# $b$-generalized $(\alpha, \beta)$-derivations and $b$-generalized $(\alpha, \beta)$-biderivations of Prime Rings 

## Vincenzo De Filippis* and Feng Wei

Abstract. Let $R$ be a ring, $\alpha$ and $\beta$ two automorphisms of $R$. An additive mapping $d: R \rightarrow R$ is called an $(\alpha, \beta)$-derivation if $d(x y)=d(x) \alpha(y)+\beta(x) d(y)$ for any $x, y \in R$. An additive mapping $G: R \rightarrow R$ is called a generalized $(\alpha, \beta)$-derivation if $G(x y)=$ $G(x) \alpha(y)+\beta(x) d(y)$ for any $x, y \in R$, where $d$ is an $(\alpha, \beta)$-derivation of $R$. In this paper we introduce the definitions of $b$-generalized $(\alpha, \beta)$-derivation and $b$-generalized $(\alpha, \beta)$-biderivation. More precisely, let $d: R \rightarrow R$ and $G: R \rightarrow R$ be two additive mappings on $R, \alpha$ and $\beta$ automorphisms of $R$ and $b \in R . G$ is called a $b$-generalized $(\alpha, \beta)$-derivation of $R$, if $G(x y)=G(x) \alpha(y)+b \beta(x) d(y)$ for any $x, y \in R$.

Let now $D: R \times R \rightarrow R$ be a biadditive mapping. The biadditive mapping $\Delta: R \times$ $R \rightarrow R$ is said to be a $b$-generalized $(\alpha, \beta)$-biderivation of $R$ if, for every $x, y, z \in R$, $\Delta(x, y z)=\Delta(x, y) \alpha(z)+b \beta(y) D(x, z)$ and $\Delta(x y, z)=\Delta(x, z) \alpha(y)+b \beta(x) D(y, z)$.

Here we describe the form of any $b$-generalized $(\alpha, \beta)$-biderivation of a prime ring.

## 1. Introduction

Let $R$ be a prime ring with center $Z(R)$, right Martindale quotient ring $Q_{r}$ and extended centroid $C$. An additive mapping $d: R \rightarrow R$ is said to be a derivation of $R$ if

$$
d(x y)=d(x) y+x d(y)
$$

for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized derivation of $R$ if there exists a derivation $d$ of $R$ such that

$$
F(x y)=F(x) y+x d(y)
$$

for all $x, y \in R$. The derivation $d$ is uniquely determined by $F$, which is called an associated derivation of $F$.

In a recent paper [9], Koşan and Lee propose the following new definition. Let $d: R \rightarrow$ $Q_{r}$ be an additive mapping and $b \in Q_{r}$. An additive mapping $F: R \rightarrow Q_{r}$ is called a left $b$-generalized derivation, with an associated mapping $d$, if $F(x y)=F(x) y+b x d(y)$, for all

[^0]$x, y \in R$. In the same paper it is proved that, if $R$ is prime ring, then $d$ is a derivation of $R$. In the present paper this mapping $F$ will be called a $b$-generalized derivation with an associated pair $(b, d)$. Clearly, any generalized derivation with an associated derivation $d$ is a $b$-generalized derivation with an associated pair $(1, d)$.

Let $\alpha$ be an automorphism of $R$. An additive mapping $d: R \rightarrow R$ is said to be a skew derivation of $R$ if

$$
d(x y)=d(x) y+\alpha(x) d(y)
$$

for all $x, y \in R$. The automorphisms $\alpha$ is called an associated automorphism of $d$. An additive mapping $F: R \rightarrow R$ is called a generalized skew derivation of $R$ if there exists a skew derivation $d$ of $R$ with an associated automorphism $\alpha$ such that

$$
F(x y)=F(x) y+\alpha(x) d(y)
$$

for all $x, y \in R$.
Let now $\alpha$ and $\beta$ be two automorphisms of $R$. An additive mapping $d: R \rightarrow R$ is said to be a $(\alpha, \beta)$-derivation of $R$ if

$$
d(x y)=d(x) \alpha(y)+\beta(x) d(y)
$$

for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized $(\alpha, \beta)$-derivation of $R$ if there exists an $(\alpha, \beta)$-derivation $d$ of $R$ such that

$$
F(x y)=F(x) \alpha(y)+\beta(x) d(y)
$$

for all $x, y \in R$.
There arises the question of whether there exists a unified definition of $b$-generalized derivation and generalized $(\alpha, \beta)$-derivation. In view of this idea, we now give a definition which is a common generalization of the previous two definitions:

Definition 1.1. Let $R$ be an associative algebra, $b \in Q_{r}, d$ an additive mapping of $R$ and $\alpha, \beta$ be two automorphisms of $R$. A linear mapping $F: R \rightarrow R$ is called a b-generalized $(\alpha, \beta)$-derivation of $R$, with an associated word $(b, \alpha, \beta, d)$ if

$$
F(x y)=F(x) \alpha(y)+b \beta(x) d(y)
$$

holds for all $x, y \in R$.
Let now $D: R \times R \rightarrow R$ be a biadditive map. $D$ is called a biderivation if $D(x y, z)=$ $D(x, z) y+x D(y, z)$ for all $x, y, z \in R$. In this case we have that $D(x, y z)=D(x, y) z+$ $y D(x, z)$ for all $x, y, z \in R$.

The concept of a biderivation was introduced in [10] by Maksa. In [3] Brešar, Martindale III and Miers characterized biderivations of noncommutative rings and proved that
any biderivation $D$ of a prime ring $R$ has the following form: $D(x, y)=\lambda[x, y]$ for any $x, y \in R$, where $\lambda$ is a fixed element of $C$.

Later in [1] Argaç introduced the notion of generalized biderivation. More precisely, let $D: R \times R \rightarrow R$ be a biderivation. A biadditive mapping $\Delta: R \times R \rightarrow R$ is said to be a generalized biderivation if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a generalized derivation of $R$ associated with $D$ as well as for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a generalized derivation of $R$ associated with $D$, i.e., $\Delta(x, y z)=\Delta(x, y) z+y D(x, z)$ and $\Delta(x y, z)=\Delta(x, z) y+x D(y, z)$ for all $x, y, z \in R$. Argaç also proved that any generalized biderivation $D$ of a prime ring $R$ has the following form: $D(x, y)=\lambda[x, y]$ for any $x, y \in R$, where $\lambda$ is a fixed element of $C$.

Let now $D: R \times R \rightarrow R$ be a biadditive mapping, $\alpha$ an automorphism of $R . D$ is said to be a skew biderivation associated with $\alpha$ if for every $x \in R$, the map $y \mapsto D(x, y)$ is a skew derivation of $R$ associated with $\alpha$ as well as for every $y \in R$, the map $x \mapsto D(x, y)$ is a skew derivation of $R$ associated with $\alpha$, i.e., $D(x, y z)=D(x, y) z+\alpha(y) D(x, z)$ and $D(x y, z)=D(x, z) y+\alpha(x) D(y, z)$ for all $x, y, z \in R$. In [2], Brešar determined the form of any skew biderivation of a prime ring $R$. More precisely, if $D$ is a skew biderivation with an associated automorphism $\alpha$, then there exists an invertible element $q$ of $Q$ such that $\alpha(x)=q x q^{-1}$ and $D(x, y)=q[x, y]$ for any $x, y \in R$.

More recently, in [6] Fošner described the form of generalized skew biderivations in a prime ring. More precisely, if $D: R \times R \rightarrow R$ is a skew biderivation of $R$, associated with the automorphism $\alpha$ of $R$, then the biadditive mapping $\Delta: R \times R \rightarrow R$ is said to be a generalized skew biderivation associated with $\alpha$ and $D$, if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a generalized skew derivation of $R$ associated with $\alpha$ and $D$, as well as for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a generalized skew derivation of $R$ associated with $\alpha$ and $D$, i.e., $\Delta(x, y z)=\Delta(x, y) z+\alpha(y) D(x, z)$ and $\Delta(x y, z)=\Delta(x, z) y+\alpha(x) D(y, z)$ for all $x, y, z \in R$. In [6, Theorem 1] it is proved that if $\Delta$ is a generalized skew biderivation with an associated automorphism $\alpha$, then there exists an invertible element $q$ of $Q$ such that $\alpha(x)=q x q^{-1}$ and $\Delta(x, y)=q[x, y]$ for any $x, y \in R$.

In light of Definition 1.1, here we would like to introduce the following concepts, which generalize the previous cited ones:

Definition 1.2. Let $R$ be an associative algebra, $b \in Q_{r}, D: R \times R \rightarrow R$ a biadditive mapping of $R$ and $\alpha, \beta$ be two automorphisms of $R$. $D$ is said to be an $(\alpha, \beta)$-biderivation of $R$ if for every $x \in R$, the map $y \mapsto D(x, y)$ is an $(\alpha, \beta)$-derivation of $R$, as well as for every $y \in R$, the map $x \mapsto D(x, y)$ is an $(\alpha, \beta)$-derivation of $R$, i.e.,
(a) $D(x, y z)=D(x, y) \alpha(z)+\beta(y) D(x, z)$ for any $x, y, z \in R$;
(b) $D(x y, z)=D(x, z) \alpha(y)+\beta(x) D(y, z)$ for any $x, y, z \in R$.

Definition 1.3. Let $R$ be an associative algebra, $b \in Q_{r}, D: R \times R \rightarrow R$ a biadditive mapping of $R$ and $\alpha, \beta$ be two automorphisms of $R$. The biadditive mapping $\Delta: R \times R \rightarrow$ $R$ is said to be a $b$-generalized $(\alpha, \beta)$-biderivation associated with the word $(b, \alpha, \beta, D)$ if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a $b$-generalized $(\alpha, \beta)$-derivation of $R$ associated with the word $(b, \alpha, \beta, D)$, as well as for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a $b$-generalized $(\alpha, \beta)$-derivation of $R$ associated with the word $(b, \alpha, \beta, D)$, i.e.,
(a) $\Delta(x, y z)=\Delta(x, y) \alpha(z)+b \beta(y) D(x, z)$ for any $x, y, z \in R$;
(b) $\Delta(x y, z)=\Delta(x, z) \alpha(y)+b \beta(x) D(y, z)$ for any $x, y, z \in R$.

Here we will describe the structure of an arbitrary $b$-generalized $(\alpha, \beta)$-biderivation in a prime ring and prove the following:

Theorem 1.4. Let $R$ be a non-commutative prime ring, $b \in Q_{r}, D: R \times R \rightarrow R a$ biadditive mapping of $R$ and $\alpha, \beta$ be two automorphisms of $R$. If $\Delta$ is a non-zero bgeneralized $(\alpha, \beta)$-biderivation of $R$, associated with the word $(b, \alpha, \beta, D)$, then $D$ is an ( $\alpha, \beta$ )-biderivation of $R$ and there exists $q \in Q$ such that $\alpha^{-1} \beta(x)=q x q^{-1}$ for any $x \in R$, and $D(x, y)=\alpha(q)[\alpha(x), \alpha(y)], \Delta(x, y)=b \alpha(q)[\alpha(x), \alpha(y)]$ for all $x, y \in R$.

## 2. Characterization of $b$-generalized $(\alpha, \beta)$-derivations

In this section we would like to describe the general form of $b$-generalized $(\alpha, \beta)$-derivations in prime rings.

Lemma 2.1. Let $R$ be a prime ring, $\alpha, \beta \in \operatorname{Aut}(R), 0 \neq b \in Q_{r}, d: R \rightarrow R$ be an additive mapping of $R$ and $F$ be the b-generalized $(\alpha, \beta)$-derivation of $R$ with an associated word $(b, \alpha, \beta, d)$. Then $d$ is an $(\alpha, \beta)$-derivation of $R$.

Proof. For any $x, y, z \in R$, we have both

$$
F(x y z)=F(x y) \alpha(z)+b \beta(x y) d(z)=F(x) \alpha(y) \alpha(z)+b \beta(x) d(y) \alpha(z)+b \beta(x) \beta(y) d(z)
$$

and

$$
F(x y z)=F(x) \alpha(y) \alpha(z)+b \beta(x) d(y z) .
$$

Comparing the above two relations, it follows that

$$
0=b \beta(x) d(y) \alpha(z)+b \beta(x) \beta(y) d(z)-b \beta(x) d(y z)
$$

That is,

$$
b \beta(R)(d(y z)-d(y) \alpha(z)-\beta(y) d(z))=0 .
$$

Therefore, by the primeness of $R$ and since $b \neq 0$, we get $d(y z)=d(y) \alpha(z)+\beta(y) d(z)$ for all $y, z \in R$, as required.

Fact 2.2. Let $R$ be a prime ring, then the following statements hold:
(a) Any automorphism of $R$ can be uniquely extended to $Q_{r}$ (see [5, Fact 2]).
(b) Every generalized skew derivation of $R$ can be uniquely extended to $Q_{r}$ (see 4, Lemma 2]).

Proposition 2.3. Let $R$ be a prime ring, $\alpha, \beta \in \operatorname{Aut}(R), b \in Q_{r}, d: R \rightarrow R$ be an additive mapping of $R$ and $F$ be the $b-(\alpha, \beta)$-derivation of $R$ with an associated word $(b, \alpha, \beta, d)$. Then $F$ can be uniquely extended to $Q_{r}$ and assumes the form $F(x)=a \alpha(x)+b d(x)$, where $a \in Q_{r}$.

Proof. First we recall that, for any $x \in Q_{r}$, there exists an ideal $I_{x}$ of $R$ such that $x I_{x} \subseteq R$.
In case $b=0$, then $F(x y)=F(x) \alpha(y)$. Thus $F$ can be extended to $Q_{r}$ by $F(x y)=$ $F(x) \alpha(y)$ for all $y \in I_{x}$.

Let us consider the case of $b \neq 0$. Define $T: R \rightarrow R$ such that $T(x)=F(x)-b d(x)$. Since $d$ is an $(\alpha, \beta)$-derivation of $R$, we have

$$
\begin{aligned}
T(x y) & =F(x) \alpha(y)+b \beta(x) d(y)-b d(x) \alpha(y)-b \beta(x) d(y) \\
& =(F(x)-b d(x)) \alpha(y)=T(x) \alpha(y)
\end{aligned}
$$

for all $x, y \in R$. As above, $T$ can be extended to $Q_{r}$ by $T(x y)=T(x) \alpha(y)$ for all $y \in I_{x}$. Since $F(x)=T(x)+b d(x)$ and both $T$ and $d$ can be uniquely extended to $Q_{r}$, we know that $F$ can be uniquely extended to $Q_{r}$.

Moreover, for any $x \in Q_{r}, F(x)=F(1 \cdot x)=F(1) \alpha(x)+b \beta(1) d(x)=a \alpha(x)+b d(x)$, where $a=F(1) \in Q_{r}$.

Example 2.4. Let $R$ be an associative algebra, $\alpha$ and $\beta$ be two automorphisms of $R$, $a, b, c \in R$. The following mapping

$$
G: R \rightarrow R, \quad x \mapsto a \alpha(x)+b \beta(x) c
$$

is a $b$-generalized $(\alpha, \beta)$-derivation of $R$ with an associated word $(b, \alpha, \beta, d)$, where $d(x)=$ $\beta(x) c-c \alpha(x)$ for all $x \in R$. Indeed, for all $x, y \in R$,

$$
\begin{aligned}
G(x y) & =a \alpha(x) \alpha(y)+b \beta(x) \beta(y) c \\
& =a \alpha(x) \alpha(y)-b \beta(x) c \alpha(y)+b \beta(x) c \alpha(y)+b \beta(x) \beta(y) c \\
& =(a \alpha(x)+b \beta(x) c) \alpha(y)+b \beta(x)(\beta(y) c-c \alpha(y)) \\
& =G(x) \alpha(y)+b \beta(x) d(y),
\end{aligned}
$$

where $d(y):=\beta(y) c-c \alpha(y)$ is an inner $(\alpha, \beta)$-derivation of $R$ induced by the element $c \in R$, with two associated automorphisms $\alpha$ and $\beta$. Such $b$-generalized $(\alpha, \beta)$-derivations are called inner $b$-generalized ( $\alpha, \beta$ )-derivations.

Example 2.5. Let $R$ be an associative algebra, $b \in R, \alpha, \beta$ two automorphisms of $R$ and $d$ an $(\alpha, \beta)$-derivation of $R$. Then the following mapping

$$
G: R \rightarrow R, \quad x \mapsto b(\alpha-d)(x)
$$

is a $b$-generalized $(\alpha, \beta)$-derivation of $R$. Indeed, for all $x, y \in R$,

$$
\begin{aligned}
G(x y) & =b(\alpha-d)(x y)=b \alpha(x) \alpha(y)-b d(x y) \\
& =b \alpha(x) \alpha(y)-b d(x) \alpha(y)-b \beta(x) d(y) \\
& =(b \alpha(x)-b d(x)) \alpha(y)-b \beta(x) d(y) \\
& =G(x) \alpha(y)-b \beta(x) d(y) .
\end{aligned}
$$

Thus $G$ is a $b$-generalized $(\alpha, \beta)$-derivation of $R$, with an associated word $(-b, \alpha, \beta, d)$.
Example 2.6. Let $R$ be an associative algebra, $b \in R, \alpha, \beta$ two automorphisms of $R$ and $d$ an $(\alpha, \beta)$-derivation of $R$. Then the following mapping

$$
G: R \rightarrow R, \quad x \mapsto b(\beta-d)(x)
$$

is a $b$-generalized $(\alpha, \beta)$-derivation of $R$. Indeed, for all $x, y \in R$,

$$
\begin{aligned}
G(x y) & =b(\beta-d)(x y)=b \beta(x) \beta(y)-b d(x y) \\
& =b \beta(x) \beta(y)-b d(x) \alpha(y)-b \beta(x) d(y) \\
& =b \beta(x) \beta(y)-b d(x) \alpha(y)-b \beta(x) d(y)+b \beta(x) \alpha(y)-b \beta(x) \alpha(y) \\
& =(b \beta(x)-b d(x)) \alpha(y)+b \beta(x)(\beta(y)-\alpha(y)-d(y)) \\
& =G(x) \alpha(y)-b \beta(x) g(y)
\end{aligned}
$$

where it is easy to see that $g(y)=\beta(y)-\alpha(y)-d(y)$ is an $(\alpha, \beta)$-derivation of $R$. Thus $G$ is a $b$-generalized $(\alpha, \beta)$-derivation of $R$, with an associated word $(b, \alpha, \beta, g)$.
3. $b$-generalized $(\alpha, \beta)$-biderivations of prime rings

We permit the following:
Lemma 3.1. Let $R$ be a prime ring, $\Delta: R \times R \rightarrow R$ a non-zero biadditive mapping of $R$ and $\alpha$ be an automorphism of $R$. Assume that:
(a) $\Delta(x, y z)=\Delta(x, y) \alpha(z)$ for any $x, y, z \in R$;
(b) $\Delta(x y, z)=\Delta(x, z) \alpha(y)$ for any $x, y, z \in R$.

Then $R$ is commutative.

Proof. For any $x, y, z, t \in R$ we have both

$$
\begin{equation*}
\Delta(x y, z t)=\Delta(x, z t) \alpha(y)=\Delta(x, z) \alpha(t) \alpha(y) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(x y, z t)=\Delta(x y, z) \alpha(t)=\Delta(x, z) \alpha(y) \alpha(t) \tag{3.2}
\end{equation*}
$$

Comparing (3.1) with (3.2) one has $\Delta(x, z)[\alpha(y), \alpha(t)]=0$ for all $x, y, z, t \in R$. Replacing $y$ by $r y$, for any $r \in R$, we get $\Delta(x, z) r[\alpha(y), \alpha(t)]=0$ for all $x, y, z, t, r \in R$. By the primeness of $R$ and since $\Delta \neq 0$, it follows that $[\alpha(y), \alpha(t)]=0$ for any $y, t \in R$, that is $R$ is commutative.

Lemma 3.2. Let $R$ be a non-commutative prime ring, $b \in Q_{r}, D: R \times R \rightarrow R$ a biadditive mapping of $R$ and $\alpha$, $\beta$ be two automorphisms of $R$. If $\Delta$ is a non-zero b-generalized $(\alpha, \beta)$ biderivation of $R$, associated with the word $(b, \alpha, \beta, D)$, then $D$ is an $(\alpha, \beta)$-biderivation of $R$.

Proof. Since $R$ is not commutative and in light of Lemma 3.1, we may assume $b \neq 0$.
Let $x, y, z, t$ be arbitrary elements of $R$. Then

$$
\begin{equation*}
\Delta(x(y t), z)=\Delta(x, z) \alpha(y) \alpha(t)+b \beta(x) D(y t, z) \tag{3.3}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\Delta((x y) t, z) & =\Delta(x y, z) \alpha(t)+b \beta(x) \beta(y) D(t, z)  \tag{3.4}\\
& =\Delta(x, z) \alpha(y) \alpha(t)+b \beta(x) D(y, z) \alpha(t)+b \beta(x) \beta(y) D(t, z)
\end{align*}
$$

Relations (3.3) and (3.4) imply that

$$
\begin{equation*}
b \beta(x)(D(y t, z)-D(y, z) \alpha(t)-\beta(y) D(t, z))=0, \quad \forall x, y, z, t \in R . \tag{3.5}
\end{equation*}
$$

By the primeness of $R$ and since $b \neq 0$, relation (3.5) implies that $D(y t, z)=D(y, z) \alpha(t)+$ $\beta(y) D(t, z)$.

By using the same argument one may prove that $D(y, t z)=D(y, t) \alpha(z)+\beta(t) D(y, z)$ for any $y, z, t \in R$, that is $D$ is an $(\alpha, \beta)$-biderivation, as required.

Proposition 3.3. Let $R$ be a non-commutative prime ring, $\alpha$, $\beta$ be two automorphisms of $R, D: R \times R \rightarrow R$ a non-zero $(\alpha, \beta)$-biderivation of $R$. Then there exists $q \in Q_{r}$ such that $\alpha^{-1} \beta(x)=q x q^{-1}$ for any $x \in R$, and $D(x, y)=\alpha(q)[\alpha(x), \alpha(y)]$ for all $x, y \in R$.

Proof. For any $x, y, z, t \in R$ we have both

$$
\begin{align*}
D(x y, z t)= & D(x, z t) \alpha(y)+\beta(x) D(y, z t) \\
= & D(x, z) \alpha(t) \alpha(y)+\beta(z) D(x, t) \alpha(y)+\beta(x) D(y, z) \alpha(t)  \tag{3.6}\\
& +\beta(x) \beta(z) D(y, t)
\end{align*}
$$

and

$$
\begin{align*}
D(x y, z t)= & D(x y, z) \alpha(t)+\beta(z) D(x y, t) \\
= & D(x, z) \alpha(y) \alpha(t)+\beta(x) D(y, z) \alpha(t)+\beta(z) D(x, t) \alpha(y)  \tag{3.7}\\
& +\beta(z) \beta(x) D(y, t) .
\end{align*}
$$

Comparing (3.6) with (3.7) we have that

$$
\begin{equation*}
D(x, z)[\alpha(t), \alpha(y)]+[\beta(x), \beta(z)] D(y, t)=0, \quad \forall x, y, z, t \in R . \tag{3.8}
\end{equation*}
$$

Replacing $y$ by $u y$ in (3.8), it follows that

$$
\begin{align*}
& D(x, z)[\alpha(t), \alpha(u)] \alpha(y)+D(x, z) \alpha(u)[\alpha(t), \alpha(y)] \\
& +[\beta(x), \beta(z)] D(u, t) \alpha(y)+[\beta(x), \beta(z)] \beta(u) D(y, t)=0, \quad \forall x, y, z, t, u \in R \tag{3.9}
\end{align*}
$$

By using (3.8) in (3.9), one has

$$
\begin{equation*}
D(x, z) \alpha(u)[\alpha(y), \alpha(t)]-[\beta(x), \beta(z)] \beta(u) D(y, t)=0, \quad \forall x, y, z, t, u \in R \tag{3.10}
\end{equation*}
$$

We remark that, since $R$ is not commutative and $D \neq 0$, then there exist $x_{0}, y_{0}, z_{0}, t_{0} \in R$ such that

$$
\left[\alpha\left(y_{0}\right), \alpha\left(t_{0}\right)\right] \neq 0 \quad \text { and } \quad D\left(x_{0}, z_{0}\right) \neq 0
$$

Therefore, by (3.10), $\left[\beta\left(x_{0}\right), \beta\left(z_{0}\right)\right] \beta(u) D\left(y_{0}, t_{0}\right) \neq 0$ for some element $u \in R$, that is both $\left[\beta\left(x_{0}\right), \beta\left(z_{0}\right)\right] \neq 0$ and $D\left(y_{0}, t_{0}\right) \neq 0$.

Now we fix $x_{0}, z_{0}, y_{0}, t_{0}$, with $\left[x_{0}, z_{0}\right] \neq 0,\left[y_{0}, t_{0}\right] \neq 0, D\left(x_{0}, z_{0}\right) \neq 0$ and $D\left(y_{0}, t_{0}\right) \neq$ 0 . For simplicity of notation we write $a_{1}=D\left(x_{0}, z_{0}\right) \neq 0, a_{2}=\left[\alpha\left(y_{0}\right), \alpha\left(t_{0}\right)\right] \neq 0$, $a_{3}=\left[\beta\left(x_{0}\right), \beta\left(z_{0}\right)\right] \neq 0$ and $a_{4}=D\left(y_{0}, t_{0}\right) \neq 0$, so that, by relation (3.10) we get

$$
\begin{equation*}
a_{1} \alpha(u) a_{2}-a_{3} \beta(u) a_{4}=0, \quad \forall u \in R \tag{3.11}
\end{equation*}
$$

that is $R$ satisfies the following generalized polynomial identity with automorphisms $\alpha$ and $\beta$ :

$$
\begin{equation*}
a_{1} \alpha(X) a_{2}-a_{3} \beta(X) a_{4} \tag{3.12}
\end{equation*}
$$

Suppose that $\alpha$ and $\beta$ are mutually outer, that is $\alpha^{-1} \beta$ is not an inner automorphism of $Q_{r}$. In this case, by [7, Theorem 4] and relation (3.12), it follows that $a_{1} X a_{2}-a_{3} Y a_{4}$ is
a generalized polynomial identity for $R$, that is $a_{1} r_{1} a_{2}-a_{3} r_{2} a_{4}=0$ for any $r_{1}, r_{2} \in Q_{r}$. In particular, for $r_{1}=0$ (respectively for $r_{2}=0$ ) we have $a_{3} r_{2} a_{4}=0$ for any $r_{2} \in Q_{r}$ (respectively $a_{1} r_{1} a_{2}=0$ for any $r_{1} \in Q_{r}$ ). Hence, by the primeness of $Q_{r}$, either $a_{1}=0$ or $a_{2}=0$ (respectively either $a_{3}=0$ or $a_{4}=0$ ), which is a contradiction, since $a_{1}, a_{2}, a_{3}$, $a_{4}$ are not zeros.

Hence we may assume that $\alpha^{-1} \beta$ is an inner automorphism of $Q_{r}$, that is there exists an invertible element of $Q_{r}$ such that $\alpha^{-1} \beta(x)=\operatorname{pxp}^{-1}$ for any $x \in R$. Now we apply automorphism $\alpha^{-1}$ to relation (3.11):

$$
\alpha^{-1}\left(a_{1}\right) u \alpha^{-1}\left(a_{2}\right)-\alpha^{-1}\left(a_{3}\right) p u p^{-1} \alpha^{-1}\left(a_{4}\right)=0, \quad \forall u \in R .
$$

Since $\alpha^{-1}\left(a_{1}\right) \neq 0, \alpha^{-1}\left(a_{2}\right) \neq 0, \alpha^{-1}\left(a_{3}\right) p \neq 0$ and $p^{-1} \alpha^{-1}\left(a_{4}\right) \neq 0$ and by using the result in [8, Lemma 1.3.2], it follows that there exists an element $\lambda \in C$, depending on the choice of $x_{0}, z_{0}, y_{0}$ and $t_{0}$, such that $\alpha^{-1}\left(a_{1}\right)=\lambda \alpha^{-1}\left(a_{3}\right) p$ and $p^{-1} \alpha^{-1}\left(a_{4}\right)=\lambda \alpha^{-1}\left(a_{2}\right)$. Hence $\alpha^{-1}\left(D\left(x_{0}, z_{0}\right)\right)=\lambda p\left[x_{0}, z_{0}\right]$ and $\alpha^{-1}\left(D\left(y_{0}, t_{0}\right)\right)=\lambda p\left[y_{0}, t_{0}\right]$.

By repeating the same process for $y_{1}, t_{1}$ elements of $R$ such that $\left[y_{1}, t_{1}\right] \neq 0$ and $D\left(y_{1}, t_{1}\right) \neq 0$, it follows that there exist $\lambda^{\prime} \in C$, depending on the choice of $x_{0}, z_{0}, y_{1}$ and $t_{1}$, such that $\alpha^{-1}\left(D\left(x_{0}, z_{0}\right)\right)=\lambda^{\prime} p\left[x_{0}, z_{0}\right]$ and $\alpha^{-1}(D(y, t))=\lambda^{\prime} p[y, t]$.

Thus $\lambda^{\prime} p\left[x_{0}, z_{0}\right]=\lambda p\left[x_{0}, z_{0}\right]$ and, since $0 \neq p$ is invertible and $\left[x_{0}, z_{0}\right] \neq 0$, one has $\lambda=\lambda^{\prime}$. In other words, there exists a unique $\lambda \in C$ such that

$$
\begin{equation*}
[x, z] \neq 0 \quad \Longrightarrow \quad \alpha^{-1}(D(x, z))=\lambda p[x, z] . \tag{3.13}
\end{equation*}
$$

Finally consider two elements $x_{1}, z_{1} \in R$ such that $\left[x_{1}, z_{1}\right]=0$. Then, by 3.10,

$$
\begin{equation*}
D\left(x_{1}, z_{1}\right) \alpha(u)[\alpha(y), \alpha(t)]=0, \quad \forall y, t, u \in R . \tag{3.14}
\end{equation*}
$$

By the primeness of $R$ and since $R$ is not commutative, relation (3.14) implies $D\left(x_{1}, z_{1}\right)=$ 0 .

Notice that in a similar way one may prove that $D\left(x_{2}, z_{2}\right)=0$ implies $\left[x_{2}, z_{2}\right]=0$. Hence it is proved that

$$
\begin{equation*}
[x, z]=0 \quad \Longleftrightarrow \quad D(x, z)=0 \tag{3.15}
\end{equation*}
$$

From (3.13) and (3.15) it follows that there exists $\lambda \in C$ such that

$$
\begin{equation*}
\alpha^{-1}(D(x, z))=\lambda p[x, z], \forall x, z \in R . \tag{3.16}
\end{equation*}
$$

Notice that $\alpha^{-1} \beta(x)=p_{x p} p^{-1}=(\lambda p) x(\lambda p)^{-1}$. Hence, if we denote $q=\lambda p$ then 3.16) reduces to

$$
D(x, z)=\alpha(q)[\alpha(x), \alpha(z)], \forall x, z \in R
$$

and we are done.

Proof of Theorem 1.4. For any $x, y, z, t \in R$ we have both

$$
\begin{align*}
\Delta(x y, z t)= & \Delta(x, z t) \alpha(y)+b \beta(x) D(y, z t) \\
= & \Delta(x, z) \alpha(t) \alpha(y)+b \beta(z) D(x, t) \alpha(y)+b \beta(x) D(y, z) \alpha(t)  \tag{3.17}\\
& +b \beta(x) \beta(z) D(y, t)
\end{align*}
$$

and

$$
\begin{align*}
\Delta(x y, z t)= & \Delta(x y, z) \alpha(t)+b \beta(z) D(x y, t) \\
= & \Delta(x, z) \alpha(y) \alpha(t)+b \beta(x) D(y, z) \alpha(t)+b \beta(z) D(x, t) \alpha(y)  \tag{3.18}\\
& +b \beta(z) \beta(x) D(y, t) .
\end{align*}
$$

Comparing (3.17) with (3.18) we have that

$$
\begin{equation*}
\Delta(x, z)[\alpha(t), \alpha(y)]+b[\beta(x), \beta(z)] D(y, t)=0, \quad \forall x, y, z, t \in R \tag{3.19}
\end{equation*}
$$

In light of Proposition 3.3, there exists $q \in Q_{r}$ such that $\alpha^{-1} \beta(x)=q x q^{-1}$ and $D(y, t)=$ $\alpha(q)[\alpha(y), \alpha(t)]$. Thus we may write relation (3.19) as follows:

$$
\Delta(x, z)[\alpha(t), \alpha(y)]+b[\beta(x), \beta(z)] \alpha(q)[\alpha(y), \alpha(t)]=0, \quad \forall x, y, z, t \in R
$$

that is

$$
(\Delta(x, z)-b[\beta(x), \beta(z)] \alpha(q))[\alpha(t), \alpha(y)]=0, \quad \forall x, y, z, t \in R .
$$

Replacing $t$ by $t^{\prime} t$, for any $t^{\prime} \in R$, we have

$$
\begin{aligned}
0 & =(\Delta(x, z)-b[\beta(x), \beta(z)] \alpha(q))\left[\alpha\left(t^{\prime}\right) \alpha(t), \alpha(y)\right] \\
& =(\Delta(x, z)-b[\beta(x), \beta(z)] \alpha(q)) \alpha\left(t^{\prime}\right)[\alpha(t), \alpha(y)], \quad \forall x, y, z, t, t^{\prime} \in R,
\end{aligned}
$$

that is

$$
(\Delta(x, z)-b[\beta(x), \beta(z)] \alpha(q)) R[\alpha(t), \alpha(y)]=0, \quad \forall x, y, z, t \in R .
$$

By the primeness of $R$ and since $R$ is not commutative, it follows that $\Delta(x, z)=b[\beta(x)$, $\beta(z)] \alpha(q)$. Finally, since $\alpha^{-1} \beta(x)=q x q^{-1}$ implies $\beta(x) \alpha(q)=\alpha(q) \alpha(x)$ for all $x \in R$, then $\Delta(x, z)=b \alpha(q)[\alpha(x), \alpha(z)]$, as required.

## References

[1] N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006), no. 3, 371-380.
[2] M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. $3,764-786$.
[3] M. Brešar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342-357.
[4] J.-C. Chang, On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math. 7 (2003), no. 1, 103-113.
[5] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra 149 (1992), no. 2, 371-404.
[6] A. Fošner, On generalized $\alpha$-biderivations, Mediterr. J. Math. 12 (2015), no. 1, 1-7.
[7] V. K. Harčenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
[8] I. N. Herstein, Rings with Involution, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Ill.-London, 1976.
[9] M. T. Koşan and T.-K. Lee, b-generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc. 96 (2014), no. 3, 326-337.
[10] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15 (35) (1980), no. 2, 279-282.

Vincenzo De Filippis
MIFT, University of Messina, 98166, Messina, Italy
E-mail address: defilippis@unime.it

## Feng Wei

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, P. R. China

E-mail address: daoshuo@hotmail.com, daoshuowei@gmail.com


[^0]:    Received June 13, 2017; Accepted September 14, 2017.
    Communicated by Kunio Yamagata.
    2010 Mathematics Subject Classification. 16R50, 16W25, 16N60.
    Key words and phrases. prime ring, generalized skew derivation, biderivation.
    *Corresponding author.

