)
φ (f)(x) := sup

k∈Z,k≤K
sup
y∈Rn

|(f ∗ φk)(y)|
[max{1, ρ(A−k(x− y))}]N

(1 + b−k−K)−L

[max{1, ρ(A−Ky)}]L
.

Moreover, the maximal functions M
0(K,L)
N (f) and M

(K,L)
N (f) of f ∈ S ′(Rn) are, respec-

tively, defined by setting, for any x ∈ Rn,

M
0(K,L)
N (f)(x) := sup

φ∈SN (Rn)
M

0(K,L)
φ (f)(x)

and

M
(K,L)
N (f)(x) := sup

φ∈SN (Rn)
M

(K,L)
φ (f)(x).

Let L1
loc(Rn) be the collection of all locally integrable functions on Rn. Recall that the

Hardy-Littlewood maximal operator MHL(f) of f ∈ L1
loc(Rn) is defined by setting, for any

x ∈ Rn,

(3.1) MHL(f)(x) := sup
k∈Z

sup
y∈x+Bk

1

|Bk|

∫
y+Bk

|f(z)| dz = sup
x∈B∈B

1

|B|

∫
B
|f(z)| dz,
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where B is as in (2.1).

The following Lemmas 3.2 through 3.5 are just [3, Lemma 2.3], [46, Lemma 3.3], [74,

Remark 2.1(i)] and [18, Corollary 2.64], respectively.

Lemma 3.2. Let K ∈ Z, N,L ∈ N, r ∈ (0,∞) and φ ∈ S(Rn). Then there exists a

positive constant C, independent of K, N , L, r and φ, such that, for any f ∈ S ′(Rn) and

x ∈ Rn, [
T
N(K,L)
φ (f)(x)

]r
≤ CMHL

([
M

(K,L)
φ (f)

]r)
(x),

where MHL is as in (3.1).

Lemma 3.3. Let p(·) ∈ C log(Rn).

(i) If 1 ≤ p− ≤ p+ <∞, then, for any given s ∈ [1,∞) and any f ∈ Lsp(·)(Rn),

sup
λ∈(0,∞)

∥∥λχ{x∈Rn:MHL(f)(x)>λ}
∥∥
Lsp(·)(Rn)

≤ C‖f‖Lsp(·)(Rn),

where C is a positive constant independent of f ;

(ii) If 1 < p− ≤ p+ <∞, then, for any given s ∈ [1,∞) and any f ∈ Lsp(·)(Rn),

‖MHL(f)‖Lsp(·)(Rn) ≤ C̃‖f‖Lsp(·)(Rn),

where C̃ is a positive constant independent of f .

Lemma 3.4. Let p(·) ∈ P(Rn). Then, for any s ∈ (0,∞) and f ∈ Lp(·)(Rn),

‖|f |s‖Lp(·)(Rn) = ‖f‖s
Lsp(·)(Rn)

.

In addition, for any λ ∈ C and f, g ∈ Lp(·)(Rn), ‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn) and

‖f + g‖p
Lp(·)(Rn)

≤ ‖f‖p
Lp(·)(Rn)

+ ‖g‖p
Lp(·)(Rn)

,

where p is as in (2.4).

Lemma 3.5. Let p(·) ∈ P(Rn) and {fk}k∈N ⊂ Lp(·)(Rn) be any sequence of non-negative

functions satisfying that fk, as k → ∞, increases pointwisely almost everywhere to some

f ∈ Lp(·)(Rn) in Rn. Then

‖f − fk‖Lp(·)(Rn) → 0 as k →∞.

From Lemmas 3.2, 3.3 and 3.4, we easily deduce the following conclusion, the details

being omitted.
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Lemma 3.6. Let p(·) ∈ C log(Rn). Then there exists a positive constant C such that, for

any K ∈ Z, N,L ∈ N, φ ∈ S(Rn) and f ∈ S ′(Rn),∥∥∥TN(K,L)
φ (f)

∥∥∥
Lp(·)(Rn)

≤ C
∥∥∥M (K,L)

φ (f)
∥∥∥
Lp(·)(Rn)

.

We also need the following two technical lemmas, which are just [6, p. 45, Lemma 7.5

and p. 46, Lemma 7.6], respectively.

Lemma 3.7. Let φ ∈ S(Rn) and
∫
Rn φ(x) dx 6= 0. Then, for any given N ∈ N and

L ∈ [0,∞), there exist an I ∈ N and a positive constant C(N,L), depending on N and L,

such that, for any K ∈ Z+, f ∈ S ′(Rn) and x ∈ Rn,

M
0(K,L)
I (f)(x) ≤ C(N,L)T

N(K,L)
φ (f)(x).

Lemma 3.8. Let φ ∈ S(Rn) and
∫
Rn φ(x) dx 6= 0. Then, for any given M ∈ (0,∞) and

K ∈ Z+, there exist L ∈ (0,∞) and a positive constant C(K,M), depending on K and M ,

such that, for any f ∈ S ′(Rn) and x ∈ Rn,

(3.2) M
(K,L)
φ (f)(x) ≤ C(K,M)[max{1, ρ(x)}]−M .

Definition 3.9. Let φ ∈ S(Rn) and f ∈ S ′(Rn). The radial maximal function M0
φ(f) of

f with respect to φ is defined by setting, for any x ∈ Rn,

M0
φ(f)(x) := sup

k∈Z
|f ∗ φk(x)|.

Moreover, for any given N ∈ N, the radial grand maximal function M0
N (f) of f ∈ S ′(Rn)

is defined by setting, for any x ∈ Rn,

M0
N (f)(x) := sup

φ∈SN (Rn)
M0
φ(f)(x).

Now, it is a position to state the main result of this section.

Theorem 3.10. Let p(·) ∈ C log(Rn) and φ ∈ S(Rn) with
∫
Rn φ(x) dx 6= 0. Then, for any

f ∈ S ′(Rn), the following statements are mutually equivalent:

(i) f ∈ Hp(·)
A (Rn);

(ii) Mφ(f) ∈ Lp(·)(Rn);

(iii) M0
φ(f) ∈ Lp(·)(Rn).

Moreover, there exist two positive constants C1 and C2, independent of f , such that

‖f‖
H
p(·)
A (Rn)

≤ C1‖M0
φ(f)‖Lp(·)(Rn) ≤ C1‖Mφ(f)‖Lp(·)(Rn) ≤ C2‖f‖Hp(·)

A (Rn)
.
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Proof. Due to the obvious facts that (i) implies (ii) and that (ii) implies (iii), we next only

need to show that (ii) implies (i) and that (iii) implies (ii).

We first prove that (ii) implies (i). Indeed, notice that Lemma 3.7 with N ∈ N and

L = 0 implies that there exists an I ∈ N such that, for any K ∈ Z+, f ∈ S ′(Rn) and

x ∈ Rn, it holds true that M
0(K,0)
I (f)(x) . T

N(K,0)
φ (f)(x). Thus, by Lemma 3.6, we

conclude that, for any K ∈ Z+ and f ∈ S ′(Rn),

(3.3)
∥∥∥M0(K,0)

I (f)
∥∥∥
Lp(·)(Rn)

.
∥∥∥M (K,0)

φ (f)
∥∥∥
Lp(·)(Rn)

.

Letting K →∞ and applying Lemma 3.5 to (3.3), we obtain

‖M0
I (f)‖Lp(·)(Rn) . ‖Mφ(f)‖Lp(·)(Rn),

which, combined with [6, p. 17, Proposition 3.10], implies that, if (ii) holds true, then (i)

also holds true.

Next we prove that (iii) implies (ii). To this end, let M0
φ(f) ∈ Lp(·)(Rn). Then, for any

M ∈ (1/p−,∞) and K ∈ Z+, by Lemma 3.8, we know that there exists some L ∈ (0,∞)

such that (3.2) holds true and hence M
(K,L)
φ (f) ∈ Lp(·)(Rn). Indeed, by Lemma 3.4, we

have∥∥∥M (K,L)
φ (f)

∥∥∥p
Lp(·)(Rn)

≤
∥∥∥M (K,L)

φ (f)χB1

∥∥∥p
Lp(·)(Rn)

+
∑
k∈N

∥∥∥M (K,L)
φ (f)χBk+1\Bk

∥∥∥p
Lp(·)(Rn)

. ‖χB1‖
p

Lp(·)(Rn)
+
∑
k∈N

b−kpM‖χBk+1\Bk‖
p

Lp(·)(Rn)

.
∑
k∈Z+

b−kpMb(k+1)p/p− <∞.

Thus, M
(K,L)
φ (f) ∈ Lp(·)(Rn).

On the other hand, from Lemmas 3.7 and 3.6, we deduce that, for any given L ∈ (0,∞),

there exist some I ∈ N and a positive constant C3 such that, for any K ∈ Z+ and

f ∈ S ′(Rn), ∥∥∥M0(K,L)
I (f)

∥∥∥
Lp(·)(Rn)

≤ C3

∥∥∥M (K,L)
φ (f)

∥∥∥
Lp(·)(Rn)

.

For any fixed K ∈ Z+, let

EK :=
{
x ∈ Rn : M

0(K,L)
I (f)(x) ≤ C4M

(K,L)
φ (f)(x)

}
with C4 := 2C3. Then, since∥∥∥M (K,L)

φ (f)
∥∥∥
Lp(·)(E{

K)
≤ C−1

4

∥∥∥M0(K,L)
I (f)

∥∥∥
Lp(·)(E{

K)
≤ C3

C4

∥∥∥M (K,L)
φ (f)

∥∥∥
Lp(·)(Rn)

,

it follows that

(3.4)
∥∥∥M (K,L)

φ (f)
∥∥∥
Lp(·)(Rn)

.
∥∥∥M (K,L)

φ (f)
∥∥∥
Lp(·)(EK)
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holds true.

For any given L ∈ (0,∞), by a proof similar to that of [45, (4.17)], we find that, for

any t ∈ (0, p−), K ∈ Z+, f ∈ S ′(Rn) and x ∈ EK ,

(3.5)
[
M

(K,L)
φ (f)(x)

]t
.MHL

([
M

0(K,L)
φ (f)

]t)
(x),

which, together with (3.4), Lemma 3.4, (3.5) and Lemma 3.3(ii), further implies that, for

any K ∈ Z+ and f ∈ S ′(Rn),∥∥∥M (K,L)
φ (f)

∥∥∥t
Lp(·)(Rn)

.
∥∥∥M (K,L)

φ (f)
∥∥∥t
Lp(·)(EK)

∼
∥∥∥∥[M (K,L)

φ (f)
]t∥∥∥∥

Lp(·)/t(EK)

.

∥∥∥∥MHL

([
M

0(K,L)
φ (f)

]t)∥∥∥∥
Lp(·)/t(Rn)

.

∥∥∥∥[M0(K,L)
φ (f)

]t∥∥∥∥
Lp(·)/t(Rn)

∼
∥∥∥M0(K,L)

φ (f)
∥∥∥t
Lp(·)(Rn)

.

(3.6)

Letting K →∞ in (3.6), by Lemma 3.5, we conclude that

‖Mφ(f)‖Lp(·)(Rn) . ‖M
0
φ(f)‖Lp(·)(Rn),

which shows that (iii) implies (ii) and hence completes the proof of Theorem 3.10.

4. Atomic characterizations of H
p(·)
A (Rn)

In this section, we establish the atomic characterization of H
p(·)
A (Rn). We begin with

recalling the definition of anisotropic (p(·), q, s)-atoms from [46].

Definition 4.1. Let p(·) ∈ P(Rn), q ∈ (1,∞] and

(4.1) s ∈
[⌊(

1

p−
− 1

)
ln b

lnλ−

⌋
,∞
)
∩ Z+.

An anisotropic (p(·), q, s)-atom is a measurable function a on Rn satisfying

(i) supp a ⊂ B, where B ∈ B and B is as in (2.1);

(ii) ‖a‖Lq(Rn) ≤ |B|1/q/‖χB‖Lp(·)(Rn);

(iii)
∫
Rn a(x)xγ dx = 0 for any γ ∈ Zn+ with |γ| ≤ s.

In what follows, we call an anisotropic (p(·), q, s)-atom simply by a (p(·), q, s)-atom.

Now, using (p(·), q, s)-atoms, we introduce the variable anisotropic atomic Hardy space

H
p(·),q,s
A (Rn) as follows.
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Definition 4.2. Let p(·) ∈ C log(Rn), q ∈ (1,∞], s be as in (4.1) and A a dilation.

The variable anisotropic atomic Hardy space H
p(·),q,s
A (Rn) is defined to be the set of all

f ∈ S ′(Rn) satisfying that there exist {λi}i∈N ⊂ C and a sequence of (p(·), q, s)-atoms,

{ai}i∈N, supported, respectively, on {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′(Rn).

Moreover, for any f ∈ Hp(·),q,s
A (Rn), let

‖f‖
H
p(·),q,s
A (Rn)

:= inf

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

,

where the infimum is taken over all decompositions of f as above.

To establish the atomic characterization of H
p(·)
A (Rn), we need several technical lemmas

as follows. First, by a proof similar to that of [6, p. 21, Theorem 4.5], we easily obtain the

following property of H
p(·)
A (Rn), the details being omitted.

Lemma 4.3. Let p(·) ∈ C log(Rn) and N ∈ N∩ [b(1/p− 1) ln b/ lnλ−c+ 2,∞), where p is

as in (2.4). Then H
p(·)
A (Rn) ⊂ S ′(Rn) and the inclusion is continuous.

The following Lemmas 4.4 and 4.5 are just [46, Lemma 4.3] and [6, p. 9, Lemma 2.7],

respectively.

Lemma 4.4. Let r ∈ (1,∞]. Assume that p(·) ∈ C log(Rn) satisfies 1 < p− ≤ p+ < ∞.

Then there exists a positive constant C such that, for any sequence {fk}k∈N of measurable

functions, ∥∥∥∥∥∥
{∑
k∈N

[MHL(fk)]
r

}1/r
∥∥∥∥∥∥
Lp(·)(Rn)

≤ C

∥∥∥∥∥∥
(∑
k∈N
|fk|r

)1/r
∥∥∥∥∥∥
Lp(·)(Rn)

with the usual modification made when r = ∞, where MHL denotes the Hardy-Littlewood

maximal operator as in (3.1).

Lemma 4.5. Let Ω ⊂ Rn be an open set with |Ω| < ∞. Then, for any m ∈ Z+, there

exist a sequence of points, {xk}k∈N ⊂ Ω, and a sequence of integers, {`k}k∈N, such that

(i) Ω =
⋃
k∈N(xk +B`k);

(ii) {xk +B`k−τ}k∈N are pairwise disjoint, where τ is as in (2.2);

(iii) for each k ∈ N, (xk +B`k+m) ∩ Ω{ = ∅, but (xk +B`k+m+1) ∩ Ω{ 6= ∅;
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(iv) for any i, j ∈ N, (xi +B`i+m−2τ ) ∩ (xj +B`j+m−2τ ) 6= ∅ implies |`i − `j | ≤ τ ;

(v) there exists a positive constant R such that, for any i ∈ N,

]{j ∈ N : (xi +B`i+m−2τ ) ∩ (xj +B`j+m−2τ ) 6= ∅} ≤ R.

Observe that (Rn, ρ, dx) is an RD-space (see [32, 80]). From this and [83, Propo-

sition 2.11 and Lemma 4.8], we deduce the following Lemmas 4.6 and 4.7, which play

an important role in this section and are also of independent interest, the details being

omitted.

Lemma 4.6. Let r(·) ∈ C log(Rn) and q ∈ [1,∞]∩(r+,∞] with r+ as in (2.4). Assume that

{λi}i∈N ⊂ C, {B(i)}i∈N ⊂ B and {ai}i∈N ⊂ Lq(Rn) satisfy, for any i ∈ N, supp ai ⊂ B(i),

‖ai‖Lq(Rn) ≤
|B(i)|1/q

‖χB(i)‖Lr(·)(Rn)

and ∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lr(·)(Rn)

]r}1/r
∥∥∥∥∥∥
Lr(·)(Rn)

<∞.

Then ∥∥∥∥∥∥
[∑
i∈N
|λiai|r

]1/r
∥∥∥∥∥∥
Lr(·)(Rn)

≤ C

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lr(·)(Rn)

]r}1/r
∥∥∥∥∥∥
Lr(·)(Rn)

,

where C is a positive constant independent of λi, B
(i) and ai.

Lemma 4.7. Let p(·) ∈ C log(Rn) and q ∈ [1,∞] ∩ (p+,∞] with p+ as in (2.4). Then

H
p(·)
A (Rn) ∩ Lq(Rn) is dense in H

p(·)
A (Rn).

Now we state the main result of this section as follows.

Theorem 4.8. Let p(·) ∈ C log(Rn), q ∈ (max{p+, 1},∞] with p+ as in (2.4), s be as in

(4.1) and N ∈ N ∩ [b(1/p − 1) ln b/ lnλ−c + 2,∞) with p as in (2.4). Then H
p(·)
A (Rn) =

H
p(·),q,s
A (Rn) with equivalent quasi-norms.

Proof. First, we show that

(4.2) H
p(·),q,s
A (Rn) ⊂ Hp(·)

A (Rn).

To this end, for any f ∈ Hp(·),q,s
A (Rn), by Definition 2.2, we know that there exist {λi}i∈N ⊂

C and a sequence of (p(·), q, s)-atoms, {ai}i∈N, supported, respectively, on {B(i)}i∈N ⊂ B

such that

f =
∑
i∈N

λiai in S ′(Rn)
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and

‖f‖
H
p(·),q,s
A (Rn)

∼

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

.

Then, by [46, (4.8)], it is easy to see that, for any N ∈ N∩ [b(1/p− 1) ln b/ lnλ−c+ 2,∞)

and x ∈ Rn,

MN (f)(x) ≤
∑
i∈N
|λi|MN (ai)(x)χAτB(i)(x) +

∑
i∈N
|λi|MN (ai)(x)χ(AτB(i)){(x)

.

{∑
i∈N

[|λi|MN (ai)(x)χAτB(i)(x)]p
}1/p

+
∑
i∈N

|λi|
‖χB(i)‖Lp(·)(Rn)

[MHL(χB(i))(x)]β =: I1 + I2,

(4.3)

where p is as in (2.4),

(4.4) β :=

(
ln b

lnλ−
+ s+ 1

)
lnλ−
ln b

>
1

p

and MHL denotes the Hardy-Littlewood maximal operator as in (3.1).

For the term I1, by the boundedness of MN on Lr(Rn) with r ∈ (1,∞] (see [45,

Remark 2.10]), Lemma 4.6 and [46, Remark 4.4(i)], we conclude that

(4.5) ‖I1‖Lp(·)(Rn) . ‖f‖Hp(·),q,s
A (Rn)

.

To deal with I2, by Lemmas 3.4 and 4.4, we find that

‖I2‖Lp(·)(Rn) ∼

∥∥∥∥∥∥
{∑
i∈N

|λi|
‖χB(i)‖Lp(·)(Rn)

[MHL(χB(i))(x)]β
}1/β

∥∥∥∥∥∥
β

Lβp(·)

.

∥∥∥∥∥∑
i∈N

|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼ ‖f‖
H
p(·),q,s
A (Rn)

.

This, combined with (4.3) and (4.5), implies that

‖f‖
H
p(·)
A (Rn)

∼ ‖MN (f)‖Lp(·)(Rn) . ‖f‖Hp(·),q,s
A (Rn)

.

Thus, (4.2) holds true.

We now prove that H
p(·)
A (Rn) ⊂ Hp(·),q,s

A (Rn). To this end, it suffices to show that

(4.6) H
p(·)
A (Rn) ⊂ Hp(·),∞,s

A (Rn),
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due to the fact that each (p(·),∞, s)-atom is also a (p(·), q, s)-atom and hence H
p(·),∞,s
A (Rn)

⊂ Hp(·),q,s
A (Rn).

Next we prove (4.6) by two steps.

Step 1. In this step, we show that, for any f ∈ H
p(·)
A (Rn) ∩ Lq(Rn) with q ∈

(max{p+, 1},∞],

(4.7) ‖f‖
H
p(·),∞,s
A (Rn)

. ‖f‖
H
p(·)
A (Rn)

holds true.

To prove (4.7), we borrow some ideas from those used in the proofs of [6, p. 38,

Theorem 6.4] and [52, Theorem 4.5]. For any k ∈ Z, N ∈ N∩[b(1/p−1) ln b/ lnλ−c+2,∞)

and f ∈ Hp(·)
A (Rn) ∩ Lq(Rn), let

(4.8) Ωk := {x ∈ Rn : MN (f)(x) > 2k}.

Then, by Lemma 4.5 with m = 6τ , we know that there exist a sequence {xki }i∈N ⊂ Ωk

and a sequence {`ki }i∈N ⊂ Z such that

Ωk =
⋃
i∈N

(xki +B`ki
);(4.9)

(xki +B`ki−τ
) ∩ (xkj +B`kj−τ

) = ∅ for any i, j ∈ N with i 6= j;

(xki +B`ki +6τ ) ∩ Ω{
k = ∅, (xki +B`ki +6τ+1) ∩ Ω{

k 6= ∅ for any i ∈ N;

(xki +B`ki +4τ ) ∩ (xkj +B`kj+4τ ) 6= ∅ implies |`ki − `kj | ≤ τ ;

]
{
j ∈ N : (xki +B`ki +4τ ) ∩ (xkj +B`kj+4τ ) 6= ∅

}
≤ R for any i ∈ N,(4.10)

where τ and R are same as in Lemma 4.5.

Let η ∈ S(Rn) satisfy that supp η ⊂ Bτ , 0 ≤ η ≤ 1 and η ≡ 1 on B0. For any i ∈ N,

k ∈ Z and x ∈ Rn, let ηki (x) := η(A−`
k
i (x− xki )) and

(4.11) θki (x) :=
ηki (x)∑
j∈N η

k
j (x)

.

Then it is easy to see that {θki }i∈N forms a smooth partition of unity of Ωk. For any

r ∈ Z+, denote by Pr(Rn) the linear space of all polynomials on Rn with degree not

greater than r. By an argument similar to that used in [45, p. 1679], we conclude that

there exists a unique polynomial P ki ∈ Pr(Rn) such that, for any Q ∈ Pr(Rn),

1∫
Rn θ

k
i (x) dx

〈f,Qθki 〉 =
1∫

Rn θ
k
i (x) dx

〈P ki , Qθki 〉 =
1∫

Rn θ
k
i (x) dx

∫
Rn
P ki (x)Q(x)θki (x) dx.

For each i ∈ N and k ∈ Z, let bki := [f − P ki ]θki and

(4.12) g(k) := f −
∑
i∈N

bki = f −
∑
i∈N

[f − P ki ]θki = fχΩ{
k

+
∑
i∈N

P ki θ
k
i .
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From this and an argument same as that used in [45, p. 1679], we deduce that
∥∥g(k)

∥∥
L∞(Rn)

. 2k and
∥∥g(k)

∥∥
L∞(Rn)

→ 0 as k → −∞.

Fix some N ∈ N∩[b(1/p−1) ln b/ lnλ−c+2,∞) large enough such that (lnλ−/ ln b)Np−

∈ (1,∞). Notice that f ∈ Lq(Rn) = Hq
A(Rn) with q ∈ (max{p+, 1},∞] (see [6, p. 17]),

where Hq
A(Rn) denotes the anisotropic Hardy space from [6]. Then, repeating the proof

of [6, p. 31, Lemma 5.7] with some slight modifications, we find that, for any k ∈ Z,{∑m
i=1 b

k
i

}
m∈N converges in Hq

A(Rn) and hence converges in S ′(Rn). By this, a proof

similar to those of [6, p. 27, Lemma 5.4 and p. 28, Lemma 5.6], (4.9), (4.10), (2.3) and

(3.1), we conclude that, for any k ∈ Z and x ∈ Rn,

MN

(∑
i∈N

bki

)
(x) ≤

∑
i∈N

MN (bki )(x)χxki +B
`k
i

+2τ
(x) +

∑
i∈N

MN (bki )(x)χ(xki +B
`k
i

+2τ
){(x)

.MN (f)(x)χΩk(x) + 2k
∑
i∈N

∑
j∈Z+

(λ−)−jNχxki +B
`k
i

+2τ+j+1
\B

`k
i

+2τ+j
(x)

.MN (f)(x)χΩk(x)

+ 2k
∑
i∈N

∑
j∈Z+

bN`
k
i

lnλ−
ln b b−(`ki +2τ+j)N

lnλ−
ln b χxki +B

`k
i

+2τ+j+1
\B

`k
i

+2τ+j
(x)

.MN (f)(x)χΩk(x) + 2k
∑
i∈N

|xki +B`ki
|N lnλ−/ ln b[

ρ(x− xki )
]N lnλ−/ ln b

.MN (f)(x)χΩk(x) + 2k
∑
i∈N

[
MHL(χxki +B

`k
i

)(x)

]N lnλ−/ ln b

.

Thus, from the fact that (lnλ−/ ln b)Np− ∈ (1,∞), Lemma 4.4, (4.9), (4.10) again and

the definition of Ωk, it follows that, for any k ∈ Z,∥∥∥∥∥MN

(∑
i∈N

bki

)∥∥∥∥∥
Lp(·)(Rn)

. ‖MN (f)(x)χΩk‖Lp(·)(Rn) +

∥∥∥∥∥2k
∑
i∈N

[
MHL(χxki +B

`k
i

)(x)

]N lnλ−/ ln b
∥∥∥∥∥
Lp(·)(Rn)

. ‖MN (f)(x)χΩk‖Lp(·)(Rn) + ‖2kχΩk‖Lp(·)(Rn) . ‖MN (f)(x)χΩk‖Lp(·)(Rn).

This, together with (4.12), further implies that, as k →∞,∥∥∥f − g(k)
∥∥∥
H
p(·)
A (Rn)

=

∥∥∥∥∥∑
i∈N

bki

∥∥∥∥∥
H
p(·)
A (Rn)

∼

∥∥∥∥∥MN

(∑
i∈N

bki

)∥∥∥∥∥
Lp(·)(Rn)

→ 0.

By this, the fact that
∥∥g(k)

∥∥
L∞(Rn)

→ 0, as k → −∞, and Lemma 4.3, we have

f =
∑
k∈Z

[
g(k+1) − g(k)

]
in S ′(Rn).
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On the other hand, for any k ∈ Z, i ∈ N and P ∈ Pr(Rn) with r ∈ Z+, let

(4.13) ‖P‖i,k :=

[
1∫

Rn θ
k
i (x) dx

∫
Rn
|P (x)|2θki (x) dx

]1/2

,

where θki is as in (4.11). Then, by an argument same as that used in [6, p. 38] (see

also [45, pp. 1680–1681]), we find that

f =
∑
k∈Z

[
g(k+1) − g(k)

]
=
∑
k∈Z

∑
i∈N

bki −∑
j∈N

(bk+1
j θki − P k+1

i,j θk+1
j )

 =:
∑
k∈Z

∑
i∈N

hki in S ′(Rn),

where, for any i, j ∈ N and k ∈ Z, P k+1
i,j is the orthogonal projection of [f − P k+1

j ]θki on

Pr(Rn) with respect to the norm defined by (4.13) and hki is a multiple of a (p(·),∞, s)-
atom satisfying ∫

Rn
hki (x)Q(x) dx = 0 for any Q ∈ Pr(Rn),(4.14)

supphki ⊂ (xki +B`ki +4τ )(4.15)

and

(4.16)
∥∥∥hki ∥∥∥

L∞(Rn)
≤ C̃2k,

where C̃ is a positive constant independent of k and i.

Now, for any k ∈ Z and i ∈ N, let

(4.17) λki := C̃2k
∥∥∥∥χxki +B

`k
i

+4τ

∥∥∥∥
Lp(·)(Rn)

and aki :=
[
λki

]−1
hki ,

where C̃ is as in (4.16). Then, by (4.14), (4.15) and (4.16), we easily know that, for any

k ∈ Z and i ∈ N, aki is a (p(·),∞, s)-atom. Moreover, we have

f =
∑
k∈Z

∑
i∈N

λki a
k
i in S ′(Rn).

In addition, from (4.17), (4.9), (4.10) and the definition of Ωk, we further deduce that∥∥∥∥∥∥∥
∑
k∈Z

∑
i∈N

 |λki |χxki +B
`k
i

+4τ

‖χxki +B
`k
i

+4τ
‖Lp(·)(Rn)

p
1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

∑
i∈N

(
2kχxki +B

`k
i

+4τ

)p]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥
[∑
k∈Z

(2kχΩk)p

]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

(2kχΩk\Ωk+1
)p

]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥MN (f)

[∑
k∈Z

χΩk\Ωk+1

]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

. ‖MN (f)‖Lp(·)(Rn) ∼ ‖f‖Hp(·)
A (Rn)

.
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This implies that (4.7) holds true.

Step 2. In this step, we prove that (4.7) also holds true for any f ∈ Hp(·)
A (Rn).

To this end, let f ∈ H
p(·)
A (Rn). Then, by Lemma 4.7, we know that there exists a

sequence {fj}j∈N ⊂ H
p(·)
A (Rn) ∩ Lq(Rn) with q ∈ (max{p+, 1},∞] such that f =

∑
j∈N fj

in H
p(·)
A (Rn) and, for any j ∈ N,

‖fj‖Hp(·)
A (Rn)

≤ 22−j‖f‖
H
p(·)
A (Rn)

.

Notice that, for any j ∈ N, by the conclusion obtained in Step 1, we find that fj has an

atomic decomposition, namely,

fj =
∑
k∈Z

∑
i∈N

λj,ki aj,ki in S ′(Rn),

where
{
λj,ki
}
k∈Z,i∈N and

{
aj,ki
}
k∈Z,i∈N are constructed as in (4.17). Thus,

{
aj,ki
}
k∈Z,i∈N

are (p(·),∞, s)-atoms and hence we have

f =
∑
j∈N

∑
k∈Z

∑
i∈N

λj,ki aj,ki in S ′(Rn)

and

‖f‖
H
p(·),∞,s
A (Rn)

≤

∑
j∈N
‖fj‖

p

H
p(·)
A (Rn)

1/p

. ‖f‖
H
p(·)
A (Rn)

,

which implies that (4.7) holds true for any f ∈ Hp(·)
A (Rn) and hence completes the proof

of Theorem 4.8.

5. Finite atomic characterizations of H
p(·)
A (Rn)

In this section, we establish finite atomic characterizations of H
p(·)
A (Rn). We begin with

introducing the notion of variable anisotropic finite atomic Hardy spaces H
p(·),q,s
A,fin (Rn) as

follows.

Definition 5.1. Let p(·) ∈ C log(Rn), q ∈ (1,∞], s be as in (4.1) and A a dilation. The

variable anisotropic finite atomic Hardy space H
p(·),q,s
A,fin (Rn) is defined to be the set of all

f ∈ S ′(Rn) satisfying that there exist I ∈ N, {λi}i∈[1,I]∩N ⊂ C and a finite sequence of

(p(·), q, s)-atoms, {ai}i∈[1,I]∩N, supported, respectively, on {B(i)}i∈[1,I]∩N ⊂ B such that

f =
I∑
i=1

λiai in S ′(Rn).
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Moreover, for any f ∈ Hp(·),q,s
A,fin (Rn), define

‖f‖
H
p(·),q,s
A,fin (Rn)

:= inf

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

,

where p is as in (2.4) and the infimum is taken over all decompositions of f as above.

The following conclusion is from Theorem 4.8 and its proof, which is used in the proof

of Theorem 5.4 below.

Lemma 5.2. Let p(·) ∈ C log(Rn), q ∈ (1,∞], s be as in (4.1) and τ as in (2.2). Then, for

any f ∈ Hp(·)
A (Rn)∩Lq(Rn), there exist

{
λki
}
k∈Z,i∈N ⊂ C, dilated balls

{
xki +B`ki

}
k∈Z,i∈N ⊂

B and (p(·),∞, s)-atoms
{
aki
}
k∈Z,i∈N such that

f =
∑
k∈Z

∑
i∈N

λki a
k
i ,

where the series converge both almost everywhere and in S ′(Rn),

(5.1) supp aki ⊂ xki +B`ki +4τ , Ωk =
⋃
j∈N

(xkj +B`kj+4τ ) for any k ∈ Z and i ∈ N

with Ωk as in (4.8),

(5.2) (xki +B`ki−τ
) ∩ (xkj +B`kj−τ

) = ∅ for any k ∈ Z and i, j ∈ N with i 6= j,

and

(5.3) ]
{
j ∈ N : (xki +B`ki +4τ ) ∩ (xkj +B`kj+4τ ) 6= ∅

}
≤ R for any i ∈ N

with R being a positive constant independent of k and f . Moreover, there exists a positive

constant C, independent of f , such that, for any k ∈ Z, i ∈ N and almost every x ∈ Rn,

(5.4)
∣∣∣λki aki (x)

∣∣∣ ≤ C2k

and

(5.5)

∥∥∥∥∥∥∥
∑
k∈Z

∑
i∈N

 |λki |χxki +B
`k
i

+4τ

‖χxki +B
`k
i

+4τ
‖Lp(·)(Rn)

p
1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

≤ C‖f‖
H
p(·)
A (Rn)

with p as in (2.4).
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Remark 5.3. For any i ∈ N, k ∈ Z and r ∈ Z+, let θki and Pr(Rn) be the same as those

used in the proof of Theorem 4.8. For any f ∈ Hp(·)
A (Rn) ∩ Lq(Rn) with q ∈ (1,∞], by

an argument same as that used in the proof of Theorem 4.8, we also conclude that there

exists a unique polynomial P ki ∈ Pr(Rn) such that, for any Q ∈ Pr(Rn),

〈f,Qθki 〉 = 〈P ki , Qθki 〉 =

∫
Rn
P ki (x)Q(x)θki (x) dx.

In addition, for any i, j ∈ N and k ∈ Z, we let the polynomial P k+1
i,j be the orthogonal

projection of (f −P k+1
j )θki on Pr(Rn) with respect to the norm defined by (4.13), namely,

P k+1
i,j is the unique element of Pr(Rn) such that, for any Q ∈ Pr(Rn),∫

Rn

[
f(x)− P k+1

j (x)
]
θki (x)Q(x)θk+1

j (x) dx =

∫
Rn
P k+1
i,j (x)Q(x)θk+1

j (x) dx

and, for any i ∈ N and k ∈ Z,

λki a
k
i = (f − P ki )θki −

∑
j∈N

[
(f − P k+1

j )θki − P k+1
i,j

]
θk+1
j .

We always denote by C(Rn) the set of all continuous functions. Then we obtain the

following finite atomic characterization of H
p(·)
A (Rn), which extends [50, Theorem 3.1 and

Remark 3.3] to the present setting of variable anisotropic Hardy spaces.

Theorem 5.4. Let p(·) ∈ C log(Rn), q ∈ (max{p+, 1},∞] with p+ as in (2.4) and s be as

in (4.1).

(i) If q ∈ (max{p+, 1},∞), then ‖ · ‖
H
p(·),q,s
A,fin (Rn)

and ‖ · ‖
H
p(·)
A (Rn)

are equivalent quasi-

norms on H
p(·),q,s
A,fin (Rn);

(ii) ‖·‖
H
p(·),∞,s
A,fin (Rn)

and ‖·‖
H
p(·)
A (Rn)

are equivalent quasi-norms on H
p(·),∞,s
A,fin (Rn)∩C(Rn).

Proof. Assume that p(·) ∈ C log(Rn), q ∈ (max{p+, 1},∞] and s is as in (4.1). Then it

follows, from Theorem 4.8, that H
p(·),q,s
A,fin (Rn) ⊂ H

p(·)
A (Rn) and, for any f ∈ Hp(·),q,s

A,fin (Rn),

‖f‖
H
p(·)
A (Rn)

. ‖f‖
H
p(·),q,s
A,fin (Rn)

. Thus, to prove Theorem 5.4, we only need to show that, for

any f ∈ Hp(·),q,s
A,fin (Rn) when q ∈ (max{p+, 1},∞) and, for any f ∈

[
H
p(·),∞,s
A,fin (Rn) ∩ C(Rn)

]
when q =∞,

‖f‖
H
p(·),q,s
A,fin (Rn)

. ‖f‖
H
p(·)
A (Rn)

.

We prove this by three steps.

Step 1. Let q ∈ (max{p+, 1},∞]. Then, without loss of generality, we may assume

that f ∈ H
p(·),q,s
A,fin (Rn) and ‖f‖

H
p(·)
A (Rn)

= 1. Clearly, there exists some K ∈ Z such

that supp f ⊂ BK because f has compact support, where BK is as in Section 2. In the
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remainder of this section, we always let N := b(1/p−1) ln b/ lnλ−c+2 and, for any k ∈ Z,

let

Ωk :=
{
x ∈ Rn : MN (f)(x) > 2k

}
.

Since f ∈ Hp(·)
A (Rn) ∩ Lq̃(Rn), where q̃ := q when q ∈ (max{p+, 1},∞) and q̃ := 2 when

q = ∞, it follows, from Lemma 5.2, that there exist
{
λki
}
k∈Z,i∈N ⊂ C and a sequence of

(p(·),∞, s)-atoms,
{
aki
}
k∈Z,i∈N, such that

(5.6) f =
∑
k∈Z

∑
i∈N

λki a
k
i

holds true both almost everywhere and in S ′(Rn) and, in addition, (5.1) through (5.5)

also hold true.

By this and an argument similar to that used in Step 2 of the proof of [45, Theorem 5.7]

(see also [44, (4.9)]), we conclude that there exists a positive constant C5 such that, for

any x ∈ (BK+4τ ){,

(5.7) MN (f)(x) ≤ C5‖χBK‖
−1
Lp(·)(Rn)

.

Then, for any k ∈ (k̃,∞] ∩ Z, we have

(5.8) Ωk ⊂ BK+4τ ,

where τ is as in (2.2) and

(5.9) k̃ := sup
{
k ∈ Z : 2k < C5‖χBK‖

−1
Lp(·)(Rn)

}
with C5 as in (5.7). Using this k̃, we rewrite (5.6) as

f =
k̃∑

k=−∞

∑
i∈N

λki a
k
i +

∞∑
k=k̃+1

∑
i∈N
· · · =: h+ `,

where the series converge both almost everywhere and in S ′(Rn). From this and an

argument same as that used in Step 2 of the proof of [44, Theorem 2.14], we further

deduce that there exists a positive constant C6, independent of f , such that h/C6 is a

(p(·), q, s)-atom for any p(·) ∈ C log(Rn), q ∈ (max{p+, 1},∞] and s being as in (4.1).

Step 2. This step is aimed to prove (i). For this purpose, for any k0 ∈ (k̃,∞) ∩ Z and

k ∈ [k̃ + 1, k0] ∩ Z with k̃ as in (5.9), let

I(k0,k) := {i ∈ N : |i|+ |k| ≤ k0} and `(k0) :=

k0∑
k=k̃+1

∑
i∈I(k0,k)

λki a
k
i .
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On the other hand, for any q ∈ (max{p+, 1},∞), by an argument similar to that used in

Step 4 of the proof of [45, Theorem 5.7], we know that ` ∈ Lq(Rn). This further implies

that, for any given ε ∈ (0, 1), there exists a k0 ∈ [k̃ + 1,∞) ∩ Z large enough, depending

on ε, such that [` − `(k0)]/ε is a (p(·), q, s)-atom and hence f = h + `(k0) + [` − `(k0)] is a

finite linear combination of (p(·), q, s)-atoms. From this, Step 1 and (5.5), we deduce that

‖f‖
H
p(·),q,s
A,fin (Rn)

. C6 +

∥∥∥∥∥∥∥


k0∑
k=k̃+1

∑
i∈I(k0,k)

 |λki |χxki +B
`k
i

+4τ

‖χxki +B
`k
i

+4τ
‖Lp(·)(Rn)

p
1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

+ ε . 1,

which completes the proof of (i).

Step 3. In this step, we prove (ii). To this end, assume that f ∈ Hp(·),∞,s
A,fin (Rn)∩C(Rn).

Thus, by (4.10), we know that, for any k ∈ Z and i ∈ N, aki is continuous. In addition,

from the fact that there exists a positive constant C(n,N), depending only on n and N ,

such that, for any x ∈ Rn,

MN (f)(x) ≤ C(n,N)‖f‖L∞(Rn),

it follows that the level set Ωk is empty for any k such that 2k ≥ C(n,N)‖f‖L∞(Rn). Let

k̂ := sup
{
k ∈ Z : 2k < C(n,N)‖f‖L∞(Rn)

}
.

Then we conclude that the index k in the sum defining ` runs only over k ∈
{
k̃+1, . . . , k̂

}
.

Notice that f is uniformly continuous. Then, for any ε ∈ (0,∞), we can choose a

δ ∈ (0,∞) such that |f(x) − f(y)| < ε whenever ρ(x − y) < δ. Furthermore, for this ε,

define

`ε1 :=

k̂∑
k=k̃+1

∑
i∈E(k,δ)

1

λki a
k
i and `ε2 :=

k̂∑
k=k̃+1

∑
i∈E(k,δ)

2

λki a
k
i ,

where, for any k ∈
{
k̃ + 1, . . . , k̂

}
,

E
(k,δ)
1 :=

{
i ∈ N : b`

k
i +τ ≥ δ

}
and E

(k,δ)
2 :=

{
i ∈ N : b`

k
i +τ < δ

}
.

Clearly, it follows, from (5.2) and (5.8), that, for any fixed k ∈
{
k̃ + 1, . . . , k̂

}
, E

(k,δ)
1 is

a finite set and hence `ε1 is a finite linear combination of continuous (p(·),∞, s)-atoms.

Then, by (4.6), we have

(5.10)

∥∥∥∥∥∥∥∥


k̂∑
k=k̃+1

∑
i∈E(k,δ)

1

 |λki |χxki +B
`k
i

‖χxki +B
`k
i

‖Lp(·)(Rn)

p


1/p
∥∥∥∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H
p(·)
A (Rn)

.
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Moreover, by an argument same as that used in Step 4 of the proof of [44, Theo-

rem 2.14], we conclude that there exists an ε ∈ (0,∞) small enough such that f = h+`ε1+`ε2
gives the desired finite atomic decomposition of f . Then, from (5.10) and the fact that

h/C6 is a (p(·),∞, s)-atom, we further deduce that

‖f‖
H
p(·),∞,s
A,fin (Rn)

. ‖h‖
H
p(·),∞,s
A,fin (Rn)

+ ‖`ε1‖Hp(·),∞,s
A,fin (Rn)

+ ‖`ε2‖Hp(·),∞,s
A,fin (Rn)

. 1.

This finishes the proof of (ii) and hence of Theorem 5.4.

6. Littlewood-Paley function characterizations of H
p(·)
A (Rn)

In this section, we characterize H
p(·)
A (Rn) by means of the Lusin area function, the

Littlewood-Paley g-function and the Littlewood-Paley g∗λ-function, respectively. We begin

with recalling the following notion of Littlewood-Paley functions (see, for example, [40,45]).

Assume that φ ∈ S(Rn) is a radial function such that, for any α ∈ Zn+ with |α| ≤ s,

where s ∈ N ∩ [b(1/p− − 1) ln b/ lnλ−c,∞) with p− as in (2.4),

(6.1)

∫
Rn
φ(x)xα dx = 0

and, for any ξ ∈ Rn \ {~0n},

(6.2)
∑
k∈Z

∣∣∣φ̂((A∗)kξ)
∣∣∣2 = 1,

here and hereafter, A∗ denotes the adjoint matrix of A and φ̂ the Fourier transform of φ,

namely, for any ξ ∈ Rn,

(6.3) φ̂(ξ) :=

∫
Rn
φ(x)e−2πıx·ξ dx,

where ı :=
√
−1 and, for any x := (x1, . . . , xn), ξ := (ξ1, . . . , ξn) ∈ Rn, x · ξ :=

∑n
i=1 xiξi.

Then, for any f ∈ S ′(Rn) and λ ∈ (0,∞), the anisotropic Lusin area function S(f), the

Littlewood-Paley g-function g(f) and the Littlewood-Paley g∗λ-function g∗λ(f) are defined,

respectively, by setting, for any x ∈ Rn,

S(f)(x) :=

[∑
k∈Z

b−k
∫
x+Bk

|f ∗ φ−k(y)|2 dy

]1/2

, g(f)(x) :=

[∑
k∈Z
|f ∗ φk(x)|2

]1/2

and

g∗λ(f)(x) :=

{∑
k∈Z

b−k
∫
Rn

[
bk

bk + ρ(x− y)

]λ
|f ∗ φ−k(y)|2 dy

}1/2

.
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Recall also that f ∈ S ′(Rn) is said to vanish weakly at infinity if, for any φ ∈ S(Rn),

f ∗ φj → 0 in S ′(Rn) as j → −∞. In what follows, we always denote by S ′0(Rn) the set of

all f ∈ S ′(Rn) vanishing weakly at infinity.

Then the main results of this section are stated as follows.

Theorem 6.1. Let p(·) ∈ C log(Rn). Then f ∈ H
p(·)
A (Rn) if and only if f ∈ S ′0(Rn)

and S(f) ∈ Lp(·)(Rn). Moreover, there exists a positive constant C such that, for any

f ∈ Hp(·)
A (Rn),

C−1‖S(f)‖Lp(·)(Rn) ≤ ‖f‖Hp(·)
A (Rn)

≤ C‖S(f)‖Lp(·)(Rn).

Theorem 6.2. Let p(·) ∈ C log(Rn). Then f ∈ H
p(·)
A (Rn) if and only if f ∈ S ′0(Rn)

and g(f) ∈ Lp(·)(Rn). Moreover, there exists a positive constant C such that, for any

f ∈ Hp(·)
A (Rn),

C−1‖g(f)‖Lp(·)(Rn) ≤ ‖f‖Hp(·)
A (Rn)

≤ C‖g(f)‖Lp(·)(Rn).

Moreover, by Theorems 6.1 and 6.2 and an argument similar to that used in the proof

of [46, Theorem 2.10], we easily obtain the following result, the details being omitted.

Theorem 6.3. Let p(·) ∈ C log(Rn) and λ ∈ (1 + 2/min{p−, 2},∞) with p− as in (2.4).

Then f ∈ H
p(·)
A (Rn) if and only if f ∈ S ′0(Rn) and g∗λ(f) ∈ Lp(·)(Rn). Moreover, there

exists a positive constant C such that, for any f ∈ Hp(·)
A (Rn),

C−1 ‖g∗λ(f)‖Lp(·)(Rn) ≤ ‖f‖Hp(·)
A (Rn)

≤ C ‖g∗λ(f)‖Lp(·)(Rn) .

Remark 6.4. We should point out that, in [42, Theorem 4.8], via the g∗λ-function, Liang et

al. characterized the Musielak-Orlicz Hardy space Hϕ(Rn) with ϕ : Rn × [0,∞)→ [0,∞)

being a Musielak-Orlicz growth function (see [42, Definition 2.3]). As was mentioned

in [42, p. 428], the range of λ in [42, Theorem 4.8] coincides with the best known one

of the g∗λ-function characterization, namely, λ ∈ (2/p,∞) with p ∈ (0, 1], of the classical

Hardy space Hp(Rn). However, it is still unclear whether or not the g∗λ-function, when

λ ∈ (2/min{p−, 2}, 1 + 2/min{p−, 2}], can characterize H
p(·)
A (Rn), since the method used

in the proof of Theorem 6.3 does not work in this case, while the method used in [42,

Theorem 4.8] strongly depends on the properties of uniformly Muckenhoupt weights, which

are not satisfied by tp(·) with p(·) ∈ C log(Rn) (see [74, Remark 2.14(iii)]).

To prove Theorem 6.1, we need several technical lemmas. First, by a proof similar to

that of [74, Lemma 6.5] with some slight modifications, we obtain the following conclusion,

the details being omitted.

Lemma 6.5. Let p(·) ∈ C log(Rn). Then H
p(·)
A (Rn) ⊂ S ′0(Rn).
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The following Calderón reproducing formula is just [8, Proposition 2.14].

Lemma 6.6. Let s ∈ Z+ and A be a dilation. Then there exist ϕ,ψ ∈ S(Rn) such that

(i) suppϕ ⊂ B0,
∫
Rn x

γϕ(x) dx = 0 for any γ ∈ Zn+ with |γ| ≤ s, ϕ̂(ξ) ≥ C for any

ξ ∈ {x ∈ Rn : m ≤ ρ(x) ≤ t}, where 0 < m < t < 1 and C ∈ (0,∞) are constants;

(ii) supp ψ̂ is compact and bounded away from the origin;

(iii) for any ξ ∈ Rn \ {~0n},
∑

k∈Z ψ̂((A∗)kξ)ϕ̂((A∗)kξ) = 1, where A∗ denotes the adjoint

matrix of A.

Moreover, for any f ∈ S ′0(Rn), f =
∑

k∈Z f ∗ ψk ∗ ϕk in S ′(Rn).

The following lemma is just [8, Lemma 2.3].

Lemma 6.7. Let A be a dilation. Then there exists a set

Q :=
{
Qkα ⊂ Rn : k ∈ Z, α ∈ Ek

}
of open subsets, where Ek is certain index set, such that

(i) for each k ∈ Z,
∣∣Rn \⋃αQ

k
α

∣∣ = 0 and, when α 6= β, Qkα ∩Qkβ = ∅;

(ii) for any α, β, k, ` with ` ≥ k, either Qkα ∩Q`β = ∅ or Q`α ⊂ Qkβ;

(iii) for each (`, β) and each k < `, there exists a unique α such that Q`β ⊂ Qkα;

(iv) there exist some v ∈ Z\Z+ and u ∈ N such that, for any Qkα with k ∈ Z and α ∈ Ek,

there exists xQkα ∈ Q
k
α such that, for any x ∈ Qkα,

xQkα +Bvk−u ⊂ Qkα ⊂ x+Bvk+u.

In what follows, we call Q :=
{
Qkα
}
k∈Z,α∈Ek

from Lemma 6.7 dyadic cubes and k the

level, denoted by `(Qkα), of the dyadic cube Qkα for any k ∈ Z and α ∈ Ek.

Remark 6.8. In the definition of (p(·), q, s)-atoms (see Definition 4.1), if we replace dilated

balls B by dyadic cubes, then it follows, from Lemma 6.7, that the corresponding variable

anisotropic atomic Hardy space coincides with the original one (see Definition 4.2) in the

sense of equivalent quasi-norms.

Now we prove Theorem 6.1.

Proof of Theorem 6.1. We first show the sufficiency of this theorem. For this purpose, let

f ∈ S ′0(Rn) with S(f) ∈ Lp(·)(Rn). Then we need to prove that f ∈ Hp(·)
A (Rn) and

(6.4) ‖f‖
H
p(·)
A (Rn)

. ‖S(f)‖Lp(·)(Rn).



Variable Anisotropic Hardy Spaces 1199

To this end, for any k ∈ Z, let Ωk := {x ∈ Rn : S(f)(x) > 2k} and

Qk :=

{
Q ∈ Q : |Q ∩ Ωk| >

|Q|
2

and |Q ∩ Ωk+1| ≤
|Q|
2

}
.

It is easy to see that, for any Q ∈ Q, there exists a unique k ∈ Z such that Q ∈ Qk.
Denote by

{
Qki
}
i

the collection of all maximal dyadic cubes in Qk, namely, there exists

no Q ∈ Qk such that Qki ( Q for any i.

Then, by Lemmas 6.6 and 6.7 and an argument similar to that used in the proof of

the sufficiency of [46, Theorem 5.2], we conclude that

f =
∑
k∈Z

∑
i

λki a
k
i in S ′(Rn),

where, for any k ∈ Z and i, λki ∼ 2k‖χBki ‖Lp(·)(Rn) with the equivalent positive constants

independent of k and i and aki is a (p(·), q, s)-atom satisfying, for any q ∈ (max{p+, 1},∞),

k ∈ Z, i and γ ∈ Zn+ as in Definition 4.1,

supp aki ⊂ Bk
i =: xQki

+Bv[`(Qki )−1]+u+3τ with v and u as in Lemma 6.7(iv),∥∥∥aki ∥∥∥
Lq(Rn)

≤
∥∥∥χBki ∥∥∥−1

Lp(·)(Rn)
|Bk

i |1/q and

∫
Rn
aki (x)xγ dx = 0.

From this, Theorem 4.8, the mutual disjointness of
{
Qki
}
k∈Z,i, Lemma 6.7(iv), the fact

that
∣∣Qki ∩ Ωk

∣∣ ≥ ∣∣Qki ∣∣/2 and [46, Lemma 5.4], we further deduce that

‖f‖
H
p(·)
A (Rn)

∼

∥∥∥∥∥∥
{∑
k∈Z

∑
i∈N

[
λki χBki

‖χBki ‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

∑
i∈N

(
2kχBki

)p]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

∑
i∈N

(
2kχQki

)p]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

∑
i∈N

(
2kχQki

)p]1/2
∥∥∥∥∥∥

2/p

L2p(·)/p(Rn)

.

∥∥∥∥∥∥
[∑
k∈Z

∑
i∈N

(
2kχQki ∩Ωk

)p]1/2
∥∥∥∥∥∥

2/p

L2p(·)/p(Rn)

.

∥∥∥∥∥∥
[∑
k∈Z

(
2kχΩk

)p]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
[∑
k∈Z

(
2kχΩk\Ωk+1

)p]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥S(f)

[∑
k∈Z

χΩk\Ωk+1

]1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼ ‖S(f)‖Lp(·)(Rn),

which implies that f ∈ H
p(·)
A (Rn) and (6.4) holds true. This finishes the proof of the

sufficiency of Theorem 6.1.

Next we show the necessity of this theorem. To this end, let f ∈ Hp(·)
A (Rn). Then, by

Lemma 6.5, we know that f ∈ S ′0(Rn). On the other hand, it follows, from Theorem 4.8,
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that there exist {λi}i∈N ⊂ C and a sequence of (p(·), q, s)-atoms, {ai}i∈N, supported,

respectively, on {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′(Rn)

and

‖f‖
H
p(·)
A (Rn)

∼

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

.

Then, by [46, (5.10)], we find that, for any x ∈ Rn,

S(f)(x) ≤
∑
i∈N
|λi|S(ai)(x)χAwB(i)(x) +

∑
i∈N
|λi|S(ai)(x)χ(AwB(i)){(x)

.

{∑
i∈N

[|λi|S(ai)(x)χAwB(i)(x)]p
}1/p

+
∑
i∈N

|λi|
‖χB(i)‖Lp(·)(Rn)

[MHL(χB(i))(x)]β ,

(6.5)

where w := u− v + 2τ with u and v as in Lemma 6.7, p is as in (2.4),

β :=

(
ln b

lnλ−
+ s+ 1

)
lnλ−
ln b

>
1

p

and MHL denotes the Hardy-Littlewood maximal operator as in (3.1).

By (6.5) and an argument same as that used in the proof of Theorem 4.8, we further

conclude that

‖S(f)‖Lp(·)(Rn) . ‖f‖Hp(·)
A (Rn)

,

which completes the proof of the necessity and hence of Theorem 6.1.

Recall that, for any given dilation A, φ ∈ S(Rn), t ∈ (0,∞), j ∈ Z and any f ∈ S ′(Rn),

the anisotropic Peetre maximal function (φ∗jf)t is defined by setting, for any x ∈ Rn,

(φ∗jf)t(x) := ess sup
y∈Rn

|(φj ∗ f)(x+ y)|
[1 + bjρ(y)]t

and the g-function associated with (φ∗jf)t is defined by setting, for any x ∈ Rn,

(6.6) gt,∗(f)(x) :=

∑
j∈Z

[
(φ∗jf)t(x)

]2
1/2

,

where, for any j ∈ Z, φj(·) := bjφ(Aj · ).
To prove Theorem 6.2, we need the following estimate, which is just [44, Lemma 3.6]

and originates from [68].
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Lemma 6.9. Let φ ∈ S(Rn) be a radial function satisfying (6.1) and (6.2). Then, for any

given N0 ∈ N and r ∈ (0,∞), there exists a positive constant C(N0,r), which may depends

on N0 and r, such that, for any t ∈ (0, N0), ` ∈ Z, f ∈ S ′(Rn) and x ∈ Rn, it holds true

that

[(φ∗`f)t(x)]r ≤ C(N0,r)

∑
k∈Z+

b−kN0rbk+`

∫
Rn

|(φk+` ∗ f)(y)|r

[1 + b`ρ(x− y)]tr
dy.

We now prove Theorem 6.2.

Proof of Theorem 6.2. First, let f ∈ H
p(·)
A (Rn). Then, by Lemma 6.5, we know that

f ∈ S ′0(Rn). In addition, repeating the proof of the necessity of Theorem 6.1 with some

slight modifications, we easily find that g(f) ∈ Lp(·)(Rn) and ‖g(f)‖Lp(·)(Rn) . ‖f‖Hp(·)
A (Rn)

.

Thus, to prove Theorem 6.2, by Theorem 6.1, we only need to show that, for any f ∈
S ′0(Rn) with g(f) ∈ Lp(·)(Rn),

(6.7) ‖S(f)‖Lp(·)(Rn) . ‖g(f)‖Lp(·)(Rn)

holds true. Notice that, for any f ∈ S ′0(Rn), t ∈ (0,∞) and almost every x ∈ Rn,

S(f)(x) . gt,∗(f)(x). Thus, to show (6.7), it suffices to prove that

(6.8) ‖gt,∗(f)‖Lp(·)(Rn) . ‖g(f)‖Lp(·)(Rn)

holds true for any f ∈ S ′0(Rn) and some t ∈ (1/min{p−, 2},∞).

Now we show (6.8). To this end, assume that φ ∈ S(Rn) is a radial function and

satisfies (6.1) and (6.2). Obviously, t ∈ (1/min{p−, 2},∞) implies that there exists r ∈
(0,min{p−, 2}) such that t ∈ (1/r,∞). Fix N0 ∈ (1/r,∞). By this, Lemma 6.9 and the

Minkowski inequality, we know that, for any x ∈ Rn,

gt,∗(f)(x) =

{∑
k∈Z

[(φ∗kf)t(x)]2
}1/2

.

∑
k∈Z

∑
j∈Z+

b−jN0rbj+k
∫
Rn

|(φj+k ∗ f)(y)|r

[1 + bkρ(x− y)]tr
dy


2/r


1/2

.

∑
j∈Z+

b−j(N0r−1)

[∑
k∈Z

b2k/r
{∫

Rn

|(φj+k ∗ f)(y)|r

[1 + bkρ(x− y)]tr
dy

}2/r
]r/2

1/r

,

which, together with Lemma 3.4, implies that

‖gt,∗(f)‖rp
Lp(·)(Rn)

.

∥∥∥∥∥∥
∑
j∈Z+

b−j(N0r−1)

[∑
k∈Z

b2k/r
{∫

Rn

|(φj+k ∗ f)(y)|r

[1 + bkρ( · − y)]tr
dy

}2/r
]r/2∥∥∥∥∥∥

p

Lp(·)/r(Rn)
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.
∑
j∈Z+

b−j(N0r−1)p

∥∥∥∥∥∥
[∑
k∈Z

b2k/r
{∫

Rn

|(φj+k ∗ f)(y)|r

[1 + bkρ( · − y)]tr
dy

}2/r
]r/2∥∥∥∥∥∥

p

Lp(·)/r(Rn)

.
∑
j∈Z+

b−j(N0r−1)p

∥∥∥∥∥∥∥
∑
k∈Z

b2k/r

[∑
i∈N

b−itr
∫
ρ( ·−y)∼bi−k

|(φj+k ∗ f)(y)|r dy

]2/r

r/2
∥∥∥∥∥∥∥
p

Lp(·)/r(Rn)

,

where ρ( · − y) ∼ bi−k means that {x ∈ Rn : ρ(x − y) < b−k} when i = 0, or {x ∈ Rn :

bi−k−1 ≤ ρ(x − y) < bi−k} when i ∈ N. Then, by the Minkowski inequality again and

Lemma 4.4, we further conclude that

‖gt,∗(f)‖rp
Lp(·)(Rn)

.
∑
j∈Z+

b−j(N0r−1)p

∥∥∥∥∥∥∥
∑
i∈N

b−itr

∑
k∈Z

b2k/r

[∫
ρ( ·−y)∼bi−k

|(φj+k ∗ f)(y)|r dy

]2/r

r/2
∥∥∥∥∥∥∥
p

Lp(·)/r(Rn)

.
∑
j∈Z+

b−j(N0r−1)p

∥∥∥∥∥∥
∑
i∈N

b(1−tr)i

{∑
k∈Z

[MHL(|φj+k ∗ f |r)]2/r
}r/2∥∥∥∥∥∥

p

Lp(·)/r(Rn)

.
∑
j∈Z+

b−j(N0r−1)p
∑
i∈N

b(1−tr)ip

∥∥∥∥∥∥
(∑
k∈Z
|φj+k ∗ f |2

)r/2∥∥∥∥∥∥
p

Lp(·)/r(Rn)

∼ ‖g(f)‖rp
Lp(·)(Rn)

.

This implies that (6.8) holds true and hence finishes the proof of Theorem 6.2.

7. Some applications

As applications, in this section, we first establish a criterion on the boundedness of sublin-

ear operators from H
p(·)
A (Rn) into a quasi-Banach space. Applying this criterion, we then

give some applications for the anisotropic summability of Fourier transforms introduced

in [44].

Recall that a quasi-Banach space B is a complete vector space equipped with a quasi-

norm ‖ · ‖B, which satisfies

(i) ‖f‖B = 0 if and only if f is the zero element of B;

(ii) there exists a positive constant L ∈ [1,∞) such that, for any f, g ∈ B,

‖f + g‖B ≤ L(‖f‖B + ‖g‖B).

Clearly, a quasi-Banach space B becomes a Banach space when L = 1. In addition, for any

given γ ∈ (0, 1], a quasi-Banach space Bγ with quasi-norm ‖·‖Bγ is called a γ-quasi-Banach

space if there exists a constant κ ∈ [1,∞) such that, for any m ∈ N and {fi}mi=1 ⊂ Bγ , it

holds true that
∥∥∑m

i=1 fi
∥∥γ
Bγ ≤ κ

∑m
i=1 ‖fi‖

γ
Bγ (see [37,78,79]).
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Let Bγ be a γ-quasi-Banach space with γ ∈ (0, 1] and Y a linear space. An operator

T from Y to Bγ is said to be Bγ-sublinear if there exists a positive constant C such that,

for any m ∈ N, {λ}mi=1 ⊂ C and {fi}mi=1 ⊂ Y,∥∥∥∥∥T
(

m∑
i=1

λifi

)∥∥∥∥∥
γ

Bγ

≤ C
m∑
i=1

|λi|γ‖T (fi)‖γBγ

and ‖T (f)− T (g)‖Bγ ≤ C‖T (f − g)‖Bγ (see [37,78,79]). Obviously, if T is linear, then T

is Bγ-sublinear for any γ ∈ (0, 1].

As an application of the finite atomic characterization of H
p(·)
A (Rn) obtained in Sec-

tion 5 (see Theorem 5.4), we establish the following criterion for the boundedness of

sublinear operators from H
p(·)
A (Rn) into a quasi-Banach space Bγ .

Theorem 7.1. Let p(·) ∈ C log(Rn), q ∈ (max{p+, 1},∞], γ ∈ (0, 1], s be as in (4.1) and

Bγ a γ-quasi-Banach space. If one of the following statements holds true:

(i) q ∈ (max{p+, 1},∞) and T : H
p(·),q,s
A,fin (Rn)→ Bγ is a Bγ-sublinear operator satisfying

that there exists a positive constant C7 such that, for any f ∈ Hp(·),q,s
A,fin (Rn),

(7.1) ‖T (f)‖Bγ ≤ C7‖f‖Hp(·),q,s
A,fin (Rn)

;

(ii) T : H
p(·),∞,s
A,fin (Rn)∩C(Rn)→ Bγ is a Bγ-sublinear operator satisfying that there exists

a positive constant C8 such that, for any f ∈ Hp(·),∞,s
A,fin (Rn) ∩ C(Rn),

‖T (f)‖Bγ ≤ C8‖f‖Hp(·),∞,s
A,fin (Rn)

,

then T uniquely extends to a bounded Bγ-sublinear operator from H
p(·)
A (Rn) into Bγ. More-

over, there exists a positive constant C9 such that, for any f ∈ Hp(·)
A (Rn),

‖T (f)‖Bγ ≤ C9‖f‖Hp(·)
A (Rn)

.

From Theorem 7.1, we easily deduce the following conclusion, which extends the cor-

responding results of Meda et al. [50, Corollary 3.4] and Grafakos et al. [30, Theorem 5.9]

as well as Ky [37, Theorem 3.5] to the present setting, the details being omitted.

Corollary 7.2. Assume that p(·), q, γ, s and Bγ are as in Theorem 7.1. If one of the

following statements holds true:

(i) q ∈ (max{p+, 1},∞) and T is a Bγ-sublinear operator from H
p(·),q,s
A,fin (Rn) to Bγ sat-

isfying that

sup{‖T (a)‖Bγ : a is any (p(·), r, s)-atom} <∞;
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(ii) T is a Bγ-sublinear operator defined on continuous (p,∞, s)-atoms satisfying that

sup{‖T (a)‖Bγ : a is any continuous (p(·),∞, s)-atom} <∞,

then T has a unique bounded Bγ-sublinear extension T̃ from H
p(·)
A (Rn) to Bγ.

To prove Theorem 7.1, we need the following density of H
p(·)
A (Rn), which can be easily

obtained by Lemma 4.7 and a proof similar to that of [45, Lemma 5.2], the details being

omitted.

Lemma 7.3. Let p(·) ∈ C log(Rn). Then H
p(·)
A (Rn) ∩C∞c (Rn) is dense in H

p(·)
A (Rn), here

and hereafter, C∞c (Rn) denotes the set of all infinite differentiable functions with compact

supports.

We now prove Theorem 7.1.

Proof of Theorem 7.1. We first prove (i). To this end, assume that q ∈ (max{p+, 1},∞)

and f ∈ Hp(·)
A (Rn). Then it follows, from the obvious density of H

p(·),q,s
A,fin (Rn) in H

p(·)
A (Rn),

that there exists a Cauchy sequence {fk}k∈N ⊂ H
p(·),q,s
A,fin (Rn) such that

lim
k→∞

‖fk − f‖Hp(·)
A (Rn)

= 0.

By this, (7.1) and Theorem 5.4(i), we find that, as k, `→∞,

‖T (fk)− T (f`)‖Bγ . ‖T (fk − f`)‖Bγ . ‖fk − f`‖Hp(·),q,s
A,fin (Rn)

∼ ‖fk − f`‖Hp(·)
A (Rn)

→ 0,

which implies that {T (fk)}k∈N is a Cauchy sequence in Bγ . Thus, there exists some h ∈ Bγ
such that h = limk→∞ T (fk) in Bγ by the completeness of Bγ . Then let T (f) := h. By

this, (7.1) and Theorem 5.4(i) again, we further conclude that

‖T (f)‖γBγ . lim sup
k→∞

[
‖T (f)− T (fk)‖γBγ + ‖T (fk)‖γBγ

]
. lim sup

k→∞
‖T (fk)‖γBγ

. lim sup
k→∞

‖fk‖γ
H
p(·),q,s
A,fin (Rn)

∼ lim
k→∞

‖fk‖γ
H
p(·)
A (Rn)

∼ ‖f‖γ
H
p(·)
A (Rn)

,

which completes the proof of (i).

We now prove (ii). Indeed, by Lemma 7.3 and an argument similar to that used in

the proof of [45, Theorem 6.13(ii)], it is easy to see that (ii) holds true. This finishes the

proof of (ii) and hence of Theorem 7.1.

Next, we investigate the anisotropic summability of Fourier transforms. Recall that

the classical θ-summation was considered in a great number of articles and monographs;

see, for example, Butzer and Nessel [10], Grafakos [29], Trigub and Belinsky [67] and

Feichtinger and Weisz [27,70–72] and the references therein.
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Let f ∈ Lp(Rn) for some p ∈ [1, 2]. Then the Fourier inversion formula, namely, for

any x ∈ Rn,

f(x) :=

∫
Rn
f̂(t)e2πıx·t dt

holds true if f̂ ∈ L1(Rn), where f̂ denotes the Fourier transform of f as in (6.3). This

motivates the following definition of summability. We always assume that

(7.2) θ ∈ C0(R), θ(| · |) ∈ L1(Rn), θ(0) = 1 and θ is even,

where C0(R) is the set of all continuous functions f on R satisfying that lim|x|→∞ |f(x)| =
0. Let A∗ be the transposed matrix of A. The m-th anisotropic θ-mean of the function

f ∈ Lp(Rn), with p ∈ [1, 2], is defined by setting, for any m ∈ Z and x ∈ Rn,

(7.3) σθmf(x) :=

∫
Rn
θ(|(A∗)−mu|)f̂(u)e2πıx·u du.

Let θ0(x) := θ(|x|) for any x ∈ Rn and assume that

(7.4) θ̂0 ∈ L1(Rn).

It was proved in [44] that, for any m ∈ Z, f ∈ L1(Rn) and x ∈ Rn, we can rewrite σθmf as

σθmf(x) = bm
∫
Rn
f(t)θ̂0(Am(x− t)) dt.

Moreover, we can extend the definition of the anisotropic θ-means to any f ∈ Lp(·)(Rn)

with p− ∈ [1,∞) by setting, for any x ∈ Rn,

σθmf(x) := bm
∫
Rn
f(x− t)θ̂0(Amt) dt.

Then we define the maximal θ-operator σθ∗ by setting, for any f ∈ Lp(·)(Rn) with p− ∈
[1,∞),

σθ∗f := sup
m∈Z

∣∣∣σθmf ∣∣∣ .
As an application of Theorem 7.1, we obtain the following boundedness of the maximal

θ-operator from H
p(·)
A (Rn) to Lp(·)(Rn).

Theorem 7.4. Let θ and θ0 be, respectively, as in (7.2) and (7.4) satisfying that there

exists a positive constant β ∈ (1,∞) such that, for any α ∈ Zn+ and x ∈ Rn \ {~0n},

|∂αθ̂0(x)| ≤ C(α,β)|x|−β,

where C(α,β) is a positive constant independent of x. If p(·) ∈ C log(Rn),

(7.5) β ∈
(

ln b

lnλ−
,∞
)

and p− ∈
(

ln b

β lnλ−
,∞
)
,



1206 Jun Liu, Ferenc Weisz, Dachun Yang and Wen Yuan

then there exists a positive constant C(p−,p+), with p− and p+ as in (2.4), such that, for

any f ∈ Hp(·)
A (Rn), ∥∥∥σθ∗f∥∥∥

Lp(·)(Rn)
≤ C(p−,p+)‖f‖Hp(·)

A (Rn)
.

Proof. By Theorem 7.1(i), to show Theorem 7.4, it suffices to prove that, for any f ∈
H
p(·),q,s
A,fin (Rn),

(7.6)
∥∥∥σθ∗f∥∥∥

Lp(·)(Rn)
. ‖f‖

H
p(·),q,s
A,fin (Rn)

with s being as in (4.1) large enough and q ∈ (max{p+, 1},∞) to be chosen later, where

p+ is as in (2.4).

To this end, assume now f ∈ Hp(·),q,s
A,fin (Rn). Then it follows, from Definition 5.1, that

there exist I ∈ N, {λi}i∈[1,I]∩N ⊂ C and a finite sequence of (p(·), q, s)-atoms, {ai}i∈[1,I]∩N,

supported, respectively, on {B(i)}i∈[1,I]∩N ⊂ B such that f =
∑I

i=1 λiai in S ′(Rn) and

(7.7) ‖f‖
H
p(·),q,s
A,fin (Rn)

∼

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

,

where p is as in (2.4). It is easy to see that∥∥∥σθ∗f∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥
I∑
i=1

|λi|σθ∗(ai)χAτB(i)

∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥
I∑
i=1

|λi|σθ∗(ai)χ(AτB(i)){

∥∥∥∥∥
Lp(·)(Rn)

=: I1 + I2.

(7.8)

We first deal with I1. For this purpose, choose g ∈ L(p(·)/p)′(Rn) with ‖g‖
L(p(·)/p)′ (Rn)

≤
1 such that∥∥∥∥∥

I∑
i=1

|λi|p
[
σθ∗(ai)

]p
χAτB(i)

∥∥∥∥∥
Lp(·)/p(Rn)

=

∫
Rn

I∑
i=1

|λi|p
[
σθ∗(ai)(x)

]p
χAτB(i)(x)g(x) dx.

Then, by the Hölder inequality, we know that, for any u ∈ (1,∞) satisfying that p+ <

up < q, it holds true that

(I1)p .

∥∥∥∥∥
I∑
i=1

|λi|p
[
σθ∗(ai)

]p
χAτB(i)

∥∥∥∥∥
Lp(·)/p(Rn)

∼
∫
Rn

I∑
i=1

|λi|p
[
σθ∗(ai)(x)

]p
χAτB(i)(x)g(x) dx
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.
I∑
i=1

|λi|p
∥∥∥[σθ∗(ai)]p χAτB(i)

∥∥∥
Lu(Rn)

‖χAτB(i)g‖Lu′ (Rn)

.
I∑
i=1

|λi|p
∥∥∥σθ∗(ai)∥∥∥p

Lq(Rn)
‖χAτB(i)‖1/u

Lq/(q−up)(Rn)
‖χAτB(i)g‖Lu′ (Rn) .

From this, the boundedness of σθ∗ on Lr(Rn) with r ∈ (1,∞), Definition 4.1 and the Hölder

inequality again, we further deduce that

(I1)p .
I∑
i=1

|λi|p ‖χB(i)‖
−p
Lp(·)(Rn)

∣∣∣AτB(i)
∣∣∣p/q ∣∣∣AτB(i)

∣∣∣(q−up)/(qu)
‖χAτB(i)g‖Lu′ (Rn)

∼
I∑
i=1

|λi|p ‖χB(i)‖
−p
Lp(·)(Rn)

∣∣∣AτB(i)
∣∣∣1/u ‖χAτB(i)g‖Lu′ (Rn)

∼
I∑
i=1

|λi|p ‖χB(i)‖
−p
Lp(·)(Rn)

∣∣∣AτB(i)
∣∣∣ [ 1

|AτB(i)|

∫
AτB(i)

[g(x)]u
′
dx

]1/u′

.
I∑
i=1

|λi|p ‖χB(i)‖
−p
Lp(·)(Rn)

∫
Rn
χAτB(i)(x)

[
MHL(gu

′
)(x)

]1/u′

dx

.

∥∥∥∥∥
I∑
i=1

|λi|p ‖χB(i)‖
−p
Lp(·)(Rn)

χAτB(i)

∥∥∥∥∥
Lp(·)/p(Rn)

∥∥∥∥[MHL(gu
′
)
]1/u′

∥∥∥∥
L(p(·)/p)′ (Rn)

.

On the other hand, it follows, from p+/p ∈ (0, u), that (p(·)/p)′ ∈ (u′,∞]. By this,

Lemmas 3.3(ii) and 3.4, the fact that ‖g‖
L(p(·)/p)′ (Rn)

≤ 1, [46, Remark 4.4(i)] and (7.7),

we conclude that

I1 .

∥∥∥∥∥
I∑
i=1

|λi|p‖χAτB(i)‖
−p
Lp(·)(Rn)

χB(i)

∥∥∥∥∥
1/p

Lp(·)/p(Rn)

‖g‖1/p
L(p(·)/p)′ (Rn)

.

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|χAτB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼ ‖f‖
H
p(·),q,s
A,fin (Rn)

.

(7.9)

For I2, by an argument similar to that used in the proof of [44, (5.10)], we easily find

that, for any i ∈ [1, I] ∩ N and x ∈ (AτB(i)){,

(7.10) σθ∗(ai)(x) . ‖χB(i)‖−1
Lp(·)(Rn)

[MHL(χB(i))(x)]β lnλ−/ ln b
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with β as in (4.4). Then, from (7.5), (7.10), Lemmas 3.4 and 4.4, it follows that

I2 .

∥∥∥∥∥
I∑
i=1

|λi| ‖χB(i)‖−1
Lp(·)(Rn) [MHL(χB(i))]

β lnλ−/ ln b
χ(AτB(i)){

∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥
I∑
i=1

[
|λi|ln b/(β lnλ−) ‖χB(i)‖− ln b/(β lnλ−)

Lp(·)(Rn)
MHL(χB(i))

]β lnλ−/ ln b
∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|ln b/(β lnλ−) ‖χB(i)‖− ln b/(β lnλ−)

Lp(·)(Rn)
MHL(χB(i))

]β lnλ−/ ln b
} ln b
β lnλ−

∥∥∥∥∥∥
β

lnλ−
ln b

Lp(·)β
lnλ−
ln b (Rn)

.

∥∥∥∥∥∥
[

I∑
i=1

|λi| ‖χB(i)‖−1
Lp(·)(Rn) χB(i)

]ln b/(β lnλ−)
∥∥∥∥∥∥
β lnλ−/ ln b

Lp(·)β lnλ−/ ln b(Rn)

.

∥∥∥∥∥∥
{

I∑
i=1

[
|λi|χB(i)

‖χB(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥
Lp(·)(Rn)

∼ ‖f‖
H
p(·),q,s
A,fin (Rn)

,

which, combined with (7.8) and (7.9), further implies that (7.6) holds true. This finishes

the proof of Theorem 7.4.

Remark 7.5. If A := d In×n for some d ∈ R with |d| ∈ (1,∞), then ln b/ lnλ− = n and

Theorem 7.4 goes back to the classical result with β ∈ (n,∞) and p ∈ (n/β,∞) (see

Weisz [72]). The classical result was proved in a special case, namely, for the Bochner-

Riesz means, in Stein et al. [62] and Lu [49]. For the same case, a counterexample was

also given in [62] to show that the same conclusion is not true for p ∈ (0, n/β].

The following Corollaries 7.6 and 7.7 can be deduced from Theorem 7.4 and an argu-

ment same as that used in the proofs of [44, Corollaries 2.19 and 2.20], respectively, the

details being omitted.

Corollary 7.6. With the same assumptions as in Theorem 7.4, if f ∈ Hp(·)
A (Rn), then

σθmf converges almost everywhere as well as in the Lp(·)(Rn)-norm as m→∞.

Corollary 7.7. With the same assumptions as in Theorem 7.4, if f ∈ H
p(·)
A (Rn) and

there exists a subset I ⊂ Rn such that the restriction f |I ∈ Lr(·)(I) with r− ∈ [1,∞), then

lim
m→∞

σθmf(x) = f(x) for almost every x ∈ I as well as in the Lp(·)(I) quasi-norm.

Notice that, if p− ∈ (1,∞), then H
p(·)
A (Rn) = Lp(·)(Rn) with equivalent quasi-norms

(see [83, Corollary 4.20]). Thus, Corollary 7.7 further implies the following result, the

details being omitted.
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Corollary 7.8. Besides the same assumptions as in Theorem 7.4, suppose that p− ∈
(1,∞) and f ∈ Lp(·)(Rn). Then

lim
m→∞

σθmf(x) = f(x) for almost every x ∈ Rn as well as in the Lp(·)(Rn) quasi-norm.

Remark 7.9. Corollary 7.8 for the Bochner-Riesz means in the classical case (namely, when

p(·) = a constant ∈ (0,∞) and A := d In×n for some d ∈ R with |d| ∈ (1,∞)) can be found

in Stein et al. [62] as well as Lu [49] and Weisz [72].

As special cases, we next consider two summability methods. For any α ∈ (0,∞) and

γ ∈ N, the Bochner-Riesz summation is defined by setting, for any t ∈ Rn,

(7.11) θ0(t) :=

(1− |t|γ)α when |t| ∈ (1,∞),

0 when |t| ∈ [0, 1].

The following conclusion follows from [44, Lemma 2.24] and Theorem 7.4, the details

being omitted.

Theorem 7.10. Let θ0 be as in (7.11) and p(·) ∈ C log(Rn). If

α ∈
(

max

{
n− 1

2
,

ln b

lnλ−
− n+ 1

2

}
,∞
)

and p− ∈
(

ln b

lnλ−(n/2 + α+ 1/2)
,∞
)
,

then there exists a positive constant C(p−,p+), with p− and p+ as in (2.4), such that, for

any f ∈ Hp(·)
A (Rn), ∥∥∥σθ∗f∥∥∥

Lp(·)(Rn)
≤ C(p−,p+)‖f‖Hp(·)

A (Rn)
.

The Weierstrass summation is defined by setting, for any t ∈ Rn,

(7.12) θ0(t) := e−|t|
2/2.

It is known that θ̂0(x) = e−|x|
2/2 for any x ∈ Rn. Then the following result follows

from [44, Lemma 2.27] and Theorem 7.4, the details being omitted.

Theorem 7.11. Let θ0 be as in (7.12). If p(·) ∈ C log(Rn) and p− ∈ (0,∞), then there

exists a positive constant C(p−,p+), with p− and p+ as in (2.4), such that, for any f ∈
H
p(·)
A (Rn), ∥∥∥σθ∗f∥∥∥

Lp(·)(Rn)
≤ C(p−,p+)‖f‖Hp(·)

A (Rn)
.

Remark 7.12. Let θ0 be as in (7.11) or (7.12). Then the corresponding conclusions in

Corollaries 7.6 through 7.8 hold true as well, the details being omitted.
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