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Invasion Entire Solutions for a Three Species Competition-diffusion System

Guang-Sheng Chen and Shi-Liang Wu*

Abstract. The purpose of this paper is to study a three species competition model

with diffusion. It is well known that there exists a family of traveling wave solutions

connecting two equilibria (0, 1, 1) and (1, 0, 0). In this paper, we first establish the

exact asymptotic behavior of the traveling wave profiles at ±∞. Then, by constructing

a pair of explicit upper and lower solutions via the combination of traveling wave

solutions, we derive the existence of some new entire solutions which behave as two

traveling fronts moving towards each other from both sides of x-axis. Such entire

solution provides another invasion way of the stronger species to the weak ones.

1. Introduction

This paper is concerned with the following three species Lotka-Volterra competition reaction-

diffusion system (c.f. [3]):

∂v1(x, t)

∂t
= d1

∂2v1(x, t)

∂x2
+ r1v1(x, t)[1− v1(x, t)− a11v2(x, t)− a12v3(x, t)],

∂v2(x, t)

∂t
= d2

∂2v2(x, t)

∂x2
+ r2v2(x, t)[1− v2(x, t)− a21v1(x, t)],

∂v3(x, t)

∂t
= d3

∂2v3(x, t)

∂x2
+ r3v3(x, t)[1− v3(x, t)− a31v1(x, t)],

(1.1)

where x, t ∈ R, v1(x, t), v2(x, t) and v3(x, t) denote the population densities of the three

different species, a11 > 0, a12 > 0, a21 > 0 and a31 > 0 are interaction coefficients

respectively, ri > 0 (i = 1, 2, 3) stands for the relative intrinsic growth rate of the species

i. From the view of the intra-specific competitions, the system (1.1) formulates the relation

that the species v1 competes with v2 and v3 respectively, while there is no competition

between species v2 and v3.

It is obvious that (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 1, 1) are equilibria of (1.1).

Moreover, it is easy to check that the equilibrium (1, 0, 0) is stable and (0, 1, 1) is unstable

under the following assumption
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(H) a21, a31 > 1, a11 + a12 < 1.

This assumption implies that the species v1 is stronger than v2 and v3, and hence the

species v1 shall invade v2 and v3 and eventually v2 and v3 will be extinct. Therefore, an

interesting problem is to know how the stronger species invades the weaker ones. It is

no doubt that the traveling wave solutions connecting (0, 1, 1) and (1, 0, 0) can provide

an invasion way of v1 to v2 and v3. Under the assumption (H), Guo et al. [3] given

some conditions on the parameters of the competition system such that the minimal

wave speed cmin of traveling wave fronts connecting (0, 1, 1) and (1, 0, 0) equals to c∗ :=

2
√
d1r1(1− a11 − a12) > 0. This result is called the linear determinacy (c.f. [3, 9]).

It is natural to ask, in addition to the traveling wave solutions, whether there exists

another way of v1 invades v2 and v3. In this paper, we give an affirmative answer. More

precisely, we shall construct some new entire solution of (1.1) which behave as two traveling

fronts moving towards each other from both sides of x-axis (see Theorem 3.1). Such entire

solution provides another invasion way of the stronger species to the weak ones.

We end the introduction with the following remarks. First, since the work of Hamel and

Nadirashvili [5], there are many results devoted to the entire solutions to scalar evolution

equations, see e.g. [2, 6, 10, 12, 14, 16]. Morita-Tachibana [8] first extended the results of

scalar equations to a two-component competition-diffusion system. Wang and Lv [17]

and Wu and Wang [20] considered the entire solutions for a L-V competition system

with spatial-temporal delay and general reaction-diffusion system, respectively. For other

related results on entire solutions of two component systems, we refer to [4, 11,18,19].

Secondly, we remark that for a system enjoying the comparison principle, one can

obtain the desired solution by constructing appropriate upper and lower solutions (c.f. [2,

4–6, 12, 13, 15, 17, 19, 21]). Since (1.1) can be transformed to an equivalent cooperative

system, we shall prove the existence of entire solution by constructing a pair of explicit

upper and lower solutions. The construction of the sub- and super-solution is based on the

exact asymptotic behavior of traveling wave fronts. However, the Ikehara’s theorem which

is always used in scalar equations can not be applied to obtain the asymptotic behavior

of traveling wave fronts. In this paper, we shall establish the exact asymptotic behavior

of the traveling wave fronts by applying the asymptotic theory (c.f. [12, 17]).

Thirdly, it should be mentioned that our results can be applied to the following Lotka-

Volterra competition-cooperation model (c.f. [7])

ut = d1uxx + u(1− u− a1w),

vt = d2vxx + rv(1− a2u− v),

wt = d3wxx + b(v − w),

(1.2)

where u(x, t), v(x, t) and w(x, t) represent the population densities of three different
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species, respectively, a1 > 0 and a2 > 0 are interaction coefficients, r > 0 (b > 0) stands

for the relative intrinsic growth rate of the species v and (w, respectively). Hou and Li [7]

obtained the existence, asymptotic and uniqueness of traveling wave solutions of the model

(1.2). However, there has been no results on the entire solutions of system (1.2).

The rest of this paper is planned as follows. In Section 2, we establish the asymptotic

behavior of the traveling wave fronts at ±∞. In Section 3, by constructing a pair of

appropriate super- and sub-solutions, we prove the existence of entire solutions.

2. Asymptotic behavior of traveling wave front

In this section, we establish the asymptotic behavior of the traveling wave profiles at ±∞.

By letting u1 = v1, u2 = 1−v2 and u3 = 1−v3, (1.1) becomes the following equivalent

system:

∂u1(x, t)

∂t
= d1

∂2u1(x, t)

∂x2
+ r1u1[1− a11 − a12 − u1 + a11u2 + a12u3],

∂u2(x, t)

∂t
= d2

∂2u1(x, t)

∂x2
+ r2(1− u2)[a21u1 − u2],

∂u3(x, t)

∂t
= d3

∂2u1(x, t)

∂x2
+ r3(1− u3)[a31u1 − u3].

(2.1)

It is clear that the equalibria (0, 1, 1) and (1, 0, 0) become (0, 0, 0) and (1, 1, 1), respectively,

and (2.1) is cooperative on [0,K], where K = (1, 1, 1).

Throughout this paper, a solution (u1(x, t), u2(x, t), u3(x, t)) of (2.1) is called a trav-

eling wave solution connecting (0, 0, 0) and (1, 1, 1) with speed c and profile (ϕ1, ϕ2, ϕ3) if

(u1(x, t), u2(x, t), u3(x, t)) = (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ)), ξ = x+ ct, such that

cϕ′1(ξ) = d1ϕ
′′
1(ξ) + r1ϕ1(ξ)[1− a11 − a12 − ϕ1(ξ) + a11ϕ2(ξ) + a12ϕ3(ξ)],

cϕ′2(ξ) = d2ϕ
′′
2(ξ) + r2(1− ϕ2(ξ))[a21ϕ1(ξ)− ϕ2(ξ)],

cϕ′3(ξ) = d3ϕ
′′
3(ξ) + r3(1− ϕ3(ξ))[a31ϕ1(ξ)− ϕ3(ξ)],

ϕ′1 > 0, ϕ′2 > 0, ϕ′3 > 0

(2.2)

with

(2.3) lim
ξ→−∞

(ϕ1(ξ), ϕ2(ξ), ϕ3(ξ)) = (0, 0, 0), lim
ξ→+∞

(ϕ1(ξ), ϕ2(ξ), ϕ3(ξ)) = (1, 1, 1).

In the sequel, we always assume that Ψ = (ϕ1, ϕ2, ϕ3) is a solution of problem (2.2)–

(2.3) with positive speed c ≥ c∗ = 2
√
d1r1(1− a11 − a12). By differentiating the differ-

ential equations (2.2) with respect to ξ, and denote (ϕ′1, ϕ
′
2, ϕ
′
3) by (ψ1, ψ2, ψ3). Then we
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obtain the following system:

cψ′1 = d1ψ
′′
1 + r1{ψ1[1− a11 − a12 − ϕ1 + a11ϕ2 + a12ϕ3] + ϕ1[−ψ1 + a11ψ2 + a12ψ3]},

cψ′2 = d2ψ
′′
2 + r2{−ψ2[a21ϕ1 − ϕ2] + (1− ϕ2)[a21ψ1 − ψ2]},

cψ′3 = d3ψ
′′
3 + r3{−ψ3[a31ϕ1 − ϕ3] + (1− ϕ3)[a31ψ1 − ψ3]}.

(2.4)

To obtain the asymptotic behavior of traveling waves, we consider the following two

cases:

(I) ξ →∞: The limiting system of (2.4) as ξ →∞ has the following form:

cψ′1+ = d1ψ
′′
1+ − r1ψ1+ + r1a11ψ2+ + r1a12ψ3+,

cψ′2+ = d2ψ
′′
2+ − r2ψ2+(a21 − 1),

cψ′3+ = d3ψ
′′
3+ − r3ψ3+(a31 − 1).

(2.5)

Let ψ′1+ = ψ12+, ψ′2+ = ψ22+ and ψ′3+ = ψ32+. Then system (2.5) can be transformed

into the following form

(2.6) X ′ = P1X, X = (ψ1+, ψ12+, ψ2+, ψ22+, ψ3+, ψ32+)T,

where

P1 =



0 1 0 0 0 0

r1/d1 c/d1 −r1a11/d1 0 −r1a12/d1 0

0 0 0 1 0 0

0 0 r2(a21 − 1)/d2 c/d2 0 0

0 0 0 0 0 1

0 0 0 0 r3(a31 − 1)/d3 c/d3


.

By a direct calculation, the eigenvalues of the matrix P1 are Λ1 := Λ1(c), . . . ,Λ6 :=

Λ6(c) and the corresponding eigenvectors are h+
1 := h+

1 (c), . . . , h+
6 := h+

6 (c), where

Λ1 =
c−
√
c2 + 4r1d1

2
, Λ2 =

c+
√
c2 + 4r1d1

2
,

Λ3 =
c−

√
c2 − 4r2d2(1− a21)

2
, Λ4 =

c+
√
c2 − 4r2d2(1− a21)

2
,

Λ5 =
c−

√
c2 − 4r3d3(1− a31)

2
, Λ6 =

c+
√
c2 − 4r3d3(1− a31)

2
,
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and

h+
i =



1

Λi

0

0

0

0


, h+

j =



aj

Λjaj

1

Λj

0

0


, h+

k =



ak

Λkak

0

0

1

Λk


,

aj = − r1a11

d2Λ2
j − cΛj − r1

, ak = − r1a12

d3Λ2
k − cΛk − r1

, i = 1, 2, j = 3, 4, k = 5, 6.

For the sake of convenience, throughout this paper, it is always assumed that r1d1,

r2d2(a21 − 1), and r3d3(a31 − 1) differ from each other. Then the general solution of

system (2.6) has the following expression:

(2.7) (ψ1+, ψ12+, ψ2+, ψ22+, ψ3+, ψ32+)T =

6∑
p=1

Bph
+
p e

Λpξ,

where Bp denotes arbitrary constant. Since X → 0 as ξ →∞, one has B2 = B4 = B6 = 0.

Hence, any solution of (2.7) which can converge to zeros as ξ →∞ is represented as

X(ξ) = B1h
+
1 e

Λ1ξ +B3h
+
3 e

Λ3ξ +B5h
+
5 e

Λ5ξ.

It then follows from the stable manifold theorem that

1− ϕ1(ξ) = αeΛ1ξ + βa3e
Λ3ξ + γa5e

Λ5ξ + h.o.t.,

1− ϕ2(ξ) = βeΛ3ξ + h.o.t.,

1− ϕ3(ξ) = γeΛ5ξ + h.o.t.,

where α ≥ 0 and β, γ > 0.

(II) ξ → −∞: In this case, the limiting system of (2.4) is

d1ψ
′′
1− − cψ′1− + r1ψ1−(1− a11 − a12) = 0,

d2ψ
′′
2− − cψ′2− + r2a21ψ1− − r2ψ2− = 0,

d3ψ
′′
3− − cψ′3− + r3a31ψ1− − r3ψ3− = 0.

(2.8)

By taking ψ′1− = ψ12−, ψ′2− = ψ22− and ψ′3− = ψ32−, system (2.8) can be expressed as

the following first-order ordinary differential system:

(2.9) X ′ = P2X, X = (ψ1−, ψ12−, ψ2−, ψ22−, ψ3−, ψ32−)T,



864 Guang-Sheng Chen and Shi-Liang Wu

where

P2 =



0 1 0 0 0 0

−r1(1− a11 − a12)/d1 c/d1 0 0 0 0

0 0 0 1 0 0

−r2a21/d2 0 r2/d2 c/d2 0 0

0 0 0 0 0 1

−r3a31/d3 0 0 0 r3/d3 c/d3


.

Direct computation shows that the eigenvalues of the matrix P2 are λ1 := λ1(c), . . . , λ6 :=

λ6(c) and the corresponding eigenvectors are h−1 := h−1 (c), . . . , h−6 := h−6 (c), respectively,

where

λ1 =
c−

√
c2 − 4r1d1(1− a11 − a12)

2
, λ2 =

c+
√
c2 − 4r1d1(1− a11 − a12)

2
,

λ3 =
c+
√
c2 + 4r2d2

2
, λ4 =

c−
√
c2 + 4r2d2

2
,

λ5 =
c+
√
c2 + 4r3d3

2
, λ6 =

c−
√
c2 + 4r3d3

2
,

and

h−i =



1

λi

s1i

λis1i

s2i

λis2i


, h−j =



0

0

1

λj

0

0


, h−k =



0

0

0

0

1

λk


,

s1i = − r2a21

d2λ2
i − cλi − r2

, s2i = − r3a31

d3λ2
i − cλi − r3

, i = 1, 2, j = 3, 4, k = 5, 6.

Throughout this paper, for convenience to discuss, it is always assumed that r1d1(1 −
a11 − a12), r2d2, and r2d3 differ from each other. If c = c∗ = 2

√
r1d1(1− a11 − a12), then

λ1 = λ2 and the matrix P1 possesses a generalized eigenvector as follows

h∗ = (1, 0, k1((3λ1d2−2c)λ1−r2), k1λ
2
1(2λ1d2−c), k2((3λ1d3−2c)λ1−r2), k2λ

2
1(2λ1d3−c))T,

where

k1 =
r2a21d2

r2(2λ1d2 − c)2 − [(λ1d2 − c)2 + r2d2](d2λ2
1 + r2)

and

k2 =
r3a31d3

r3(2λ1d3 − c)2 − [(λ1d3 − c)2 + r3d3](d3λ2
1 + r3)

.
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It can be easily seen that λ1, λ2 > 0 and min{λ3, λ5} > λ2 ≥ λ1 under the assumption (H).

Based on the basic theory related with the first order ordinary differential system, we

can easily find the general solution of system (2.9) as follows

(2.10) (ψ1−, ψ12−, ψ2−, ψ22−, ψ3−, ψ32−)T =
6∑
l=1

Alh
−
l e

λlξ,

where Al denotes arbitrary constant. Since X → 0 as ξ → −∞, we arrive at the conclusion

that A4 = A6 = 0.

Thus, if λ1 6= λ2, then every solution of (2.10) which converges to (0, . . . , 0) as ξ → −∞
can be denoted by

X(ξ) = A1h
−
1 e

λ1ξ +A2h
−
2 e

λ2ξ +A3h
−
3 e

λ3ξ +A5h
−
5 e

λ5ξ.

According to the unstable manifold theorem, we can obtain the asymptotic behaviors of

ϕ1(ξ), ϕ2(ξ) and ϕ3(ξ) as follows

ϕ1(ξ) = αeλ1ξ + βeλ2ξ + h.o.t.,

ϕ2(ξ) = αs11e
λ1ξ + βs12e

λ2ξ + γeλ3ξ + h.o.t.,

ϕ3(ξ) = αs21e
λ1ξ + βs22e

λ2ξ + ηeλ5ξ + h.o.t.,

(2.11)

where h.o.t. denotes the higher order term and α, β, γ, η ≥ 0. Based on the same analysis

as in [13], we obtain (α, β) 6= (0, 0).

If λ1 = λ2, then every solution of (2.10) which converges to (0, . . . , 0) as ξ → −∞ can

be expressed by

X(ξ) = (C1h
−
1 + C2h

∗ξ)eλ1ξ + C3h
−
3 e

λ3ξ + C5h
−
5 e

λ5ξ.

Thanks to the unstable manifold theorem, the following asymptotic behaviors can be

obtained:

ϕ1(ξ) = αeλ1ξ + βξeλ1ξ + h.o.t.,

ϕ2(ξ) = αs11e
λ1ξ + k1[(3λ1d2 − 2c)λ1 − r2)]βξeλ1ξ + γeλ3ξ + h.o.t.,

ϕ3(ξ) = αs21e
λ1ξ + k2[(3λ1d3 − 2c)λ1 − r3)]βξeλ1ξ + ηeλ5ξ + h.o.t.,

(2.12)

where (α, β) 6= (0, 0) and γ, η ≥ 0.

From (2.7), (2.11) and (2.12), we have the following result. It is obvious that λ1(c) ≤
λ2(c), λ′1(c) < 0, λ′j(c) > 0 and Λ′k(c) > 0, j = 2, 3, 5, k = 1, 3, 5.

Theorem 2.1. Assume that the condition (H) holds. Let (ϕ1, ϕ2, ϕ3) be a traveling wave

front of (2.2) with speed c ≥ c∗. Then the following asymptotic properties hold:
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(i) As ξ → −∞, 
ϕ1(ξ)

ϕ2(ξ)

ϕ3(ξ)

 =


(C1 + o(1))eλ1ξ

(C2 + o(1))eλ1ξ

(C3 + o(1))eλ1ξ

 for c > c∗,

and
ϕ1(ξ)

ϕ2(ξ)

ϕ3(ξ)

 =


(C4 + C ′4ξ + o(1))eλ1ξ

(C4s1 + k1[(3λ1d2 − 2c)λ1 − r2)]C ′4ξ + o(1))eλ1ξ

(C4s2 + k2[(3λ1d3 − 2c)λ1 − r3)]C ′4ξ + o(1))eλ1ξ

 for c = c∗;

(ii) As ξ → +∞, 
ϕ1(ξ)

ϕ2(ξ)

ϕ3(ξ)

 =


1− (C5 + o(1))eΛξ

1− (C6 + o(1))eΛ3ξ

1− (C7 + o(1))eΛ5ξ

 for c ≥ c∗,

where Ci > 0, i = 1, . . . , 7, C ′4 ≥ 0, Λ = Λ(c) = max{Λ1(c),Λ3(c),Λ5(c)}.

According to Theorem 2.1, we have the following three lemmas.

Lemma 2.2. There are positive constants mi(c), li(c), Mi(c) and Li(c) (i = 1, 2), such

that

(i) If c > c∗, then the following results hold

(2.13) m1(c)eλ1ξ ≤ ϕ1(ξ), ϕ2(ξ), ϕ3(ξ) ≤M1(c)eλ1ξ for ξ ≤ 0.

(ii) If c = c∗, assume that 0 < ε < λ1 := λ∗, then there exists a positive constant Kε

satisfying the following

(2.14) max
ξ≤0
{ϕ1(ξ), ϕ2(ξ), ϕ3(ξ)} ≤ Kεe

(λ∗−ε)ξ for ξ ≤ 0.

(iii) If c ≥ c∗, then the following assertions are valid

m2(c)eΛξ ≤ 1− ϕ1(ξ) ≤M2(c)eΛξ for ξ ≥ 0,

l1(c)eΛ3ξ ≤ 1− ϕ2(ξ) ≤ L1(c)eΛ3ξ for ξ ≥ 0,

l2(c)eΛ5ξ ≤ 1− ϕ3(ξ) ≤ L2(c)eΛ5ξ for ξ ≥ 0,

where Λ is given as in Theorem 2.1.
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Lemma 2.3. There exist positive constants ηi(c) (i = 1, 2) such that

η1(c) ≤ ϕ′1(ξ)

ϕ1(ξ)
,
ϕ′2(ξ)

ϕ2(ξ)
,
ϕ′3(ξ)

ϕ3(ξ)
≤ η2(c) for ξ ≤ 0,(2.15)

η1(c) ≤ ϕ′1(ξ)

1− ϕ1(ξ)
,

ϕ′2(ξ)

1− ϕ2(ξ)
,

ϕ′3(ξ)

1− ϕ3(ξ)
≤ η2(c) for ξ ≥ 0.(2.16)

Lemma 2.4. There exist two constants η0 > 0 and µ0 > 0 such that

ϕ2(ξ) ≤ η0ϕ1(ξ) for ξ ≤ 0,(2.17)

ϕ3(ξ) ≤ µ0ϕ1(ξ) for ξ ≤ 0,(2.18)

1− ϕ2(ξ) ≤ η0(1− ϕ1(ξ)) for ξ ≥ 0,(2.19)

1− ϕ3(ξ) ≤ µ0(1− ϕ1(ξ)) for ξ ≥ 0.(2.20)

3. Existence of entire solutions

This section is devoted to the existence of the entire solutions of (1.1). As mentioned

in Section 2, (1.1) is equivalent to the cooperative system (2.1). Therefore, we state the

result on the system (2.1). More precisely, we have the following result.

Theorem 3.1. Assume that (H) holds. Let Ψi = (ϕ1i, ϕ2i, ϕ3i) be the solution of (2.1)

connecting (0, 0, 0) and (1, 1, 1) with speed ci ≥ c∗, i = 1, 2. Then for any given constants

θ1 and θ2, (2.1) has an entire solution u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) defined on R2

such that the following assertions are true

(i) (0, 0, 0) < u(x, t) < (1, 1, 1) and for any t0 ∈ R,

lim
|x|→+∞

sup
t∈(t0,+∞)

‖u(x, t)− 1‖ = 0.

(ii)

lim
t→−∞

{
sup
x≥0
‖u(x, t)−Ψ1(x+ c1t+ θ1)‖+ sup

x≤0
‖u(x, t)−Ψ2(−x+ c2t+ θ2)‖

}
= 0.

(iii) limt→+∞ supx∈R ‖u(x, t)− 1‖ = 0, and for any a, b ∈ R with a < b,

lim
t→−∞

sup
x∈[a,b]

‖u(x, t)‖ = 0.

The following coupled system of ordinary differential equations plays a crucial role in

constructing super-solutions of (2.1) (c.f. [2, 12]):

p′1(t) = c1 +Neαp1 , t < 0,

p′2(t) = c2 +Neαp1 , t < 0,

p1(0) ≤ 0, p2(0) ≤ 0,

(3.1)
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where c1, c2, N and α are positive constants, c2 ≥ c1 ≥ c∗ and the initial data satisfy

p2(0) ≤ p1(0). A direct computation shows a solution to (3.1) as

p1(t) = p1(0) + c1t−
1

α
ln

(
1 +

N

c1
eαp1(0)(1− ec1αt)

)
,

p2(t) = p2(0) + c2t−
1

α
ln

(
1 +

N

c1
eαp1(0)(1− ec1αt)

)
.

It is easy to see that the solution pi(t) has monotone increasing property, i = 1, 2. Let

ω1 = p1(0)− 1

α
ln

(
1 +

N

c1
eαp1(0)

)
, ω2 = p2(0)− 1

α
ln

(
1 +

N

c1
eαp1(0)

)
.

Using the fact that

pi(t)− cit− ωi = − 1

α
ln

(
1− ζ

1 + ζ
ec1αt

)
, ζ =

N

c1
eαp1(0),

we can derive that there exists a constant R0 > 0 such that the following relation is true

p1(t)− c1t− ω1 = p2(t)− c2t− ω2 ≤ R0e
c1αt for t ≤ 0.

Since p′2(t)− p′1(t) = c2 − c1 ≥ 0 for all t, and p2(0) ≤ p1(0), it can be concluded that

p2(t) ≤ p1(t), t ≤ 0.

We now introduce the definition for a sub-super-solution to (2.1).

Definition 3.2. A function u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), (x, t) ∈ R × (−∞, T ],

T ∈ R, is called a supper-solution of (2.1) in (−∞, T ], if

Fi(u(x, t)) ≥ 0 for (x, t) ∈ R× (−∞, T ], i = 1, 2, 3,

where

F1(u) = u1t − d1u1xx − r1u1(1− a11 − a12 − u1 + a11u2 + a12u3),

F2(u) = u2t − d2u2xx − r2(1− u2)(a21u1 − u2),

F3(u) = u3t − d3u3xx − r3(1− u3)(a31u1 − u3).

Similarly, the sub-solution of (2.1) is defined by reversing the above inequalities.

Let ω1 and ω2 be any positive constants and Ψi(ξ) = (ϕ1i(ξ), ϕ2i(ξ), ϕ3i(ξ)) be a

traveling wave solution of (2.2) connecting (0, 0, 0) and (1, 1, 1) with speed ci ≥ c∗, i = 1, 2.

It is easy to see that the following result holds.

Lemma 3.3. The function

u(x, t) := max{Ψ1(x+ c1t+ ω1),Ψ2(−x+ c2t+ ω2)}

is a sub-solution of (2.1) in (−∞, 0].
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Next, we construct a super-solution to (2.1).

Lemma 3.4. Assume (H) holds. Take the positive constants α and N in (3.1) such that

(i) if c1 = c2 = c∗: α = λ∗ − ε

N > max
i=1,2

Kε

{
r1a11(η0 + 1)

η1(c∗)
+
r1a12(µ0 + 1)

η1(c∗)
,

2η2(c∗)

1− ϕ2i(0)
+

r2
η1(c∗)

,
2η2(c∗)

1− ϕ3i(0)
+

r3
η1(c∗)

}
for some ε ∈ (0, λ∗);

(ii) if c∗ = c1 < c2: α = λ1(c2)

N > max

{
r1Kε[a11(η0 + 1) + a12(µ0 + 1)]

η1(c2)
,
r1M1(c2)[a11(η0 + 1) + a12(µ0 + 1)]

η1(c∗)
,

r1Kε[a11(η0 + 1) + a12(µ0 + 1)]

η1(c∗)
,

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c2)
,

2η2(c2)M1(c2)

1− ϕ22(0)
+
r2M1(c2)

η1(c∗)
,

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c2)
,

2η2(c2)M1(c2)

1− ϕ32(0)
+
r3M1(c2)

η1(c∗)

}
for some ε ∈ (0, λ∗ − λ1(c2)), where Kε was defined in Lemma 2.2.

(iii) if c∗ < c1 < c2: α = λ1(c2)

N > max
i,j=1,2,i 6=j

{
r1M1(ci)[a11(η0 + 1) + a12(µ0 + 1)]

η1(cj)
,

2η2(ci)M1(ci)

1− ϕ2i(0)
+
r2M1(ci)

η1(cj)
,
2η2(ci)M1(ci)

1− ϕ3i(0)
+
r3M1(ci)

η1(cj)

}
.

Then function u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) with

u1(x, t) = min{1, ϕ11(x+ p1(t)) + ϕ12(−x+ p2(t))},

u2(x, t) = ϕ21(x+ p1(t)) + ϕ22(−x+ p2(t))− ϕ21(x+ p1(t))ϕ22(−x+ p2(t)),

u3(x, t) = ϕ31(x+ p1(t)) + ϕ32(−x+ p2(t))− ϕ31(x+ p1(t))ϕ32(−x+ p2(t))

is a super-solution of (2.1) in (−∞, 0].

Proof. The proof is divided into the following three steps.

Step 1. We prove F1(u(x, t)) ≥ 0, ∀ (x, t) ∈ R× (−∞, 0]. Define two sets as follows:

S+ = {(x, t) : ϕ11(x+ p1(t)) + ϕ12(−x+ p2(t)) ≥ 1},

S− = {(x, t) : ϕ11(x+ p1(t)) + ϕ12(−x+ p2(t)) < 1}.
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(I) If (x, t) ∈ S+, then u1 = 1 and it is obvious that

F1(u) = −r1u1(1− a11 − a12 − u1 + a11u2 + a12u3)

= −r1(−a11 − a12 + a11u2 + a12u3)

= r1(a11 − a11u2 + a12 − a12u3) ≥ 0.

(II) If (x, t) ∈ S−, then u1 = ϕ11(x + p1(t)) + ϕ12(−x + p2(t)). Consequently, by a

direct computation, we can obtain

F1(u) = [ϕ′11(x+ p1(t)) + ϕ′12(−x+ p2(t))]Neαp1(t) −H1(x, t),

where

H1(x, t) = r1a11ϕ11ϕ22 − r1a11ϕ11ϕ21ϕ22 + r1a12ϕ11ϕ32

− r1a12ϕ11ϕ31ϕ32 + r1a11ϕ12ϕ21 − r1a11ϕ12ϕ21ϕ22

+ r1a12ϕ12ϕ31 − r1a12ϕ12ϕ31ϕ32 − 2r1ϕ11ϕ12,

ϕ11 = ϕ11(x+ p1(t)), ϕ12 = ϕ12(−x+ p2(t)), ϕ21 = ϕ21(x+ p1(t)),

ϕ22 = ϕ22(−x+ p2(t)), ϕ31 = ϕ31(x+ p1(t)), ϕ32 = ϕ32(−x+ p2(t)).

Let

U1(x, t) =
H1(x, t)

ϕ′11(x+ p1(t)) + ϕ′12(−x+ p2(t))
.

In order to estimate the function U1(x, t), we divide R × (−∞, 0] into three subsets:

A = {p2(t) ≤ x ≤ −p1(t)}, B = {x ≥ −p1(t)}, C = {x ≤ p2(t)}.
Case 1. For (x, t) ∈ A, we first discuss the subcase p2(t) ≤ x ≤ 0. If c∗ = c1 = c2,

then it follows from (2.14), (2.15), (2.17) and (2.18) that

U1(x, t) =
H1(x, t)

ϕ′11(x+ p1(t)) + ϕ′12(−x+ p2(t))

≤ r1a11ϕ11ϕ22 + r1a12ϕ11ϕ32 + r1a11ϕ12ϕ21 + r1a12ϕ12ϕ31

ϕ′12(−x+ p2(t))

≤ r1a11ϕ11η0ϕ12 + r1a12ϕ11µ0ϕ12 + r1a11ϕ12ϕ21 + r1a12ϕ12ϕ31

ϕ′12(−x+ p2(t)

≤
(
r1a11η0

η1(c∗)
+
r1a12µ0

η1(c∗)
+
r1a11

η1(c∗)
+
r1a12

η1(c∗)

)
Kεe

(λ∗−ε)(x+p1(t))

≤
(
r1a11(η0 + 1)

η1(c∗)
+
r1a12(µ0 + 1)

η1(c∗)

)
Kεe

(λ∗−ε)p1(t).

If c∗ = c1 < c2, then since λ∗ > λ1(c2) > 0, there is a constant ε > 0 small enough
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such that λ∗−ε > λ1(c2). Accordingly, based on (2.14), (2.15), (2.17) and (2.18), we have

U1(x, t) ≤ r1a11ϕ11η0ϕ12 + r1a12ϕ11µ0ϕ12 + r1a11ϕ12ϕ21 + r1a12ϕ12ϕ31

ϕ′12(−x+ p2(t))

≤
(
r1a11η0

η1(c2)
+
r1a12µ0

η1(c2)
+
r1a11

η1(c2)
+
r1a12

η1(c2)

)
Kεe

(λ∗−ε)(x+p1(t))

≤
(
r1a11(η0 + 1)

η1(c2)
+
r1a12(µ0 + 1)

η1(c2)

)
Kεe

λ1(c2)p1(t).

If c∗ < c1 ≤ c2, by using (2.13), (2.15), (2.17) and (2.18), we obtain

U1(x, t) ≤ r1a11ϕ11η0ϕ12 + r1a12ϕ11µ0ϕ12 + r1a11ϕ12ϕ21 + r1a12ϕ12ϕ31

ϕ′12(−x+ p2(t))

≤
(
r1a11η0

η1(c2)
+
r1a12µ0

η1(c2)
+
r1a11

η1(c2)
+
r1a12

η1(c2)

)
M1(c1)eλ1(c2)p1(t)

≤
(
r1a11(η0 + 1)

η1(c2)
+
r1a12(µ0 + 1)

η1(c2)

)
M1(c1)eλ1(c2)p1(t).

For the subcase 0 ≤ x ≤ −p1(t), similar estimates can be established.

Case 2. For (x, t) ∈ B, we see that −x+ p2(t) < 0 and x+ p1(t) ≥ 0. Note that

H1(x, t) ≤ r1a11ϕ11ϕ22 − r1a11ϕ11ϕ21ϕ22 + r1a12ϕ11ϕ32 − r1a12ϕ11ϕ31ϕ32

+ r1a11ϕ12ϕ21 + r1a12ϕ12ϕ31 − r1(a11 + a12)ϕ11ϕ12

= r1a11ϕ11ϕ22(1− ϕ21) + r1a11ϕ12(ϕ21 − ϕ11)

+ r1a12ϕ11ϕ32(1− ϕ31) + r1a12ϕ12(ϕ31 − ϕ11)

≤ r1a11ϕ11ϕ22(1− ϕ21) + r1a11ϕ12(1− ϕ11)

+ r1a12ϕ11ϕ32(1− ϕ31) + r1a12ϕ12(1− ϕ11).

Based on (2.14), (2.16), (2.19) and (2.20), substituting H1(x, t) into U1(x, t) results in

U1(x, t)

≤ r1
a11ϕ11ϕ22(1− ϕ21) + a11ϕ12(1− ϕ11) + a12ϕ11ϕ32(1− ϕ31) + a12ϕ12(1− ϕ11)

ϕ′11(x+ p1(t))

≤ r1
a11ϕ22η0(1− ϕ11) + a11ϕ12(1− ϕ11) + a12ϕ32µ0(1− ϕ11) + a12ϕ12(1− ϕ11)

ϕ′11(x+ p1(t))

≤
(
r1a11η0

η1(c∗)
+
r1a11

η1(c∗)
+
r1a12µ0

η1(c∗)
+
r1a12

η1(c∗)

)
Kεe

(λ∗−ε)(−x+p2(t))

≤
(
r1a11(1 + η0)

η1(c∗)
+
r1a12(1 + µ0)

η1(c∗)

)
Kεe

(λ∗−ε)p1(t)
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for c∗ = c1 = c2. If c∗ = c1 < c2, applying (2.13), (2.16), (2.19) and (2.20), one has

U1(x, t) ≤ r1
a11ϕ22η0(1− ϕ11) + a11ϕ12(1− ϕ11) + a12ϕ32µ0(1− ϕ11) + a12ϕ12(1− ϕ11)

ϕ′11(x+ p1(t))

≤
(
r1a11η0

η1(c∗)
+
r1a11

η1(c∗)
+
r1a12µ0

η1(c∗)
+
r1a12

η1(c∗)

)
M1(c2)eλ1(c2)(−x+p2(t))

≤
(
r1a11(1 + η0)

η1(c∗)
+
r1a12(1 + µ0)

η1(c∗)

)
M1(c2)eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, by (2.13), (2.16), (2.19) and (2.20), the following estimate can be

obtained

U1(x, t) ≤ r1
a11ϕ22η0(1− ϕ11) + a11ϕ12(1− ϕ11) + a12ϕ32µ0(1− ϕ11) + a12ϕ12(1− ϕ11)

ϕ′11(x+ p1(t))

≤
(
r1a11η0

η1(c1)
+
r1a11

η1(c1)
+
r1a12µ0

η1(c1)
+
r1a12

η1(c1)

)
M1(c2)eλ1(c2)(−x+p2(t))

≤
(
r1a11(1 + η0)

η1(c1)
+
r1a12(1 + µ0)

η1(c1)

)
M1(c2)eλ1(c2)p1(t).

Case 3. (x, t) ∈ C. Note that

H1(x, t) ≤ r1a11ϕ11ϕ22 − r1a11ϕ11ϕ21ϕ22 + r1a12ϕ11ϕ32 + r1a11ϕ12ϕ21

+ r1a12ϕ12ϕ31 − r1a12ϕ12ϕ31ϕ32 − r1(a11 + a12)ϕ11ϕ12

≤ r1a11ϕ11(ϕ22 − ϕ12) + r1a11ϕ21ϕ12(1− ϕ22)

+ r1a12ϕ11(ϕ32 − ϕ12) + r1a12ϕ31ϕ12(1− ϕ32)

≤ r1a11ϕ11(1− ϕ12) + r1a11ϕ21ϕ12(1− ϕ22)

+ r1a12ϕ11(1− ϕ12) + r1a12ϕ31ϕ12(1− ϕ32).

Similar to Case 2, we can show that U1(x, t) ≤ Neαp1(t).

From the above analysis, we conclude that

F1(u(x, t)) ≥ 0, ∀ (x, t) ∈ R× (−∞, 0].

Step 2. We now prove

(3.2) F2(u(x, t)) ≥ 0, ∀ (x, t) ∈ R× (−∞, 0].

Recall that u2 = ϕ21 + ϕ22 − ϕ21ϕ22, we have

F2(u(x, t)) = A1(x, t)Neαp1(t) −H(x, t),

where

A1(x, t) = (1− ϕ22)ϕ′21 + (1− ϕ21)ϕ′22,

H = 2ϕ′21ϕ
′
22 + r2(1− ϕ21)(1− ϕ22)(a21u1 − ϕ11 − ϕ12 + ϕ21ϕ22)

− r2(1− ϕ21)(1− ϕ22)(2a21u1 − ϕ11 − ϕ12).
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We notice that the following relation is true

H < H2 < H3,

where

H2 = 2ϕ′21ϕ
′
22 + r2(1− ϕ21)(1− ϕ22)(u1 − ϕ11 − ϕ12 + ϕ21ϕ22)

− r2(1− ϕ21)(1− ϕ22)(2u1 − ϕ11 − ϕ12),

H3 = 2ϕ′21ϕ
′
22 + r2(1− ϕ21)(1− ϕ22)(u1 − ϕ11 − ϕ12 + ϕ21ϕ22).

Hence, it suffices to show that

F2(u(x, t)) = A1(x, t)Neαp1(t) −H3(x, t) ≥ 0.

Similarly to the above discussion, we divide R × (−∞, 0] into three subsets, A, B and C

to estimate the function

U2(x, t) :=
H3(x, t)

A1(x, t)
.

(I) We first discuss the case u1 = 1, that is, ϕ11(x + p1(t)) + ϕ12(−x + p(t)) ≥ 1. In

this case, the following inequality holds

H3 ≤ 2ϕ′21ϕ
′
22 + r2ϕ21ϕ22(1− ϕ21)(1− ϕ22).

Case 1. For (x, t) ∈ A, we first discuss the case p2(t) ≤ x ≤ 0. If c∗ = c1 = c2, then by

using (2.14) and (2.15), we obtain

U2(x, t) ≤ 2ϕ′21ϕ
′
22 + r2ϕ21ϕ22(1− ϕ21)(1− ϕ22)

(1− ϕ21)ϕ′22(−x+ p2(t))

≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c∗)

)
e(λ∗−ε)p1(t).

If c∗ = c1 < c2, then since λ∗ > λ1(c2) > 0, it is derived that λ∗ − ε > λ1(c2) by taking

ε > 0 sufficiently small, and hence based on (2.14) and (2.15), it follows that

U2(x, t) ≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c2)

)
e(λ∗−ε)(x+p1(t))

≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c2)

)
eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, then applying (2.13) and (2.15), we have

U2(x, t) ≤
(

2η2(c1)M1(c1)

1− ϕ21(0)
+
r2M1(c1)

η1(c2)

)
eλ1(c1)(x+p1(t))

≤
(

2η2(c1)M1(c1)

1− ϕ21(0)
+
r2M1(c1)

η1(c2)

)
eλ1(c2)p1(t).
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For the subcase 0 ≤ x ≤ −p1(t), similar estimates can be obtained.

Case 2. For (x, t) ∈ B, in this case, −x+ p2(t) < 0 and x+ p1(t) ≥ 0. If c∗ = c1 = c2,

thanks to (2.14), (2.15) and (2.16), then we get

U2(x, t) ≤ 2ϕ′21ϕ
′
22 + r2ϕ21ϕ22(1− ϕ21)(1− ϕ22)

(1− ϕ22)ϕ′21(x+ p1(t))

≤
(

2η2(c∗)Kε

1− ϕ22(0)
+

r2Kε

η1(c∗)

)
e(λ∗−ε)(−x+p2(t))

≤
(

2η2(c∗)Kε

1− ϕ22(0)
+

r2Kε

η1(c∗)

)
e(λ∗−ε)p1(t).

If c∗ = c1 < c2, then by (2.13), (2.15) and (2.16), we have

U2(x, t) ≤
(

2η2(c)M1(c2)

1− ϕ22(0)
+
r2M1(c2)

η1(c∗)

)
eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, then it follows from (2.13), (2.15) and (2.16) that

U2(x, t) ≤
(

2η2(c2)M1(c2)

1− ϕ22(0)
+
r2M1(c2)

η1(c1)

)
eλ1(c2)p1(t).

Case 3. For (x, t) ∈ C, in this case, −x+ p2(t) ≥ 0 and x+ p1(t) < 0. If c∗ = c1 = c2,

from (2.14), (2.15) and (2.16), it can be derived that

U2(x, t) ≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c∗)

)
e(λ∗−ε)p1(t).

If c∗ = c1 < c2, then since λ∗ > λ1(c2) > 0, it is concluded that λ∗ − ε > λ1(c2) by taking

a positive constant ε sufficiently small, and hence we have

U2(x, t) ≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c2)

)
e(λ∗−ε)p1(t)

≤
(

2η2(c∗)Kε

1− ϕ21(0)
+

r2Kε

η1(c2)

)
eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, by applying the decreasing of λ1(c) and Lemmas 2.2 and 2.3, we have

U2(x, t) ≤
(

2η2(c1)M1(c1)

1− ϕ21(0)
+
r2M1(c1)

η1(c2)

)
eλ1(c1)p1(t)

≤
(

2η2(c1)M1(c1)

1− ϕ21(0)
+
r2M1(c1)

η1(c2)

)
eλ1(c2)p1(t).

(II) Now, we study the case that u1 = ϕ11(x+ p1(t)) + ϕ12(−x+ p2(t)). In this case,

we have

H3 = 2ϕ′21ϕ
′
22 + r2ϕ21ϕ22(1− ϕ21)(1− ϕ22).

Similar to (I), we can prove that U2(x, t) ≤ Neαp1(t).
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Based on the above discussion, we can obtain the conclusion (3.2).

Step 3. In this step, we shall show

(3.3) F3(u(x, t)) ≥ 0, ∀ (x, t) ∈ R× (−∞, 0].

Recall that u3 = ϕ31 + ϕ32 − ϕ31ϕ32, we have

F3(u(x, t)) = A∗(x, t)Ne
αp1(t) −H∗(x, t),

where

A∗(x, t) = (1− ϕ32)ϕ′31 + (1− ϕ31)ϕ′32,

H∗ = 2ϕ′31ϕ
′
32 + r3(1− ϕ31)(1− ϕ32)(a31u1 − ϕ11 − ϕ12 + ϕ31ϕ32)

− r3(1− ϕ31)(1− ϕ32)(2a31u1 − ϕ11 − ϕ12).

We notice that the following relation

H∗ < H∗1 < H∗2 ,

where

H∗1 = 2ϕ′31ϕ
′
32 + r2(1− ϕ31)(1− ϕ32)(u1 − ϕ11 − ϕ12 + ϕ31ϕ32)

− r2(1− ϕ31)(1− ϕ32)(2u1 − ϕ11 − ϕ12),

H∗2 = 2ϕ′31ϕ
′
32 + r2(1− ϕ31)(1− ϕ32)(u1 − ϕ11 − ϕ12 + ϕ31ϕ32).

Hence, it suffices to show that

F3(u(x, t)) = A∗(x, t)Ne
αp1(t) −H∗2 (x, t) ≥ 0.

Let U3(x, t) = H∗2 (x, t)/A∗(x, t). Similar to the above argument, we divide R×(−∞, 0]

into three subsets, A, B and C to obtain the estimate of U3(x, t).

(I) We first consider the case u1 = 1, that is, ϕ11(x+ p1(t)) + ϕ12(−x+ p2(t)) ≥ 1. In

this case, we have

H∗2 ≤ 2ϕ′31ϕ
′
32 + r2ϕ31ϕ32(1− ϕ31)(1− ϕ32).

Case 1. For (x, t) ∈ A, we first consider the subcase p2(t) ≤ x ≤ 0. If c∗ = c1 = c2,

then by (2.14) and (2.15), we obtain

U3(x, t) ≤ 2ϕ′31ϕ
′
32 + r2ϕ31ϕ32(1− ϕ31)(1− ϕ32)

(1− ϕ31)ϕ′32(−x+ p2(t))

≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c∗)

)
e(λ∗−ε)p1(t).



876 Guang-Sheng Chen and Shi-Liang Wu

If c∗ = c1 < c2, then since λ∗ > λ1(c2) > 0, we can obtain λ∗−ε > λ1(c2) by choosing ε > 0

sufficiently small, and hence from (2.14) and (2.15), the following estimate is obtained

U3(x, t) ≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r2Kε

η1(c2)

)
e(λ∗−ε)(x+p1(t))

≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c2)

)
eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, in terms of (2.13) and (2.15), we have

U3(x, t) ≤
(

2η2(c1)M1(c1)

1− ϕ31(0)
+
r3M1(c1)

η1(c2)

)
eλ1(c1)(x+p1(t))

≤
(

2η2(c1)M1(c1)

1− ϕ31(0)
+
r3M1(c1)

η1(c2)

)
eλ1(c2)p1(t).

For the subcase 0 ≤ x ≤ −p1(t), we can obtain similar estimates.

Case 2. For (x, t) ∈ B, in this case, we can know that −x+p2(t) < 0 and x+p1(t) ≥ 0.

If c∗ = c1 = c2, by (2.14), (2.15) and (2.16) one has

U3(x, t) ≤ 2ϕ′31ϕ
′
32 + r3ϕ31ϕ32(1− ϕ31)(1− ϕ32)

(1− ϕ32)ϕ′31(x+ p1(t))

≤
(

2η2(c∗)Kε

1− ϕ32(0)
+

r3Kε

η1(c∗)

)
e(λ∗−ε)(−x+p2(t))

=

(
2η2(c∗)Kε

1− ϕ32(0)
+

r3Kε

η1(c∗)

)
e(λ∗−ε)p1(t).

If c∗ = c1 < c2, then

U3(x, t) ≤
(

2η2(c2)M1(c2)

1− ϕ32(0)
+
r3M1(c2)

η1(c∗)

)
eλ1(c2)p1(t).

If c∗ < c1 ≤ c2, we can derive

U3(x, t) ≤
(

2η2(c2)M1(c2)

1− ϕ32(0)
+
r2M1(c2)

η1(c1)

)
eλ1(c2)p1(t).

Case 3. For (x, t) ∈ C, in this case, −x+ p2(t) ≥ 0 and x+ p1(t) < 0. If c∗ = c1 = c2,

from (2.14), (2.15) and (2.16), we obtain the estimate

U3(x, t) ≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c∗)

)
e(λ∗−ε)p1(t).

If c∗ = c1 < c2, then since λ∗ > λ1(c2) > 0, it can be obtained that λ∗ − ε > λ1(c2) by

taking ε > 0 sufficiently small, and hence we have

U3(x, t) ≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c2)

)
e(λ∗−ε)p1(t)

≤
(

2η2(c∗)Kε

1− ϕ31(0)
+

r3Kε

η1(c2)

)
eλ1(c2)p1(t).
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If c∗ < c1 ≤ c2, by using the decreasing of λ1(c) and Lemmas 2.2 and 2.3, we have

U3(x, t) ≤
(

2η2(c1)M1(c1)

1− ϕ31(0)
+
r3M1(c1)

η1(c2)

)
eλ1(c1)p1(t)

≤
(

2η2(c1)M1(c1)

1− ϕ31(0)
+
r3M1(c1)

η1(c2)

)
eλ1(c2)p1(t).

(II) Now, we deal with the case that u1 = ϕ11(x + p1(t)) + ϕ12(−x + p2(t)). In this

case, we have

H∗2 = 2ϕ′31ϕ
′
32 + r2ϕ31ϕ32(1− ϕ31)(1− ϕ32).

Similar to Case (I), we can prove that U3(x, t) ≤ Neαp1(t).

From the above discussions, we see that (3.3) holds. This completes the proof.

Based on the construction of the sub- and super-solution, we now prove Theorem 3.1.

Proof of Theorem 3.1. The proof is similar to that of [13, Theorem 1.1], see also [17,

Theorem 1.1]. Here, we only sketch the outline. It is easily seen that

u(x, t) ≤ u(x, t), ∀ (x, t) ∈ R× (−∞, 0].

Using the method in [1, Lemma 2.1] and with the help of the comparison theorem, we can

derive that there is a solution u∗ = (u∗1, u
∗
2, u
∗
3) of (2.1) satisfying

u ≤ u∗ ≤ u in R× (−∞, 0].

Consider the the Cauchy problem of system (2.1) with the following initial data:

u(x, 0) = u∗(x, 0), x ∈ R.

Since 1 := (1, 1, 1) and u are a pair of super-solution and sub-solution of (2.1), it can be

concluded that system (2.1) has a unique solution u = (u1, u2, u3) such that u ≤ u ≤ 1

in R × (−∞, 0]. For (x, t) ∈ R × (−∞, 0], we define u(x, t) = u∗(x, t). Then u(x, t) is an

entire solution of system (2.1) and satisfies

u ≤ u ≤ u in R× (−∞, 0] and u ≤ u ≤ 1 in R× [0,∞).

For any given θ1 and θ2, let

x0 =
c2(θ1 − ω1)− c1(θ2 − ω2)

c1 + c2
, t0 =

θ1 + θ2 − ω1 − ω2

c1 + c2
.

By a straightforward computation, we can show that

ϕi1(x+ x0 + c1(t+ t0)) = ϕi1(x+ c1t+ θ1 − ω1),

ϕi2(−x− x0 + c2(t+ t0)) = ϕi2(−x+ c2t+ θ2 − ω2), i = 1, 2, 3.
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Set

û(x, t) = u(x+ x0, t+ t0), (x, t) ∈ R2.

It is clear that û(x, t) is an entire solution of (2.1) and satisfies the properties (i)–(iii).

This completes the proof of Theorem 3.1.
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