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The Spectral Method for Long-time Behavior of a Fractional Power

Dissipative System
Hong Lu* and Mingji Zhang

Abstract. In this paper, we consider the fractional complex Ginzburg-Landau equa-
tion in two spatial dimensions with the dissipative effect given by a fractional Lapla-
cian. The periodic initial value problem of the fractional complex Ginzburg-Landau
equation is discretized fully by Galerkin-Fourier spectral method, and the dynami-
cal behaviors of the discrete system are studied. The existence and convergence of
global attractors of the discrete system are obtained by a priori estimates and error
estimates of the discrete solution. The numerical stability and convergence of the

discrete scheme are proved.

1. Introduction

Fractional differential equations have a wide range of applications in physics, biology,
chemistry and other fields of science, such as kinetic theories of systems with chaotic dy-
namics [20430], pseudochaotic dynamics |32, dynamics in a complex or porous medium
[18,25], random walks with a memory and flights [24}31], obstacle problems [221]. Re-
cently, some of the classical equations of mathematical physics have been postulated with
fractional derivatives to better describe complex phenomena (e.g., [7,10-12}22}26]).

The Ginzburg-Landau equation [8}|9] is one of the most-studied nonlinear equations in
physics. It describes a vast variety of phenomena from nonlinear waves to second-order
phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation
to liquid crystals and strings in field theory. The Ginzburg-Landau equation with frac-
tional derivatives was suggested in [29] and studied in |26.[27], where it is used to describe
processes in media with fractal dispersion or long-range interaction.

In this work, we consider the following fractional complex Ginzburg-Landau equation
[26]:

(1.1) up = pu— (1+iw)(=0)% = (1 +ip)|ul*"u, = eR? t>0
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with the initial condition and the periodic boundary condition:

(1.2) u(z,0) = ug, z € R?,
(1.3) u(z + 2me;, t) = u(w,t), zeR? t>0,i=1,2,

where e; (i = 1,2) is an orthonormal basis of R2. In (1.1)), i is the imaginary unit, v, p, p
are real constants, and p >0, 0 >0, o € (1/2,1).
We would like to point out that the standard complex Ginzburg-Landau equation

(a=1in (TT))
(1.4) ug = pu+ (14 iv)Au — (1 +ip)|u|* u

has been the object of intense study (see |1,/56},11,14-16.|19]).

In a recent paper [13], the authors studied f with spatial dimension two and
with the special pure power nonlinearity. They proved the well-posedness and studied the
asymptotic behavior of the solutions, proving the existence of the global attractor. Esti-
mates of the Hausdorff and fractal dimensions for the global attractor were also obtained.

However, these studies depended on the results of numerical experimentation to a
great extent. Thus, it is worth studying whether the numerical results are reliable and
the calculation schemes are suitable. In this paper, we construct a fully discrete classical
Galerkin spectral scheme, which is a nonlinear scheme. We obtain the existence and
convergence of global attractors of the discrete system by a priori estimates and error
estimates of the discrete solution. Then we prove the numerical stability and convergence
of the discrete scheme.

Let = [0,27] x [0,27] C R?. Throughout this paper, we denote by (-,-) the usual
inner product of L*(Q), || ||zm the norm of Sobolev spaces H™(Q), and || - [l = |- [ m (o)
(m=1,2,...,00). Let L2(Q) = {¢ € L*(Q) | p(x + 2me;) = ¢(x),i = 1,2} with the norm
defined just as that of L?(€). Let H)"(Q) = {¢ € H™(Q) | (z + 2me;) = o(x),i = 1,2}
with the norm defined just as that of H™(Q).

For any given positive integer N, let Sy = Span{e** : |k| < N} and denote by
Pn: L%(Q) — Sy the orthogonal projection operator [3].

Let 7 be the mesh size in the variable t, t, = k7, uF = u(z,t},), Ok = %(u’C — k).
We construct the Fourier spectral scheme for solving problem f as follows: to
find u’fv € Sy such that

(1.5) (Beuly — puly + (1 +iv)(—2)*uly + (1 + ip) [ul|*uly, 0) =0, Ve Sy, k>1,
(1.6) ul = Prug.

It is a nonlinear iteration scheme, and by applying the fixed point theorem we can
prove that there exists a unique solution u%; for (T.5)—(L.6).
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We remark that in our work we consider periodic boundary conditions, however, we
did not provide detailed justification of how to specify our boundary conditions. For those
who want to learn more details, please refer to [4].

The rest of this paper is organized as follows. In Section [2| some preliminaries and
notations are shown. In Section |§|7 the existence of discrete attractors A%, is obtained
by a t-independent priori estimates of discrete solutions. In Section {4l the convergence
of discrete attractors A}, is proved by the error estimates of the discrete solutions. In

Section [o the numerical stability of the discrete scheme is shown.

2. Preliminaries and notations

If w is smooth and 2m-periodic in each of the two coordinates, it can be expressed by a
Fourier series u = Y, cz0 upe™?. It follows that ugy, = 3,z ikjuke™® (i = 1,2), and
(=A)% is defined by
(—0)%u = > [k[*upe .
kez?

Let H? = HP (©) denote the complete Sobolev space of order § under the norm:

1/2

lallgs = | D kP ukl® + Y Junl?

keZ? keZ?

We denote by Hg those functions that are 2m-periodic in all the coordinate variables
and when restricted to Q, lie in H?(Q). Throughout this paper, we denote by (-,-) the
usual inner product in L? = L?(Q;C), || - ||gm the norm of Sobolev space H™(£)), and
|- llg = I - [lzee@), 1 < ¢ < oo. In the forthcoming discussion, we use 7' to denote an
arbitrary positive constant, and use ¢; (j = 1,2,...) to denote different positive constants
which depend only on the constants p, v, u, o, and o. In addition, the following Gagliardo-

Nirenberg inequality [17] is frequently used.

Lemma 2.1. Let Q C R” be a bounded domain having the cone property and let u € L4(2)
and its derivatives of order m, D™u, belong to L"(2), 1 < q,r < co. For the derivatives

Diu, 0 < j < m, the following inequalities hold
(2.1) ID7ul[ e < e(| D™ ullpr + |l pa)llul 1,

where

for all 6 in the interval
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(the constant ¢ depending only on n, m, j, q, r, and 0), with the following exceptional
case:

If 1 <r < oo, and m — j — n/r is a nonnegative integer then holds only for 6
satisfying j/m < 60 < 1.

For the orthogonal projection operator Py, we have the following estimate [3].

Lemma 2.2. Ifu € H;”(Q), then there exists a constant ¢ independent of u and N such
that

lu — Pnul|lgs < eN*""||D™ul||  for all 0 < s < m.
The following lemmas are also used in this paper [23].

Lemma 2.3 (Discrete Gronwall’s inequality). Let y*, g*, h¥ be three nonnegative series

satisfying

yk—i-l _ yk

<+ nk vk
-

Then ¥Vn > 0, we have
y" < ylexp (ngk> +TzhkeXp (TZQZ) for all k <n+1.
k=0 k=0 i=k

Lemma 2.4 (Discrete uniform Gronwall’s inequality). Let y*, g%, h¥ be three nonnegative

series satisfying

ka - yk k, k k
- <g'y"+ h s Vk > ]{?0
and
no+k1 no+k1 no+k1
TY §F<on, > W<ay 7Y Y <as forallk > ko,
k=k1 k=k1 k=k1

with Tng = r. Then
yk < (*3 + ag) e for all k > ng + ko.
r

In this paper, to establish the existence of the global attractor of (1.1))—(1.3)), we need
the following results [28].

Theorem 2.5. Suppose that H is a Banach space, and {S(t)}+>0 is a semigroup of con-

tinuous operators, that map H into itself and enjoy the usual semigroup properties:
S(t)-S(r)=S{t+r7), S(0)=1I,

where I is the identity operator. We also suppose that the operator S(t) satisfies
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(i) operator S(t) is bounded, i.e., for any given R > 0, if |up||z < R, then there exists
a constant C(R) such that

1S@)uollzr < C(R)  for t € [0,00);

(ii) There is a bounded absorbing set By C H, i.e., for any given bounded set B C H,
there exists a constant T' = T'(B) such that

S(t)BC By fort>T,;

(iii) The operator S(t) is a uniformly compact for t > 0 sufficiently large. By this mean
that for every bounded set B there exists a constant to = to(B) such that

U s#)B

t>1o

is relatively compact in H.

Then the semigroup {S(t)}+>0 of operators has a compact global attractor A C H. By this
we mean that

(a) S(t)A=A for allt > 0.
(b) For any given bounded set B C H, limy;_, dist(S(¢)B,.A) = 0, where

dist(X,Y) = sup inf ||z — y|/g.
zeX YEY

3. Existence of approximation global attractors

We first obtain a priori estimates of the problem ([1.5)—(1.6)). In what follows, we denote
Jq [ dx by the notation [ f.

Lemma 3.1. Suppose that ug € Lg(Q), then for the solution uy, of (L.5)—(L.6]), we have

n
2+ 7 S0+ o) (2 (=2)2 2l |2+ plledy I + ki 13533) < o
k=1

and
L n
T (|u7v||2 F (U o (220 2+ ol I + ||uéfv|r§zi§)> < do.
k=1

where the constant do > 0 is independent of n, T and ||uo||, Eo = Eo(||ug||) > 0 independent
of n, 7.
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Proof. Lettin =%, in (T.5) and taking the real part, we obtain
gy N g P
1- T =
(3.1) Eﬁt\lulfv\\z + 5H&U’va2 — plluf|I? + 1(=2)**ulfe |1 + lluk 13955 = 0.

Applying Young’s inequality, we see that

1
sl | = 4p / 2 < kot 4 2 (22) )
- o+ oc+1\oc+1

Then (3.1) can be rewritten as

Bl 1% + 20l (=2)*ul |1” + 2plufy 11 + [luk 5513

(32) Ao 4 1/o
P
< Q| = pdo.
_pa—|—1<a—|—1> €21 = pdo

Multiplying (3.2)) by (1 + p7)*~!, and summing them for k from 1 to n, we have

n
s 2 4+ 7 371+ prF 1 (2= A) 2l 1P + a2 + 1 13553
. k=1

< (L + p7) " |Juol|* + do.

Let Eo = ||uol/? + do, then implies
n
el + 7301+ o) (220 2y 2+ 2+ 13573) < B,
k=1
Therefore,
n
T (\u’fvw £ 3 pr) T (2 A) 2l pll | + u%u%zi%)) < b,
k=1

This completes the proof.
Following from the above lemma, one has
Corollary 3.2. For any 8y > &y and R > 0, if |uo||> < R, then

In (R/(d0 — )

n12 < g Iln>ng=
lu'x]|© < do  for all n > ny n(1 + p7)

Lemma 3.3. Suppose that ug € H;(Q), and o satisfies the following condition

1
o<
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then for the solution ulfv of (1.5)—(1.6), we have

IVaR|® + 7Y (1 pr)* (= 2) V2R P < By for alln > 1,
k=1

and

n
lim (HVU%HQ +7y (1 +PT)’H_"H(—A)(“Jrl)/gu?v!ﬁ) < 41,
where the constant §, > 0 is independent of n, T and |uo|, E1 = Ei(|luo|lg1) > 0

independent of n, T.

Proof. Setting ¢ = —Auk; in (T.5) and taking the real part, we obtain

1-—- T =
7avk278vk2_ ka
", SOVl + 218 7uk |2 = ol V]
+ [[(=2) TV 2u P = Re(1 + i) (|ufy [*Tuly, Auy) = 0.
Integrating by parts, we infer that
— Re(1 + ip) (|uf [*7uf, D)

= Re(t +in) [ ((0+ Dluk P7ITuk P + ol 0wy vk )

1 o . _ o
=5 [ kP (200 + DI IV + o1+ i) (e VaR)? + o1~ (@ Tk )
= % / [ 2Ty MY H,

where

H
uk Vuk c+1 o(l+i
Yy — NVUn . M= ( 1)

uk, vk, o(l—ip) o+1
and Y is the conjugate transpose of the matrix Y. We observe that the condition

1
o<

S V1l+p2-1

implies that the matrix M is nonnegative definite. Then (3.4)) can be rewritten as
1-—- -

(3.5) 53t\\VU§“v!!2 + 5!\3Nu'va2 — o[V |* + (= 2) VU |? < 0.

Using Gagliardo-Nirenberg inequality, we deduce that

(3.6) 3pl| Ve ||* < [|(=2) T 2u |12 + efluf |1

Combining (3.5 and (3.6), we infer that

(3.7) Bul| Ve |? 4+ (= 2) DU+ pl Vuly |? < efluly .
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Multiplying (3.7) by (14-p7)¥~!, summing them for k from 1 to n, and applying Lemma
we deduce that

IVaR|® + 7 (L4 pr)* (=) @F D 2ug )2
k=1

n
< (14 p7) " Vuol* + er Y (1 + pr)F 1 fufy |2
k=1
B c _
< (L4 pr) "IV uoll® + (1 4 ) ol + do)
_n 2, C 2 c
< pr) ™ (I90lP + uol?) + o

Let E1 = | Vug|* + %(HuoH2 +do) and 61 = £do. Thus we obtain that

IVu]® + 7 (14 pr) (=) DU P < By foralln > 1

k=1
and
Tm (nww ey m)k1"H<—A><a+l>/2u§v||2> <.
k=1
which completes the proof of this lemma. O

By the above lemma, we obtain the following corollary:

Corollary 3.4. For any 6; > & and R > 0, if luoll3, < R, then there exists ny =
ni(R) > ng such that
|VuR||? < 81 forallnm>ny.

Lemma 3.5. Suppose that ug € HI}JFO‘(Q), then for the solution u’f\, of (L.5)—(1.6), we
have

I(=2)EF 2082 473 (14 pr) 1 (—2) 2Tl | < By
k=1
and

T (H(—A><1+a>/2u7vu2 HTI (04 ) 0) 2”“%”2) -

n—oo
k=1

where the constant d3 > 0 is independent of n, T and ||ug||fi+e, E2 = Ea(|Juoll gi+a) >0

independent of n, T.
Proof. Settin = (=A)Hyk in (T.5) and taking the real part, we obtain
f g N g part,
A (=) 2UR P 4 |9 (— )T Py |2
(3.8) — 2p[| (=) O 2uR |2 + 2| (=) Pufy |
= —2Re(1 +ip) (|up|*7uf, (=2)Fuf).
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Using Holder inequality, Gagliardo-Nirenberg inequality and Young’s inequality, we infer

that, when o0 < 1+ «, we have
—2Re(1 + i) (july [Ty, (—2) o)
< 2/ T4 2 | (VI P72d), (=) /2oy )|
<21+ 20) VT4 [ 19k I(-0) 2oy

< 2(1+20) v/ 1+ 22| (=) 2 ufy || Vuly |l 122

1 g
(3.9) S22 ouly 2 4 ol a2 12

1 (63
SI(=2) 2|2

2
(0% /(Oé+1) oo/t
el a2 (1 (202 4 )T e

IN

IN

1 (63 (0%
< S (=) 2 o cf T |21 (— 2) T Zu |

+ el Valgl? (Hluh 7/ =) 4 )

and
+a)/2 2 2(14a) /(2a+ a/(2a

Hlt+2a
(3.10) 1 1/2+a k 112 2
< SI=2) V22 + el

Combining 7, we deduce that
gy PICOIIPIR ) 7 4 A
< gFl(=2) U P+ B,
where
g" = el Tuly (=) 2|2, RE = el Tkl (k7 k)
Applying of Lemma Corollaries and for any n > mny and any given
r > 0, ko satisfying koT = r, we obtain that

n—+kg n-+kg

Ty g =er > [Vl |PlI(=2) )2
k=n k=n

n+ko
< oy <c7' Z [k )12 4 | Vu ||2> < ¢by(erdy + 01) £ ay,

k=n
n+ko n—+ko
PR = 3 IV (Il k)
k=n k=n

< 051r (?Ja/(aﬂ o) + 33) £ a9



462 Hong Lu and Mingji Zhang

and
n—+ko n—+ko n+ko R .
T Z Y =cr Z [(=A)H20k 12 < er Z k12 + [ Vur 2 < erdo + 01 2 as.
= = k=n
Applying Lemma, we obtain that
(3.12) (=) A+ 2k 12 < (@ + az) 123, forall n>fs =n + ko.
r

For n < no, using Lemma for (3.11)) and applying Lemmas and we have

(=) 42 2 < [ (= 2) 1) g 2t BB )

(3.13) +ctnE1< F2oo/(atl- U)+E2> ety E1(Eo+Er)

£ Fs.
Let Fy = max {32, Eg}, then from and we deduce that
(=) 3+ /20 12 < By for all n > 1.
Applying , above equality and Lemma we deduce that

(L4 pr) | (=) 2 |2 — || (=) T+ 2uf P 4 ) ()2l )2

3.14
(3:14) < 7" (=) 2k 12 + ThE < Cr,

where ¢ = cE;(E5 + Egm/(aH_a) + E3).
Multiplying (3.14) by (1 + pr)*~!, summing them for k from 1 to n, and applying
Lemmas [3.1] and [3.3] . we have

I(=2) TP |2 4y (14 pr) P (=) V2R ufy |2
k=1

< (14 pr) [ (=2) 1 g P 4 2 Y (14 pr)t
k=1

/\

< (L pr) 77 [(=2) 0 g |? + ;

It follows that

T «@ n - —1-n a /C\
(8.15)  lim, (ll(—A)“+ PR P4y (1 pr) ()R u’va2> —, T
k=1
The proof of is completed. O

Corollary 3.6. For any 02 > 65 and R > 0, if [uol|31 40 < R, then

[(=A)H2ym 12 < 85 for all n > 7.
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Corollary 3.7. Suppose that ug € Hy (). One has
[uk |12, < C(b0,82) £ b0e  for all n > 7y
and
[uf||% < C(Eo, B2) £ Ese for alln > 1.
Lemma 3.8. Suppose that ug € Hg(Q) For the solution u%; of (L.5)-(L.6), one has

n
IAuR|? + 7Y (1 + pr)F (L) 2uR P < By for allm > 1,
k=1

lim (HAU%Hz +ry (1+ pf)k_l_”\l(—A)H“/ZU'&!!2> < 03

im
n—oo
k=1
and
10k 1> < By for alln > 1,

where Es depends on only ||uollg2, Fo, E1 and Eo, the constant E4 depends on only
lluoll g2, Eo, E1 and Es, and §3 > 0 depends on &y, 01, 02 and ||uol| 2.

Proof. Setting ¢ = AQU?V in (1.5) and taking the real part, we obtain
(3.16) Al A |1? + 70 L |1P = 20]| A + 2] (= L) Puf |
= —2Re(1 + ip)(|Juk P7uk;, A%uk,).
Integrating by parts, we deduce that
(Juf 7y, Auf)

= 2(0 + o) (uk 2|Vl Pul, Ak )
R (1 + )l P2 (Va2 + (o = D)l 27~ Tk 2 (), Al )
o (July P20k ()%, Auk ) + (1+ o) (July 27 sk, Sl )
Similarly to , by the condition

1
o<

S V1l+p2-1

we obtain that

(3.18)
= Re(1 +ip)(1 + o) (Jul [** Aufy, Auly) = Re(1 + ip)o (july|*7 2 Auk (uf)?, Aul)

1 . . _ .
== [ TP (2004 PG + o1+ i) (kAT + o(1 i)y b ?)

1
— _2/|u§cv‘2(01)Y1MY1H <0,
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where -
¥ — ak Auk; M= c+1 o(l+ip)
uk; Ak, o(l—ip) o+1
and Y/ is the conjugate transpose of the matrix Y;. Applying Holder inequality, Gaglizardo-
Nirenberg inequality and Young’s inequality, we obtain the following estimates when
o>1/2,

(3.19)
(30+1)(a+1)\/1+u2/|u§“v\201|vu§“VPyAu§€V\
< (o + Do+ DV/T+ @2 Sl |90k Ik 122
< cl| Va4l 2270 + | suk]?
< o (=20 2y 4+ 7o) [ D 207D a2
< SN0 e ([T P+ Tl Py 2o D@0/ a2

By (3.17)—(3.19), we deduce that

(3.20)
— 2Re(1 + ip)(Juf[*7uly, A%ul)

1 (0% (6% (0% 03 ag— (0%
< SN2 1 4 (Va2 + [V PO/ 2D/ o A 2

Plugging (3.20)) into (3.16[), we obtain

_ _ 3 N
Do) Dule | + Tl|Bp Ll |* + §II(—A)1+ Py

(3.21)
< 2(p+ V| du? + ¢ ([ Tuly 2 + | a2+ D0 2ot DD/
Applying Gaglizardo-Nirenberg inequality and Young’s inequality, one has

4/(24«w o a 1 a
(30 + 2| Auk|I? < (3p + 2)elluk |75 [uk | /o) < S||(— A)F2uk |12 + el ||

-2
Then (3.21)) can be rewritten as
Bl Duff|? + [1(=2)FPuf | + pll Ay |

(3.22) i
< (k12 + IVl + Ve [0/ Lot DD/

Applying Corollaries[3.2] 3.4 and [3.7] for any n > 7y and any given r > 0, ko satisfying
koT = r, we obtain that

TL—l—kON n+ko
P YR = er D7 (24 [Tl ([P 2o o )
k=n k=n

< cr (B By + 5V G D) £ 6,
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and
n+ko n+ko n+ko
T Z g =er Z |Auk]? < er Z (0 el 7 R
n+k0
<er 3 (=002 k) + uk]?)
k=n
n+ko
<er 3 (Il + 192 (1= 2) 2k 1+ Ao 4y )14))
k=n

+ [ (=) WPt 2
< or (80 + (3 + 57T 1 53)) + 8, 2 i
Applying Lemma, one has
(3.23) | Auk]|? < % +ay 285 forall n > fig = 7y + ko.
For n < 13, summing for k from 1 to n and applying Lemmas and we obtain

(3.24) AU |2 < [|Augl® + ¢ (EO + By + B2/ aEgg“X?ff*l)/a) tny 2 Es.

Let F3 = max {3\3, E3} it follows from (3.23]) and (| - ) that

(3.25) |Auk|? < B3 for all n > 1.

Similarly to (3.15)), one has
n
lim <HAU?\J||2 +7y (1+ pT)’”"H(—A)Ha/QU?v\F) < ds.

Now we estimate ||0;uk ||?. Let vk = 0,uk;, applying (L), we deduce that {vk}i>1
satisfies

_ 1+
(3.26) <8tv§“\, — pva +(1+ iv)(—A)avfif + —17—_1,u <| N\Q" \u \2" k= 1) ,cp) = 0.

Setting ¢ = vf\, in (3.26)) and taking the real part, we obtain
Allof|I® + 201 (=2)* 20k |1* = 200k II?

(3.27) 2 . 1) -

+ - Re(1 +ip) / <|u 120uk; — [uk 27Uk 1) ok < 0.

Now we estimate the last two terms in (3.26)). First, in view of Taylor’s formula, we can
easily check that for o < 1/(1/1+ p? — 1), one has

Re(l—i—l,u)/(]u |20 k |uk 120 ?\/1)5]]6\/20
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Applying , we have
2p|vR|® = 20/ (,Ou’fv — (14 i) (=A)uh — (1 + i) [ |27 uk )ﬁv
< plloklI? + 6p% [ukel|2 + 6p(1 + )| (= L) uk |2 + 6p(1 + ) |ukil5o0ty)-
It follows that
A2 = p [ (oo — 0L+ )00 — (14 0l Pk )

< 6 by 2 + 6p(1 + v (= 2) W] + 6p(1 + 1) [ukell5(o0ss)

< 6p°ufe1* + 6ep(1 + v2) [k 135 [k 707 + 6ep(1 + 1) |77 ke | 20H).
Therefore, can be rewritten as
(328 Ao |® + 201 (=2)* 2ok |1* + 2oy |I?
< 24p (p2||u§“v|!2+c( + V) e l758 e 1207 + e(1 + p7) [ 137 IIuN\I2“+")).

Applying Corollaries and for any n > n3 and any given r > 0, ko satisfying
koT = r, we obtain that
n+ko
S
k=n
n+ko

= 24pr 3 (U1 + 0+ o) B 1207 4 (1 + ) o 35 120+
k=n

< 24pr (030 + c(1+ 12)(Bo + 53)°55 7 + (1 + 1) (3o + 33) 75 +7) 2 @z

and
n+ko n+ko
oF k12
T T =7y vkl
k= k=n
n+ko
< 67 Z (P [ uk]|* 4 e(1 4 v )HuN|| 5| N||21 ) +o(1+ 422 )HUNH HUN||2 1+0)>
k=n

< 6r (pQSo +e(l+ 1/2)(5\0 + 3\3)a8\é—a +e(l+ ,UJQ)(S\O + gg)agéJrU) 2 Qs.

Applying Lemma, we obtain that

(3.29) ‘|7)5€VH2 < @ + o = ;5\4 for all n > n4 = ng + ko.

T
For n < ny, summing (3.28) for k& from 2 to n and applying Lemmas and one has
(3.30)

k
IR I1* < flon®

+24p (p*Eo + (1 + v*)(Eo + E3)*Ey ™ + (1 + p?)(Eo + B3)° Ey ) ta, -
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Here we need to estimate |[v}|?. Letting ¢ = d;uk in (L.5)), taking the real part and
setting k = 1, one has
s By P = p Refuck, k) + Re(1 -+ i) (~2)*uky, Druk)

' +Re(1 + ip)(July 27 uly, Bruk) = 0.

We estimate every term on the left-hand side of (3.31)) below. First, applying the proof of

Lemma [3.1] we have

_ _ 1, 3
|pRe(uy, uy)| < plldwullunll < G0y [* + 5o (lluol® + 6)-

2
Secondly,
Re(1 4 iv)((—A)%uly, ruly)
= Re(1 +1iv) (1(—2)*Opuly, Qyuy) + Re(1 +1iv) ((—2)%uo, dyuy)
= 7)|(=2)**dpuiy||* + Re(1 + iv) ((—2)uo, puy) ,
where

. - 1 3 .
‘Re(l +iv) ((—A) Uo, 8tu]1\7)‘ < BH@U}VHQ + 5(1 + VQ)H(—A) u0||2

1,= 3 _
< GllPunll? + Se(1+ v?)|fuol [ ol .
Finally,

Re(1 + ip)(Jun|* up, druy)
= Re(1+ iu)(|u}v\2"u}v — |u0|20u0,5tu}v) + Re(1 + iu)(!u0|20u0,5tu}v).

Applying Taylor’s formula, we can easily check that for o < 1/(y/1+ p? — 1), one has

Re(L + is2) (July[27uly — [uo[*uo, Byuly) > 0

Using Young’s inequality and Gaglizardo-Nirenberg inequality, we deduce

. o Y L 5 3 o —0o
[Re(1 + i) (Juo[*Tuo, Bruy)| < g\l&:u}vll2 +5el + 7)o [372 o 4.

Thus substituting the above relations into (3.31)) and applying Lemma and (3.25)), we
obtain

okl = 1l < 30l + 0)
(332) + 30 (1422 [l s luol 207 + (1 4+ %) 32l uol 2=

£ J5.
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Thus (3.30) can be rewritten as

(3.33)
[0 |12 < 85 + 24p (0*Eo + (1 + v2)(Eo + E3) By~ + (1 + p?)(Eo + E3) By %) ta,
o
= Fy.

Let E4 = max {34,35, E4}, then from (3.29), (3.32) and (3.33]), we deduce that

0:uk||? = ||k || < By for allm > 1.
This completes the proof. O

On the basis of Theorem [2.5, we obtain our main result of this section.

Theorem 3.9. Suppose that ug € Hg(Q) and o satisfies the following condition

=

1
<oc<min{ ———,1+a,.
V1i4+p?-1

The semigroup {S%,(n)}n>0 of operators generated by problem (L.5) (1.6 has a compact
global attractor Ay, C HZ2(€2) N Sy.

Proof. This theorem can be proved by checking the conditions (i)—(iii) in Theorem
Let the Banach space H = Hg(Q) NSy and {S}} be a set of the operator semigroup,
which is the solution operator generated by problem f.

First, supposing that B = {u%, € Hg(Q) NSy : ul]%. < R}, using the results of the

Lemmas [3.1] 3:3] 3-5] and [3-8] we deduce that
HSJTV(”)U?VH?p < Ey+ FE1+ E3 foralln>0,

which means that {S%(n)}n>0 are uniformly bounded in H2(€).
Secondly, thanks to the results of the Lemmas [3.1] 3.3} 3.5 and [3.8] we infer that

ISR () u |32 = w32 < B0 + 61+ for all n > fig(R).

It follows that the set Bi = {u € H}(Q) NSy : [Jull%. < 0 + 01 + 3\3} is the bounded
absorbing set of the semigroup of operators {S7,(n)}n>0.

Finally, the operators {S} (n)}n>0 are uniformly compact for all n > 0, since the
boundedness is equivalent to the compactness in the finite dimensional space Hg(Q) NSn.
Our result then follows from Theorem 2.5 O



The Spectral Method for Long-time Behavior of a Fractional Power Dissipative System 469

4. Convergence of the global attractors A},

In this section, the existence of the convergence of the discrete attractor A% is proved.

To this end, we need the following result from [13].

Theorem 4.1. Assume that ug € Hg(Q), o satisfies the following condition

N | =

1
<o<min{ ———,1+a,.
V1i4+p?-1

Then there exists a unique global smooth solution u = u(x,t) for the problem ((1.1))—(L.3))
such that

we€ L®0,T; HZ(Q) N L*(0,T; HIT™(Q)), wue € L=(0,T; L, () N L*(0,T; Hy ()

and .
/ (1wl Zrzha + luel2p) dt < e(t+1), V>0,
0

tull3zea < et +1), Vt>0.

Moreover, there exists a global attractor A C Hg(Q) of the semigroup {S(t)}+>0 of opera-
tors generated by problem (1.1)—(1.3), i.e., there is a set A such that

(i) St A=A, teRT,
(i) limyo0 dist(S(¢)B,A) = 0 for any bounded B C HZ(S2), where

dist(X,Y) = sup inf ||z — y|| .
zeX YEY

Furthermore, we need the following theorem from [28§].
Theorem 4.2. Assume that

(1) {Hy}to<y<n, is a family of closed subspaces of Banach space H such that Uy, <,, Hy

is dense in H.

(ii) S,(t): H, — Hy, and S(t): H — H are the global attractors of Sy(t) and S(t),

respectively.
(iii) For every compact interval I C (0,+00),

G¢y(I) = sup supdist(S,(t)uo, S(t)ug) =0 asn— 0.
uo€H, tel

Then A, is convergent to A in the sense of semi-distance:

dist(A,, A) -0 asn— 0.
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Finally, similar to Lemmas [3.1] 3-3] [3.5] and [3-8] one has the following result.

Lemma 4.3. Under the hypotheses of Theorem for allt € RY, we obtain the estimates
for the smooth solution u(x,t) of problem (L.1])—(1.3)

[ (12 w02l 4 212 < e+ ),
A2l + [ (100wl + 180017 + al + [ V) ds < o+ 1),
2= B) gl + | AP)
b [ (220l 4 (-5l + V) ds < e+ 1),
P07l + [l ds < ot + 1),

where the constant ¢ is independent of t.

Proof. We only provide the proof for the first two inequalities. The other two can be
proved similarly. First note that, by the definition of (—A)%, one has, if 8 < 1/2,

28 1-28
=27l = Y7 kP < [ Rl Dl
keZ2 kez? keZz?
= [1(=2)"2ul|*?|u)®,
if g <1,
B 1-8
I=2) ul® =Y (k[P lug < | Y k[ > lukf? = || &ul®flul 27
kez? kez? kez?

It follows that
(4.1) 1(=2)ul| < 1(=2)"2ul?[lu) =27 = | Vu |l =, 5 < %
(4.2) 1(=2) ull < |Aul®llul*7, B <1,

(13) (=A™ < (=)D 2 (B [0/, g < <
By the inequality , we infer
IVsel| < [[(=2)F Zuyy | R DB (- A=y | /B,

Proof of the first inequality

/ (=22 (-2 2 ds < of1 + )
0
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Similar to Lemmas [3.1} [3:3] B.5] and [3.8], one has
t
full <. [ I8 ds <
0

By (4.1)), we obtain

(=) (P ) || < (1(=2)2 ([ w) [P0 a2
= [V (P72 a2

<ec.
Applying equation , we infer
(=) %] < e ([Aul]l + (=) (a7 )| + [I(=2)"ul]) < e
Taking the inner product of with (—A\)2~%u, and taking the real part, we obtain
(=) = u* < ¢ (H(—A)H”/QUH2 + (=) (P u) | + H(—A)kamu)m :
By , we have
(=) 2 (a7 w) [P < | A(ulP7u) P |7l < e

It follows that
J(=2)' 722 < e () (=) ]2 4 1)

Integrating the above inequality with respect to t gives
/ot (=202 4 )| (=2)' =20 |2) ds < e(1 +1).
Proof of the second inequality
(= 2)" 7w |* + /Ot s (=2 %un|* + [| D] + [[(=2)Ful?) ds < e(1+1%).
From equation , one has
(4.4) ug = pug — (1 +1w) (=) — (1 +ip) (Jul*7u);.

Taking the inner product of (4.4) with (—A)?~%u; and taking the real part, we obtain

L]
2dt
= plug, (=0)*“uy).

(=22 P 4[| A2+ Re(1+ i) ([uf*u)e, (~2)>uy)
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Integrating by parts, applying Gagliardo-Nirenberg inequality and Young’s inequality, one

has
| Re(1 4 ip) (([u*7w)s, (=A)*ug)| < el AugllI(=A) (Ju*Tw).|
< cf| Aug|[[[ (=22 (2 w)e |22 (Juf*w)e 2
1
< f||Aut||2 +c
4
and
2—« 1 2
plut, (—A)"%up) < ZHAWH +c.

Then ((1.4) can be rewritten as

d —«
%II(—A)1 Pug|® + | A * < e

Multiplying both sides of above inequality by ¢ and integrating it with respect to ¢, we

deduce
t t
0Pl + [ shoulPds <t + [1-0)' P ds < of1 + 7).
0 0
By (4.4), we obtain

t
/ s||uge||* ds < e(1 +t2)
0

and . .
/ 8| Vg || ds < ct? +/ s|[(=A) T uy |2 ds < e(1 + t2). O
0 0
Next we state our main result with a detailed proof of this section.

Theorem 4.4. Assume that ug € Hg(ﬂ), o satisfies the following condition

1
l1<o<mind —— 1+ab.
V1it+p?—1
One has
dist(Ay,A) -0 as7T— 0, N — 4oc.

Proof. By virtue of Theorem we prove this theorem by the error estimates of the

solution ufR; of the discrete problem (|1.5)—(1.6).
Let

uP —uf = (uF — PyuP) + (Pyu® — uky) £ OF 4+ oF

Then V¢ € Sy, ® satisfies

(4.5) (92" —p@* + (1+iw) (—L) @ + (1 +ip) (Ju*[7u* — [ufy*7uly), ) = (Feu” —uf, ),
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and 0 = 0.
Setting ¢ = ®* in (4.5 and taking the real part, we obtain

1= T, =
o) SOUNDH2 + ZIB@F | + [[(=2) /0% |2 = plj 0¥
= pl| %12 + Re(1 + ip) (Ju*P7u® — [uly[*7uly, @) + Re(@pu” — uy, @F).

In what follows, we estimate the three terms on the right-hand of (4.6). First, by Theo-
rem [£.1] and Lemma, we deduce that

1% = || Py — uiy|®
2
= H(PNuk — PNuk_l) + (P]\ruk_1 — ulf\fl) — (u’fv — u]f\fl)H
<2 (HPNuk_1 — uf\,_lH2 +2 (HPNuk — PyuF )2 + ||uk — ué“v_le»

<2 (102 + 202 (1182 + e |2) )

tr -
<9 (\@Hu? P ( / e dt + HMH?))
th—1

< 2 @F % 4 er?.

Next, by Taylor’s formula, Lemmas and [3.8]and their corollaries, we infer that

20
b P — uk Pl | < (14 20) [ou® + (1= )| (1951 + [0F]) < e (104 + [0%]).

Applying (4.7) and Lemma we obtain that

i [Re(1 + i) (1 27ut — fufy 27y, )| < cllot) (1 94) + "))
( . ) k—1)2 2 —4
<c(| " F+ T+ NT).

Finally, applying Young’s inequality, Taylor’s formula and (4.7]), we deduce that

— 1 1 —
[Re(@o — uf, @) < SI10F)7 + 5 0" — uf |
(4.9) k—1)2 |, .2 1[h 2
<c(f@t M2+ )+ o [ slual?ds.
2 Jy,

Thus, (4.6) can be rewritten as
— tk
Dell@¥ (| + [1(—2)*"20H||? + ||&* || < ¢ (H‘I)'“_lH2 + N / e || d8> :
tp—1
By applying Discrete Gronwall’s inequality (Lemma and Lemma we deduce that

tn
[ < ce'r <(N4 +77) + T/ sl ? ds> <ce (N~ + 7).
0
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Letting ¢ = (—A)®* in ([4.5) and taking the real part, we obtain

1 T, =

o) A2k 2—1—78 —AO‘/QCI)k 2+ _A)dF|12 — A2k 12
(4.10) 5 Otll(=4) I+ S 10:(=4) 17+ [[(=2)*@"|17 = pll(=A) |
= —Re(1 +ip) (|u®>7u? — [uk |20, (= 2)*®F) + Re(Gu” — uf, (—=A)*®F).
Similarly to (4.8]) and (4.9), we obtain that

|=2Re(1 -+ ip) (Juk 27t — uly Pk, (—0)°@") |

(4.11) ]
< el (=) RH(|TF + 198]) < 711 (~2) ¢ + ¢ (o512 + 72 4+ N7)
and
_ 1 _

2Re(@r® — uf, (~2)709)| < 11(~2)" | + 4Dt — uf |

(412) 1 o 4 tr 9
SHGAW¢H+/ st ds.
4 k ths

Putting (4.11)) and (4.12) into (4.10]), we obtain

=) « > @ 3 [ 67
Ou[(=20) P BH|* + 7|0, (= 15) 2 BF||* + S 1(=28) |2 — 29| (=) B*||?

(4.13) iy
<ec ||(I>k_1||2+7'2+N_4+/ s”utt||2ds )
te—1

By Gagliardo-Nirenberg inequality and Young’s inequality, one has

1

3pll (= L) 28 |* < 3ep||@F | 2o | @F|| < S I(—L) @F|* + cf| @],

Applying (4.7) and the above inequality, (4.13|) can be rewritten as
| (=) PBF | 4 [[(=2)** || + pll (L) 2"

(4'14) k—12 2 —4 b 2
<cl||®" ||+ T+ N+ sl|ug||* ds |

te—1

Multiplying (4.14)) by 7 and taking the sum for &k from 1 to n, we infer that

[(=2)*2™ > + 7> | (—A)*®F|?
k=1
n th
<ery. <Hq>k1\\2 + 724 N +/ s\|uttH2ds>
k=1 -1
< ce™ (N~ 4 7).
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Letting ¢ = —A®* in ([£.5) and taking the real part, we obtain

1 . )
(4.15) 58tHV‘I>k||2 + §||3tV<I>kH2 4 (=) 0H2gK 2 _ v ak |2

= Re(1 + ip) ([u¥|?our — [uf; [27uk;, ADF) — Re(Dpu” — uf, ADF).
By Taylor’s formula, we deduce that for § € (0, 1),

v(|uk|20uk |2¢7 k )

\UN
(4.16) < (40% + 20)[uF — uf[[uly + 0(uF — uR) P77V (uy + 0(uF — uf))]
+ (20 + D[V (" — uf)||uk + 0(u” — uk)[*.

Integrating by parts and applying , we infer that

2Re(1 4 ip)(Juf 2 uf — |uk |27 uk,, ADF)
= —2Re(1 +ip)(V(|uF2uf — |uk |?7uk,), VOFr)

(4.17) < cl|VeH|u* — ui[la V(uk + 0(u® = uf))lla + | VOH[V (u — uf)l]
< el VO u® — u [l f[uk + O — uf)llmz + | VOV (1 — uf)l]
< [IVQFI2 + (0¥ + [[2%]%)

and

—2Re (D — uf, AD*) = 2Re(V(9su* — uf), VOF) < 2||[VOF||||0:(Vuk) — (Vuk)y.

By Taylor’s formula, we deduce that

2
_ 1
13V u¥) — (V)2 = / (i1 — )V ds
1 (t b
(4.18) < 2/ AL S ds/ s|| Vg ||* ds
tk—1
1 2
< ) sHVuttH ds.
Thus we obtain that
_ 1 [t
(4.19) — 2Re(dpur — uf, AD*) < |VOF|? + k/ 8|| V| ds.
th—1

By (4.17) and (4.19), (4.15) can be rewritten as

B[V * + 7]V BF | + 2 (— ) Pk 2

(4.20) 1 [t
< | VOFIP + (|| R |7 + [19F)%) + k/ |V | ds.

tk—1
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Applying Gagliardo-Nirenberg inequality and Young’s inequality, we have

cl| V2 < ¢f| @F| 2| ok 20/ 0 e) < (=) 129k 1 ook |2,

H1+oz

Then, (4.20) can be rewritten as

D VRH|? 4 79V + () 2k
1 [t
C(”\I/kH%II -+ HQ)ICHZ) + k/ S”VUttHZ ds.
te—1

Multiplying the above formula by 7 and taking the sum for & from 1 to n, we infer that

(9072 + 73 [~ )1 2k 2
k=1

n ¢

1 k

<er) (H‘I’kam + | 2*)1” + / s|| Vugl® d5>

k Je,
k=1 k—1

< ceflr (N*4 +7)+ ce"N72 + er(1+ ti) < celln (N*2 + 7).

Letting ¢ = (—A)27*®% in (4.5) and taking the real part, one has
1

2Ol (=AY - 2k 2+15 CAVO2GRY 12 1 IADRZ — pll(— A2k 12
(121) 2 el (=4) I+ S10:((=5) I+ [[ARHT = pll(=4) |

= —Re(1 +ip) (Juf[P7u® — [uk|27uf;, (= 2)272®%) + Re(Dpuf — uf, (— )27 2dF),
Integrating by parts and applying , we infer that
(4.22)
— 2Re(L + i) (Ju*P7u — [uf 7, (—0)* 72 @")
< 21+ i |[(V ([ P7u — JulyP7uly), (—0)Y2 k)|
< ell(=2)P 2R Ju — ulylla| V (uly + 0 — uf))lla + el (=2) 2 RH |||V (u* — uly)]
< e (=0)¥2 0|
x (Il = el ke + 0u* — k) [l + 0" = who) |V + |9 (= )]
< Ellﬁq’k\l2 + ([P + IV RF]? + [|2*]2).

Integrating by parts and applying Gagliardo-Nirenberg inequality, Young’s inequality and
(4.18]), one has
2Re(@ru — uf, (~A)2700F) < [2(V(@uF — ub), (—A)¥200H)

(4.23) < 2| (=) @R |[0y(VuF) — (Vub )|

1 1 [t
< < ADK|P + ]| @7 + / s|| Vug||? ds.
4 k Ji,_,



The Spectral Method for Long-time Behavior of a Fractional Power Dissipative System 477

By (4.22)) and (4.23)), (4.21)) can be rewritten as

Al (D)2 |? 4 7Dy ((— D) 2eM) |12 + %HAQP’“H2 — 2p||(—A) 2 0k|2
(4.24) -
< e(||UF) 20 4+ VR 4 || 0F)|2) + k/ 8[| Vg || ds.
tk—1

Using Gagliardo-Nirenberg inequality and Young’s inequality, we have
2p)|(=2)'PRF|2 + ¢ VOF|? < ¢ ¥ 7@ + e a2k || @")|
1
< SIAGF|? +cfj @t
So (4.24) can be rewritten as

Dul(—2)' 2B 4 7B ()2 + Ak
(4.25) Lt
< 9+ 0+ [ sl T ds.

tk—1

Multiplying (4.25)) by 7 and taking the sum for &k from 1 to n, we infer that

I(=2)' 720" + 7 | AGK?
k=1

n t
1 k
<ery (H‘I’kH?p +[12F)% + k/t S\IVUtt\\2d8>
k—1

k=1

<ce™ (N2 47)+ce™ N2 +er(l+1t7) <ce™ (N2 4 7).
Letting ¢ = A?®* in ([£.5)) and taking the real part, we obtain

1- T, = o
(4.26) 53H\A‘1>kH2 + 5!!3tﬁ¢k\\2 + [[(=2)F20R|7 — pl| ADH||?

= —Re(1 +ip)(|u¥?uk — [uf|27uk,, A2DF) + Re(Dpuf — uf, A2DF).

Applying Taylor’s formula, integrating by parts and by Gagliardo-Nirenberg inequality,
one has
— 2Re(1 + i) ([uFPour — [uf; 2ok, A20F)
= —2Re(1 +ip)(A(Ju®27uk — [uf27uk), ADF)
< || ARM|(IV (uf + 0(u* —uf))[3]1u* — ufla
IV (ufy + 0(u® = uf)) |4l V (u® = u)]la)
(4.27) + | AR A (u* = up) || + ell Al + 0(u® — uf)) I APH|allu® — ulyls
< || ARF||([fufy + O(u* — uf) [Fpellu® — ufe ] g
[y + 0(u® = uiy)l|2llu” — uiyl| g2 + 1AW~ uR)])

k k_ ok k ko k
+ e[ Aluy + 0(u” — ux)[[[|[ @7 gz+all[[w” — uill g

1
< I (=2) 2R 4 (| 0¥ F + (191170)
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and
1
< Z!(—A)H“/Z‘I’k\\2 + ]| @17

Substituting (4.27)) and ( into , we obtain

@Hﬁ@kuhﬂmw + 21 (ayrorge

(4.28) 2pum>ku2

(4.29) B
< 2Re(Qyu — uf, A2OF) + (|| TF|| %2 + (|01 71).

Integrating by parts and using Taylor’s formula, we infer that
2Re(Dput — uff, A20F) + || ®F||2,
= 2Re ((—2)! 7@k — uf), (~2)+208) + e @F |,
e N L e U

t t 173
c (k 18 ) ds/ SZH(—A)liamuttHZdS.

lk—1 tp—1

)
Then, (4.29) can be written as

N ARM? + 7|0 LR + [|(—L) 20k

tk 2 tk
c tp_1— S _
<= {os — o) — ) dS/ SN(=2) P |* ds + (|| 0¥ |32 + |2F]%).
T Jty— $ tk—1

Multiplying the above formula by 7¢; and taking the sum for k from 1 to n, we infer that

n—1
b | AD™ <TZHA<1>’fH?+chtk ¥ (17 + [12%]%)
k=1 k=1
tr t ty
-t Ztk J e Y TGN
te—1 tp_1

< ceCt" (N_ +7) 4 e N2 fer(14t2)
< cen (N2 4 7).

Namely,
1
A" < ceCt"t—(N_%‘ +7), ¥Yn>1

n

Using the triangle inequality, one has

1
o = Rl < 2009 e + o) < ce (14

n

) (N2 4 7), ¥n>1.
For every interval [tg, T] C RT, we infer that
n n |2 cr 1 —2a
|u" — uR||72 < ce 1+t— (N"““+7) =0 as N - o0, 7—0.
0

Our result then follows from Theorem directly. O
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5. Numerical stability of the discrete system

In this section, we focus on the numerical stability of the discrete scheme.

Theorem 5.1. Assume that o satisfies the following condition

1
1<o<mn{ ——-,14+a,.
V1i4+p?-1

Let {u}, {v}} be two solutions of the discrete scheme (1.5), (L.6]) with the initial values
uly, v, respectively, and the initial values satisfy ||ub| g2 < R, |[v}|lg2 < R. Then if the

time step T is small enough such that T < 1/(8p), we have
lufy = vz < ce luly — o) lIF2, V> 1.
Proof. Let EX = uf\, — vé‘{,, then Ejli, satisfies
(5.1)  (BEY — pEX + (1 +1w)(=L)EN + (1 +ip) (Juiy|*7uly — [vk[*7vx ), ¢) = 0

for all p € Sy, k> 1.
Setting ¢ = E% in (5.1)) and taking the real part, we obtain

1-—- T =
SOAIENIP + S0:EX (1 — pllEXI® + | (—2)Ex|?
(5.2) 2 2
+Re(L +ip) (Juf *7uly — ok *7vR. EX) = 0.
Applying Taylor’s formula, we find that if o satisfies ¢ < 1/(y/1 + u? — 1), we obtain
Re(L + ip) (jufy 7 ufy — [of[* v, EX) 2 0.
Using Holder’s inequality and Young’s inequality, we infer
_ _ P _ _
20| Ex 1> = 2p(r0: B + By 1, EY) < §||Ez’?/|!2 +4p(|EY P + T EX )
Hence, if 7 < 1/(8p), then (5.2)) can be rewritten as
(5-3) BN + (=2 EX|” + pl EX (> < 8pl EX.
Applying Discrete Gronwall’s inequality (Lemma , we deduce
(5.4) IER|? < ¥ | ER .

Taking the sum of (5.3)) for & from 1 to n and using (5.4)), one has

(5:5) IENZ +7 > (I(=2)*2ER P + pl EX|P) < ¥ | ER |1
k=1
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Setting ¢ = —AE% in (5.1), taking the real part and using Gagliardo-Nirenberg

inequality, we obtain

1= T .= o
SOUVERIE + ZIBVERI + | (- 0) ) 2|12

= p| VEXI* + Re(1 +ip) (Juk [*7ufy — [ox 7ok, AE)

1
< §H(—A)(1+“)/2Ejkv||2 + | X%,
namely,
(5.6) FNVENIP + 7|0 VER[ + (=) T2 ER|? < ¢ B

Taking the sum of (5.6)) for £ from 1 to n and using (5.4)), we obtain
n
(5.7) IVERI? + 7Y I(=2) 2B ? < | VES|? + ce® || ER ||,
k=1
Setting ¢ = A2EX, in (5.1)), taking the real part and using Gagliardo-Nirenberg in-

equality, one has

1- T =

SBUABYI? + TIAE P+ (~0) B P

= plIABX? = Re(1 + ip) (Jui|*7ufy — [ox[*7vi, A2E)

< SI=2)FER P + el Ex I3,

1
2
namely,

(5-8) N AERIP + 1(=2)2ER|1? < e EN 17

Taking the sum of (5.8]) for & from 1 to n and using (5.4), we obtain

(5.9) IAER|? < |AES|? + ¢ VEG|® + ce® | EX 1.
Combining (5.5)), (5.7) and (5.9)), we complete the proof. O
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