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Optimal Control of Second Order Stochastic Evolution Hemivariational

Inequalities with Poisson Jumps
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Abstract. The purpose of this article is to study the optimal control problem of second

order stochastic evolution hemivariational inequalities with Poisson jumps by virtue

of cosine operator theory in the Hilbert space. Initially, the sufficient conditions for

existence of mild solution of the proposed system are verified by applying properties

of Clarke’s subdifferential operator and fixed point theorem in multivalued maps.

Further, we formulated and proved the existence results for optimal control of the

proposed system with corresponding cost function by using Balder theorem. Finally

an example is provided to illustrate the main results.

1. Introduction

Stochastic differential equations (SDEs) are important to modelling the real life phenom-

ena where there is a need for an aspect of randomness. Stochastic evolution equations

(SEEs) in infinite dimensional spaces are motivated by the random phenomena studied in

the natural sciences like physics, chemistry and in control theory. The existence of mild

solutions for various types of SEEs and its optimal control in Hilbert spaces are extensively

studied by many authors (see [5, 12,22,25,26]).

An optimal control problem (OCP) describes the path of control variables concerned

with minimizing the cost functional or maximizing a payoff to the corresponding sys-

tem over a set of admissible control functions. Nowadays, optimal control theory has

a considerable development and have fruitful applications in many fields like science and

engineering (see [7,9,11,14,15]). Stochastic optimal control problem (SOCP) makes to de-

sign the time path of the controlled variables which performs the desired control task with

minimum cost despite the presence of noise. SOCPs and its applications have received
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extensive attention in the literature (see [13,21,23,24]). The optimal control of SEEs is an

emerging topics in the literature (see [23–26]). For a nonlinear SOCPs, Zhou [25] studied

the optimal control in which the controlled state dynamics is governed by a stochastic

evolution equations in Hilbert space. Moreover, nonlinear second order SOCPs in infinite

dimensions, mainly Hilbert space and Banach space, arise in various applications such as

stochastic wave equations and many other physical phenomena in both science and engi-

neering (see [22] and references therein). To model the stochastic phenomena, researchers

have employed Wiener process and Poisson jumps. SDEs with Poisson jumps are the most

popular systems in modelling and widely used to describe the asset and commodity price

dynamics (see [4, 22,24]).

Hemivariational inequalities represent a class of nonlinear inclusions that are associ-

ated with the Clarke’s subdifferential operator and has applications in non-convex op-

timization and structural analysis. Inequality problems can be classified into two main

classes, namely; variational inequality and hemivariational inequality. It is known that the

variational inequality mainly concerns with the convex energy functions whereas the hemi-

variational inequalities are focussed with non-smooth and non-convex energy functions.

The notion of hemivariational inequality was first proposed by the author Panagiotopoulos

in 1981 and in that he represents mechanical problems by using hemivariational inequal-

ities [17]. Many problems from nonsmooth contact mechanics involving multivalued and

nonmonotone consitutive laws with boundary conditions can be modelled by means of

hemivational inequality or subdifferential inclusions (see [8,16–18] for more applications).

At present the existence of hemivariational inequalities in various fields receives much

attention to the authors (see [7, 10, 12, 14, 15, 20]). Specifically, Migorski and Ochal [15]

established the OCPs for parabolic hemivariational inequalities. The existence of solu-

tions and its optimal control for hyperbolic hemivariational inequalities are investigated

in the literature [20]. The second order nonlinear evolution hemivariational inequalities in

Hilbert space with applications to classical wave equation is discussed in [10]. The exis-

tence and controllability results of hemivariarional inequalities using stochastic fractional

differential equations are discussed in [12]. The intention of present paper is to identify

an optimal control for the model generated by second order stochastic hemivariational

inequalities with Poisson jumps.

Recently, the authors studied the optimal control results of hemivariational inequalities

using infinite-dimensional spaces (see [9, 14, 15, 19, 20]). In particular, optimal control of

hemivariational inequalities with delay is studied by Jeong [19]. In [9], Liu et al. studied

the existence of feasible pairs and optimal state-control pairs for the feedback control

system governed by evolution hemivariational inequalities. However, to the best of our

knowledge, there is no work reported on the existence of optimal control study described
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by second order stochastic hemivariational inequalities driven by Poisson jumps in infinite

dimensional spaces. Motivated by [9, 10, 12], we developed the model in terms of second

order hemivariational inequality in stochastic sense with Poisson jumps in Hilbert space.

In this paper, the optimal control study of the second order nonlinear stochastic evo-

lution hemivariational inequalities with Poisson jumps as follows:

(1.1)


¨
dx′(t) + [Ax(t) +Bu(t)] dt+ g(t, x(t)) dw(t) +

∫
Z h(t, x(t), η)‹N(dt, dη), v

∂
H
,

+F 0(t, x(t); v) ≥ 0, a.e. t ∈ J := [0, T ] and ∀ v ∈ H,

x(0) = x0, x′(0) = y0,

where the state variables x(·) takes the values in the separable Hilbert space H with the

norm ‖ · ‖H . A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous

cosine family C(t), (t > 0) on H. Let U be set of all admissible controls which is also a

Hilbert space and u be a control function. Let B be a bounded linear operator from U into

H. Let (Ω,F,P) be a complete probability space and let K be another separable Hilbert

space. Suppose that {w(t) : t ≥ 0} is a K-Wiener process with a finite trace nuclear covari-

ance operator Q ≥ 0. We are employing the same notations ‖ · ‖ for the norm of L(K,H),

where L(K,H) denotes the space of all bounded operators from K into H. Simply as

L(K,H) = L(H) if K = H. Let N(dt, dη) be the Poisson counting measure which is in-

duced by the Poisson point process r(·) in the measurable space (Z,B(Z)) defined on the

complete probability space (Ω,F,P) and the compensated martingale measure is denoted

by ‹N(dt, dη) = N(dt, dη)−λ(dη)dt. Let g : J×H → LQ(K,H), h : J×H×(Z−{0})→ H

be appropriate mappings and specified it in the next section where LQ(K,H) denotes the

space of all Q-Hilbert Schmidt operators from K into H. Let F 0(t, · ; · ) be the generalized

Clarke’s directional derivative [3] of a locally Lipschitz function F (t, · ) : H → R.

This article is characterized as follows: Section 2 gives some basic definitions and

the preliminary results. Section 3 describes the sufficient conditions for the existence of

mild solutions of proposed system by utilizing some properties of Clarke’s subdifferential

operator and multivalued fixed point theorem. Also, the existence of an optimal control is

derived by applying Balder theorem. In Section 4, an application is provided to illustrate

the theory.

2. Preliminaries

Let H be a separable Hilbert space and its norm be denoted as ‖ · ‖H . Let (Ω,F,P) be

the complete probability space with the normal filteration {Ft, t ≥ 0}. E(·) denotes the

expectation of a random variable. The Ft-adapted state x(·) and control u(·) variables

takes the values in H and U respectively. L2(F, H) = L2(Ω,F,P, H) denotes the Hilbert

space of all strongly F-measurable square integrable H-valued random variable satisfying
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E ‖x‖2H < ∞. Let C(J, L2(F, H)) be the Banach space of all continuous maps from J

into L2(F, H) with the norm ‖x‖L2 =
î
supt∈[0,T ] E ‖x(t)‖2H

ó1/2
<∞. L2

F(J,H) will denote

the Hilbert space of all stochastic processes Ft-adapted measurable defined on J with the

values in H with the norm ‖x‖L2
F
(J,H) =

î∫ T
0 E ‖x(t)‖2H dt

ó1/2
< ∞. The space L2

F(J, U)

will denote the Hilbert space of all stochastic processes Ft-adapted measurable defined on

J with the values in H satisfying with the norm ‖u‖L2
F
(J,U) =

î∫ T
0 E ‖u(t)‖2U dt

ó1/2
< ∞.

(For details see [5, 12] and references therein).

Suppose that {r(t) : t ∈ J} is the Ft-adapted Poisson point process taking its values in

a measurable space (Z,B(Z)) with a σ-finite intensity measure λ(dη). We denote N(ds, dη)

as the Poisson counting measure, which is induced by r(·) and the compensating martingale

is given by ‹N(ds, dη) = N(ds, dη)− λ(dη)ds.

Let w be the Ft-adapted Q-Wiener process independent of the Poisson point process

{r(t) : t ∈ J} on (Ω,F,P) with linear bounded covariance operator Q such that Tr(Q) <

∞. We assume that there exists a complete orthonormal system {en} in K, a bounded

sequence of nonnegative real numbers {λn} such that Qen = λnen, n = 1, 2, . . . and a

sequence {βn} of independent Wiener process such that

〈w(t), ϑ〉 =
∞∑
n=1

√
λn 〈en, ϑ〉βn(t), ϑ ∈ K, t ≥ 0.

Let ψ ∈ L(K,H) and define

‖ψ‖2Q = Tr(ψQψ∗) =
∞∑
n=1

∥∥∥√λnψen∥∥∥2 .
If ‖ψ‖Q <∞, then ψ is called a Q-Hilbert Schmidt operator. Let LQ(K,H) be the space

of all Q-Hilbert Schmidt operators ψ : K → H. The completion LQ(K,H) of L(K,H)

with respect to the topology induced by the norm ‖ · ‖Q, with ‖ψ‖2Q = 〈ψ,ψ〉 is a Hilbert

space with the above norm topology.

Definition 2.1. [10,22] The one parameter family {C(t) : t ∈ R} of operators in L(H) is

said to be a strongly continuous cosine family if,

(i) C(0) = I, where I is the identity operator in H.

(ii) C(t+ s) + C(t− s) = 2C(t)C(s), ∀ s, t ∈ R.

(iii) C(t)x is continuous in t on R for every x ∈ H.

The strongly continuous sine family {S(t) : t ∈ R} associated to the given strongly con-

tinuous cosine family {C(t) : t ∈ R} is defined to be

S(t)x =

∫ t

0
C(t)x ds, x ∈ H, t ∈ R.
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We define the linear operator as

Ax =
d2

dt2
C(t)x

∣∣∣∣
t=0

for x ∈ D(A),

which is the generator of the strongly continuous cosine operator C(t). It is known that

A is the closed, linear operator and densely defined on H. We denote by Mc and Ms, a

pair of positive constants such that ‖C(t)‖ ≤ Mc and ‖S(t)‖ ≤ Ms for every t ∈ J (see

Proposition 2.3 in [10]). We recall some definitions on multivalued maps (see [8, 9]).

For our convenience, we define the following notations: Let X and Y be Banach

spaces and denote Gr(F ) = {(x, y) ∈ X × Y : x ∈ X, y ∈ F (x)}. Let P(X) be the set of

all nonempty subsets of X.

Pcl(X) = {A ∈ P(X) : A is closed} , Pbd(X) = {A ∈ P(X) : A is bounded} ,

Pcp(X) = {A ∈ P(X) : A is compact} , Pcv(X) = {A ∈ P(X) : A is convex} .

Definition 2.2. Given a Banach space X and a multivalued map F : X → 2X \ {0} =

P(X). Then

(i) F is convex valued if F (x) is convex for every x ∈ X.

(ii) F is said to be upper semicontinuous (u.s.c) on X if for each x0 ∈ X, the set F (x0)

is nonempty, closed subset of X and if for each open set U of X containing F (x0),

there exists an open neighborhood V of x0 such that F (V ) ⊆ U .

(iii) F is bounded on the bounded sets if F (B) =
⋃
x∈B F (x) is bounded in X for all

B ∈ Pbd(X) (i.e., supx∈B {sup {‖y‖ : y ∈ F (x)}} <∞).

(iv) F is completely continuous if F (B) is relatively compact for every bounded subset

B ∈ P(X).

(v) The multimap F is said to be closed if its graph Gr(F ) is a closed subset of X × Y .

(vi) F has a fixed point if there is an element x ∈ X such that x ∈ F (x).

Definition 2.3. Let X be a Banach space and X∗ be its dual space. The Clarke’s

generalized directional derivative for a locally Lipschitz function F : X → R at x in the

direction v, denoted by F 0(x; v), is given by

F 0(x; v) = lim
y→x

sup
λ→0+

F (y + λv)− F (y)

λ
.

The generalized Clarke subdifferential of F at x, denoted by ∂F is a subset of X∗, given

by

∂F (x) =
¶
x∗ ∈ X∗ : F 0(x; v) ≥ 〈x∗, v〉 ,∀ v ∈ X

©
.
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Lemma 2.4. (see [9]) Let X and Y be the metric spaces and if F : X → K(Y ) is a closed

compact multimap then F is u.s.c.

Lemma 2.5. (see [5]) Let G : J ×Ω→ LQ(K,H) be a strongly measurable mapping such

that
∫ T
0 E ‖G(t)‖2LQ(K,H) dt <∞. Then

E
∥∥∥∥∥
∫ t

0
G(s) dw(s)

∥∥∥∥∥
2

≤ LG
∫ t

0
E ‖G(s)‖2 ds, ∀ t ∈ J,

where LG is a constant involving on T .

Theorem 2.6. (see [6]) Let U and U be the open and closed subsets of a Banach space

X. Let φ1 : U → X be a single-valued and φ2 : U → Pcp,cv(X) be a multi-valued operator

such that φ1(U) + φ2(U) is bounded. Suppose that

(i) φ1 is a contraction with a contraction constant k and

(ii) φ2 is u.s.c and completely continuous.

Then either

1. the operator inclusion χx ∈ φ1x+ φ2x has a solution for χ = 1, or

2. there is an element τ ∈ ∂U such that χτ ∈ φ1τ + φ2τ for some χ > 1, where ∂U is

the boundary of U .

3. Main results

3.1. Existence of mild solutions

This section provides the existence of a mild solution for the proposed system (1.1). Now

we examine the existence of mild solution of the semilinear inclusion: (see [12])

(3.1)


dx′(t) ∈ [Ax(t) +Bu(t)] dt+ g(t, x(t)) dw(t)

+
∫
Z h(t, x(t), η)‹N(dt, dη) + ∂F (t, x(t)), a.e. t ∈ J,

x(0) = x0, x′(0) = y0.

If x(t) ∈ C(J, L2(F, H)) is a solution of (3.1), then there exists a Ft-adapted measurable

function f(t) ∈ ∂F (t, x(t)) such that f ∈ L2
F(J,H) and

dx′(t) = [Ax(t) +Bu(t)] dt+ g(t, x(t)) dw(t)

+
∫
Z h(t, x(t), η)‹N(dt, dη) + f(t), a.e. t ∈ J,

x(0) = x0, x′(0) = y0.
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This implies,
¨
dx′(t) + [Ax(t) +Bu(t)] dt+ g(t, x(t))dw(t) +

∫
Z h(t, x(t), η)‹N(dt, dη), v

∂
H

+ 〈f(t), v〉 = 0, a.e. t ∈ J,

x(0) = x0, x′(0) = y0.

Since f(t) ∈ ∂F (t, x(t)) and 〈f(t), v〉 ≤ F 0(t, x(t); v). Then,
¨
dx′(t) + [Ax(t) +Bu(t)] dt+ g(t, x(t)) dw(t) +

∫
Z h(t, x(t), η)‹N(dt, dη), v

∂
H

+F 0(t, x(t); v) ≥ 0, a.e. t ∈ J and ∀ v ∈ H,

x(0) = x0, x′(0) = y0.

Thus, inspite of studying the stochastic hemivariational inequality (1.1), we have to discuss

with the semilinear stochastic inclusion (3.1).

Definition 3.1. (see [12,22]) For every u ∈ L2
F(J, U), a function x(t) ∈ C(J, L2(F, H)) is

called a mild solution of a system (3.1) if there exists a Ft-adapted measurable function

f ∈ L2(F, H) such that f(t) ∈ ∂F (t, x(t)) for a.e. t ∈ J and

x(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)[Bu(s) + f(s)] ds+

∫ t

0

S(t− s)g(s, x(s)) dw(s)

+

∫ t

0

S(t− s)
∫
Z

h(s, x(s), η(s))‹N(ds, dη), ∀ t ∈ J.

We will make the following hypotheses for proving our main results.

(H1) The sine operator S(t) associated with the operator A is compact for every t > 0.

(H2) Let F : J ×H → R be a function satisfying the following conditions:

(i) F ( · , x) is measurable for every x ∈ H.

(ii) F (t, · ) is locally Lipschitz continuous for a.e. t ∈ J .

(iii) There exists a function a1 ∈ L2
F(J,R+) and a constant c ≥ 0 such that

‖∂F (t, x)‖2 = sup
¶
‖f(t)‖2 /f(t) ∈ ∂F (t, x)

©
≤ a1(t) + c ‖x‖2

for all x ∈ H and a.e. t ∈ J .

(iv) The mapping ∂F (t, · ) satisfies the Lipschitz continuity with respect to the

second variable, i.e., there exists a positive constant Mf such that

‖∂F (t, x1(t))− ∂F (t, x2(t))‖2 ≤Mf ‖x1(t)− x2(t)‖2

for every x1, x2 ∈ H and for every t ∈ J .
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(H3) g : J×H → LQ(K,H) is Lipschitz continuous with respect to the second variable for

a.e. t ∈ J with the Lipschitz constant Mg and there exists a function a2 ∈ L2
F(J,R+)

and a positive constant d such that

‖g(t, x)‖2LQ(K,H) ≤ a2(t) + d ‖x‖2 .

(H4) h : J×H×Z\{0} → H is Lipschitz continuous with respect to the second variable for

a.e. t ∈ J with the Lipschitz constant Mh and there exists a function a3 ∈ L2
F(J,R+)

and a positive constant e such that∫
Z
‖h(t, x, η)λ(dη)‖2H ≤ a3(t) + e ‖x‖2 .

Define the multivalued operator N : L2
F(J,H)→ P (L2

F(J,H)) by

N =
¶
z ∈ L2

F(J,H)/z(t) ∈ ∂F (t, x(t)), a.e. t ∈ J
©
, ∀x ∈ L2

F(J,H).

Lemma 3.2. (see Lemma 3.3 in [12]) If the hypotheses (H1)–(H4) are satisfied. Then for

each x ∈ L2
F(J,H) the set N (x) is nonempty, convex and have weekly compact values.

Lemma 3.3. [10] Suppose (H1)–(H4) hold and the operator N satisfies that, if xn → x

in L2
F(J,H), zn → z weakly in L2

F(J,H) and zn ∈ N (xn) then we have that z ∈ N (x).

Theorem 3.4. If the hypotheses (H1)–(H4) and Lemma 2.5 hold then for every u ∈
L2
F(J, U), the stochastic controlled system (3.1) has a mild solution on J provided MhM

2
s <

1.

Proof. Consider the multivalued map F : C(J, L2(F, H))→ 2C(J,L2(F,H)) defined by

F(x) =

ß
y ∈ C(J, L2(F, H)) : y(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)[Bu(s) + f(s)] ds

+

∫ t

0

S(t− s)g(s, x(s)) dw(s)

+

∫ t

0

S(t− s)
∫
Z

h(s, x(s), η(s))‹N(ds, dη)

™
,

where f ∈ N (x). Now the problem of finding mild solutions for (3.1) is equivalent to

attaining fixed points of F(x). It is enough to show that the operator F(x) should satisfy

all the conditions in Theorem 2.6. We will characterize the proof into several steps. First

we decompose F(x) = F1(x) + F2(x).

Define F1 : C(J, L2(F, H))→ 2C(J,L2(F,H)) by

F1(x) =

®
y ∈ C(J, L2(F, H)) : y(t) = C(t)x0 + S(t)y0

+

∫ t

0
S(t− s)

∫
Z
h(s, x(s), η(s))‹N(ds, dη)

´
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and define F2 : C(J, L2(F, H))→ 2C(J,L2(F,H)) by

F2(x) =

®
y ∈ C(J, L2(F, H)) : y(t) =

∫ t

0
S(t− s)[Bu(s) + f(s)] ds

+

∫ t

0
S(t− s)g(s, x(s)) dw(s)

´
,

where f ∈ N (x).

Step 1: F1 is a contraction mapping.

Let x1, x2 ∈ C(J, L2(F, H)). Using (H2)–(H4),

E ‖(F1x1)(t)− (F1x2)(t)‖2

≤ E
∥∥∥∥∥C(t)x0 + S(t)y0 +

∫ t

0
S(t− s)

∫
Z
h(s, x1(s), η(s))‹N(ds, dη)

−
ñ
C(t)x0 + S(t)y0 +

∫ t

0
S(t− s)

∫
Z
h(s, x2(s), η(s))‹N(ds, dη)

ô ∥∥∥∥∥2
≤
∫ t

0
E ‖S(t− s)‖2

∫
Z
E ‖[h(s, x1(s), η(s))− h(s, x2(s), η(s))]λ(dη)‖2 ds

≤MhM
2
s

∫ t

0
E ‖x1(s)− x2(s)‖2 ds

≤MhM
2
s sup
s∈(0,t)

E ‖x1(s)− x2(s)‖2H ≤MhM
2
s ‖x1 − x2‖

2
L2 .

We have MhM
2
s < 1, thus F1 is a contraction mapping.

Step 2: F2(x) is convex for every x ∈ C(J, L2(F, H)).

If y1, y2 ∈ F2(x) then there exists f1, f2 ∈ N (x) such that for every t ∈ J we have,

y1(t) =

∫ t

0
S(t− s)[Bu(s) + f1(s)] ds+

∫ t

0
S(t− s)g(s, x(s)) dw(s),

y2(t) =

∫ t

0
S(t− s)[Bu(s) + f2(s)] ds+

∫ t

0
S(t− s)g(s, x(s)) dw(s).

Let 0 ≤ r ≤ 1, then for any t ∈ J we have

(ry1 + (1− r)y2)(t) =

∫ t

0
S(t− s)[Bu(s) + (rf1 + (1− r)f2)(s)] ds

+

∫ t

0
S(t− s)g(s, x(s)) dw(s).

By Lemma 3.2, N (x) is convex then we have rf1 + (1− r)f2 ∈ N (x). Hence (ry1 + (1−
r)y2)(t) ∈ F2(x). Therefore F2(x) is convex. Also by Lemma 3.2, it is clear that the

operator F2(x) is nonempty and has weakly compact values for every x ∈ C(J, L2(F, H)).

Step 3: The operator F2(x) maps bounded sets into bounded sets in C(J, L2(F, H)).

For any l > 0, define Bl =
¶
x ∈ C(J, L2(F, H)) : ‖x‖2C ≤ l

©
. For every x ∈ Bl and t ∈ J .
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Then applying Hölder inequality and (H2)–(H3) we have

E ‖F2(x)‖2

≤ 3

ñ
E
∥∥∥∥∥
∫ t

0
S(t− s)Bu(s) ds

∥∥∥∥∥
2

+ E
∥∥∥∥∥
∫ t

0
S(t− s)f(s) ds

∥∥∥∥∥
2

+ E
∥∥∥∥∥
∫ t

0
S(t− s)g(s, x(s)) dw(s)

∥∥∥∥∥
2 ô
,

≤ 3M2
s

ñ
T

∫ t

0
E ‖Bu(s)‖2 ds+

∫ t

0
E ‖f(s)‖2 ds+ LG

∫ t

0
E ‖g(s, x(s))‖2 ds

ô
≤ 3M2

s

ñ
T ‖B‖2 ‖u‖2L2

F
(J,U) +

∫ t

0
(a1(s) + cE ‖x‖2) ds+ LG

∫ t

0
(a2(s) + dE ‖x‖2) ds

ô
≤ 3M2

s

[
T ‖B‖2 ‖u‖2L2

F
(J,U) + ‖a1‖L2

F
(J,R+) T

1/2 + clT + LG(‖a2‖L2
F
(J,R+) T

1/2 + dlT )
]

≤ 3M2
s

[
T ‖B‖2 ‖u‖2L2

F
(J,U) + ‖a1‖L2

F
(J,R+) + LG ‖a2‖L2

F
(J,R+) + (c+ LGd)lT

]
= l0.

Hence, there exists a positive constant l0 such that for each y ∈ F2(x), E ‖y‖2 ≤ l0.

Therefore, F2(Bl) is bounded in C(J, L2(F, H)).

Step 4: {F2(x) : x ∈ Bl} is equicontinuous.

Initially, for every x ∈ Bl, when t1 = 0, 0 < t2 ≤ δ0 and δ0 is sufficiently small, we have

that

E ‖(F2x)(t2)− (F2x)(t1)‖2

≤ 2E

∥∥∥∥∥
∫ t2

0

S(t2 − s)[Bu(s) + f(s)] ds

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ t2

0

S(t2 − s)g(s, x(s)) dw(s)

∥∥∥∥∥
2

≤ 2M2
sE
(
‖B‖2 ‖u‖2L2

F
(J,U) δ0 + ‖a1‖L2

F
(J,R+) δ

1/2
0 + clδ0

)
+ 2LGM

2
s

(
‖a2‖L2

F
(J,R+) δ

1/2
0 + dlδ0

)
.

Thus, E ‖(F2x)(t2)− (F2x)(t1)‖2 → 0 independently of x ∈ Bl as δ0 → 0. Likewise, for

any x ∈ Bl, δ0/2 < t1 < t2 ≤ T ,

E ‖(F2x)(t2)− (F2x)(t1)‖2

= E
∥∥∥∥∥
∫ t2

0
S(t2 − s)(Bu(s) + f(s)) ds−

∫ t1

0
S(t1 − s)(Bu(s) + f(s)) ds

+

∫ t2

0
S(t2 − s)g(s, x(s)) dw(s)−

∫ t1

0
S(t1 − s)g(s, x(s)) dw(s)

∥∥∥∥∥
2

≤ 2

ñ
E
∥∥∥∥∥
∫ t1

0
[S(t2 − s)− S(t1 − s)](Bu(s) + f(s)) ds+

∫ t2

t1

S(t2 − s)(Bu(s) + f(s)) ds

∥∥∥∥∥
2

+ E
∥∥∥∥∥
∫ t1

0
[S(t2 − s)− S(t1 − s)]g(s, x(s)) dw(s) +

∫ t2

t1

S(t2 − s)g(s, x(s)) dw(s)

∥∥∥∥∥
2 ô

= I1 + I2.
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Consider

I1 ≤ 4

ñ∫ t1

0

E ‖[S(t2 − s)− S(t1 − s)](Bu(s) + f(s))‖2 ds+

∫ t2

t1

E ‖S(t2 − s)(Bu(s) + f(s))‖2 ds
ô

≤ 4

ï ∫ t1−δ

0

E ‖S(t2 − s)− S(t1 − s)‖2 ‖Bu(s) + f(s)‖2 ds

+

∫ t1

t1−δ
E ‖S(t2 − s)− S(t1 − s)‖2 ‖Bu(s) + f(s)‖2 ds

+

∫ t2

t1

E ‖S(t2 − s)‖2 ‖(Bu(s) + f(s))‖2 ds
ò

≤ 4

ï
sup

s∈[0,t1−δ]
E ‖[S(t2 − s)− S(t1 − s)]‖2

×
(
‖B‖2 ‖u‖2L2

F
(J,U) (t1 − δ) + ‖a1‖L2

F
(J,R+) (t1 − δ)1/2 + cl(t1 − δ)

)
+ 2M2

s

(
‖B‖2 ‖u‖2L2

F
(J,U) δ + ‖a1‖L2

F
(J,R+) δ

1/2 + clδ
)

+M2
s

(
‖B‖2 ‖u‖2L2

F
(J,U) (t2 − t1) + ‖a1‖L2

F
(J,R+) (t2 − t1)1/2 + cl(t2 − t1)

) ò
.

Also,

I2 ≤ 4LG

ï ∫ t1−δ

0

E ‖S(t2 − s)− S(t1 − s)‖2 ‖g(s, x(s))‖2 ds

+

∫ t1

t1−δ
E ‖S(t2 − s)− S(t1 − s)‖2 ‖g(s, x(s))‖2 ds

+

∫ t2

t1

E ‖S(t2 − s)‖2 ‖g(s, x(s))‖2 ds
ò

≤ 4LG

ï
sup

s∈[0,t1−δ]
E ‖[S(t2 − s)− S(t1 − s)]‖2

(
‖a2‖L2

F
(J,R+) (t1 − δ)1/2 + dl(t1 − δ)

)
+ 2M2

s

(
‖a2‖L2

F
(J,R+) δ

1/2 + dlδ
)

+M2
s

(
‖a2‖L2

F
(J,R+) (t2 − t1)1/2 + dl(t2 − t1)

) ò
.

We noted down that the continuity of S(t), (t > 0) in t in the uniform operator topology

the right-hand side of the above inequalities Ii (i = 1, 2) are independent of x and tends

to zero as t2 → t1 and δ → 0. Therefore E ‖(F2x)(t2)− (F2x)(t1)‖2 → 0 independently of

x ∈ Bl as δ → 0 which implies that the family {F2(x) : x ∈ Bl} is equicontinuous.

Step 5: F2(x) is completely continuous.

Let t ∈ J be fixed. Our claim is to show that the set Π(t) = {(F2x)(t) : x ∈ Bl} is relatively

compact in H. If t = 0, then Π(0) = {(F2x)(0) : x ∈ Bl} = {0} which is compact.

Let 0 < t ≤ T be fixed. For any x ∈ Bl and for every ε ∈ (0, t), define the operator F ε2
on Bl as,

(Fε2x)(t) =

∫ t−ε

0

S(t− s)[Bu(s) + f(s)] ds+

∫ t−ε

0

S(t− s)g(s, x(s)) dw(s)

=

∫ t−ε

0

S(ε)S(t− s− ε)[Bu(s) + f(s)] ds+

∫ t−ε

0

S(ε)S(t− s− ε)g(s, x(s)) dw(s)
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= S(ε)

∫ t−ε

0

S(t− s− ε)[Bu(s) + f(s)] ds+ S(ε)

∫ t−ε

0

S(t− s− ε)g(s, x(s)) dw(s),

where f ∈ N (x). Noted down that E
∥∥∥∫ t−ε0 S(t− s− ε)[Bu(s) + f(s)] ds

∥∥∥2 is bounded,

since by using the definition of Bl

E
∥∥∥∥∥
∫ t−ε

0
S(t− s− ε)[Bu(s) + f(s)] ds

∥∥∥∥∥
2

≤
∫ t−ε

0
E ‖S(t− s− ε)[Bu(s) + f(s)]‖2 ds

≤M2
sE
(
‖B‖2 ‖u‖2L2

F
(J,U) (t− ε) + ‖a1‖L2

F
(J,R+) (t− ε)1/2 + cl(t− ε)

)
.

Already we have assumed that E ‖x‖2H <∞, then E
∥∥∥∫ t−ε0 S(t− s− ε)g(s, x(s)) dw(s)

∥∥∥2 is

bounded. Since by Lemma 2.5 and again by using the definition of Bl

E

∥∥∥∥∥
∫ t−ε

0

S(t− s− ε)g(s, x(s)) dw(s)

∥∥∥∥∥
2

≤
∫ t−ε

0

E ‖S(t− s− ε)g(s, x(s))‖2 ds

≤ LGM2
s

(
‖a2‖L2

F
(J,R+) (t− ε)1/2 + dl(t− ε)

)
<∞.

By using the compactness of S(ε), (ε > 0) we obtain that the set Π(t) = {y(t) : F(Bl)} is

relatively compact in H for every ε ∈ (0, t). Moreover, for every x ∈ Bl we have that

E ‖(F2x)(t)− (F ε2x)(t)‖2

≤ 2

∫ t

t−ε
E ‖S(t− s)‖2 ‖Bu(s) + f(s)‖2 ds+ 2LG

∫ t

t−ε
‖S(t− s)‖2 E ‖g(s, x(s))‖2 ds

≤ 2M2
s

[
‖B‖2 ‖u‖2L2

F
(J,U) ε+ ‖a1‖L2

F
(J,R+) ε

1/2 + clε+ LG
(
‖a2‖L2

F
(J,R+) ε

1/2 + dlε
)]
,

which implies that the set Π(t) is totally bounded (i.e., relatively compact in H). By

Arzela-Ascoli’s theorem, we conclude that F2(x) is completely continuous.

Step 6: F2(x) has a closed graph.

Let xn → x∗ in C(J, L2(F, H)), yn ∈ F(xn) and yn → y∗ in C(J, L2(F, H)). Then we have

to show that y∗ ∈ F2(x
∗). Let yn ∈ F2(xn) then there exists fn ∈ N (xn) such that

(3.2) yn(t) =

∫ t

0
S(t− s)[Bu(s) + fn(s)] ds+

∫ t

0
S(t− s)g(s, xn(s)) dw(s).

Using (H2)(iii) and (H3), we can show that

{(fn, g( · , xn))}n≥1 ⊆ L
2
F(J,H)× LQ(K,H)

is bounded. By passing to a subsequence if necessary that

(3.3) (fn, g( · , xn))→ (f∗, g( · , x∗)) weakly in L2
F(J,H)× LQ(K,H).
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Since we have S(t) is compact, also with the hypothesis (H3), equating (3.2) and (3.3) we

get

(3.4) yn(t)→
∫ t

0
S(t− s)[Bu(s) + f∗(s)] ds+

∫ t

0
S(t− s)g(s, x∗(s)) dw(s).

We note that yn → y∗ in C(J, L2(F, H)) and fn ∈ N (xn). From Lemma 3.2 and (3.4),

we obtain that f∗ ∈ N (x∗). Therefore y∗ ∈ F2(x
∗). Thus, F2(x) has a closed graph. By

proposition 3.3.12(2) in [16], F2 is u.s.c.

Step 7: The operator inclusion χx ∈ F1(x) + F2(x) has a solution for χ = 1.

According to the Theorem 2.6, it suffices to show that no element x ∈ C(J, L2(F, H))

exists such that χx ∈ F1(x) + F2(x) for some χ > 1. Suppose χx ∈ F1(x) + F2(x) for

some χ > 1 and there exists f ∈ N (x) such that

χx(t) = C(t)x0 + S(t)y0 +

∫ t

0
S(t− s)[Bu(s) + f(s)] ds+

∫ t

0
S(t− s)g(s, x(s)) dw(s)

+

∫ t

0
S(t− s)

∫
Z
h(s, x(s), η(s))‹N(ds, dη).

Using (H2)–(H4) we get

E ‖x(t)‖2H ≤ 6

ñ
M2
c E ‖x0‖

2 +M2
sE ‖y0‖

2 +M2
s

∫ t

0
E ‖Bu(s)‖2 ds+M2

s

∫ t

0
E ‖f(s)‖2 ds

+ LGM
2
s

∫ t

0
E ‖g(s, x(s))‖2 ds+M2

s

∫ t

0

∫
Z
E ‖h(s, x(s), η(s))λ(dη)‖2 ds

ô
≤ 6

ñ
M2
c E ‖x0‖

2 +M2
sE ‖y0‖

2 +M2
s ‖B‖

2 ‖u‖2L2
F
(J,U) t+M2

s ‖a1‖L2
F
(J,R+) t

1/2

+M2
s c

∫ t

0
E ‖x(s)‖2 ds+ LGM

2
s

Ç
‖a2‖L2

F
(J,R+) t

1/2 + d

∫ t

0
E ‖x(s)‖2 ds

å
+M2

s

Ç
‖a3‖L2

F
(J,R+) t

1/2 + e

∫ t

0
E ‖x(s)‖2 ds

åô
≤ ρ+ 6(M2

s c+ LGM
2
s d+M2

s e)

∫ t

0
E ‖x(s)‖2 ds,

where

ρ = 6M2
c E ‖x0‖

2 +M2
s

{
E ‖y0‖2 + ‖B‖2 ‖u‖2L2

F
(J,U) t+ ‖a1‖L2

F
(J,R+) t

1/2

+ LG ‖a2‖L2
F
(J,R+) t

1/2 + ‖a3‖L2
F
(J,R+) t

1/2
}

Put C1 = 6M2
s (c+LGd+e). Thus, E ‖x(t)‖2 ≤ ρ+C1

∫ t
0 E ‖x(s)‖2 ds. By using Gronwall’s

inequality

E ‖x(t)‖2 ≤ ρeC1t,

which implies E ‖x‖2L2 ≤ ρeC1t = r, with ρ and C1 are the positive constants.
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Set Vr =
¶
x ∈ C(J, L2(F, H)) : E ‖x‖2L2 < r + 1

©
. Clearly, Vr is an open subset of

the Banach space C(J, L2(F, H)). From the choice of Vr, there is no x ∈ C(J, L2(F, H))

satisfying χx ∈ F1(x) + F2(x) for some χ > 1. Hence by the Theorem 2.6 we conclude

that the operator inclusion x ∈ F(x) = F1(x) + F2(x) has a solution which is the mild

solution of the system (3.1) in J .

3.2. Existence of optimal control

In this section, we derive the existence of optimal control for the problem (3.1) with the

corresponding cost function.

Let Y be the reflexive Banach space in which the control u takes values. Define the

multivalued map Λ: J → P (V ) and V is closed, convex and bounded such that Λ(·) is

measurable. Let X be a bounded subset of Y such that Λ(·) ⊆ X. Let U be the set of all

admissible controls and

U =
¶
u(·) ∈ L2

F(J,X) such that u(t) ∈ Λ(t) a.e.
©
.

Clearly U is nonempty and U ⊂ L2
F(J, Y ) is bounded, closed and convex (see [21]). We

consider the stochastic optimal control problem (P ) as follows:

Find a control (x0, u0) ∈ C(J, L2(F, H)) × U such that J (x0, u0) ≤ J (x, u), ∀u ∈ U ,

where J (x, u) = E
∫ T
0 L(t, x(t), u(t)) dt is the performance index.

We make the following assumptions (H5):

(i) The functional L : J ×H × Y → R ∪ {±∞} is Borel measurable.

(ii) L(t, · , · ) is sequentially lower semicontinuous on H × Y for a.e. t ∈ J . That is,

∀x ∈ H, u ∈ Y , {xn} ⊂ H and {un} ⊂ Y such that xn → x in H and un → u in Y

we have limxn→x inf L(t, xn, un) ≥ L(t, x, u).

(iii) L(t, x, · ) is convex on Y for every x ∈ H and t ∈ J a.e.

(iv) there exists constants p, q ≥ 0, κ is nonnegative and κ ∈ L1(J,R) such that L(t, x(t),

u(t)) ≥ κ(t) + pE ‖x‖2H + qE ‖u‖2Y > −∞.

Theorem 3.5. Suppose the hypotheses (H1)–(H5) are satisfied. Let B be a strongly con-

tinuous operator then the optimal control problem (P ) admits at least one optimal pair.

Proof. Suppose inf {J (x, u) : u ∈ U} = ∞ then the result is obvious. Assuming that

inf {J (x, u) : u ∈ U} = m <∞. Using the hypotheses on L we have that J (x, u) ≥ m >

−∞.

By the definitions of infimum, there exists a minimizing sequences of feasible pair

{xn, un} ⊂ A where A = {(x, u) : x is a mild solution of the proposed system corresponding
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to u ∈ U} such that J (xn, un)→ m as n→ +∞. Since {un} ⊂ U , n = 1, 2, . . . and {un}
is a bounded subset of a reflexive Banach space, there exists a subsequence denoted by

{un} again such that un → u0 weakly in L2
F(J, Y ). We have that U is closed and convex,

by using Marzur lemma u0 ∈ U . Suppose {xn} is the sequence of mild solution of the

proposed system corresponding to un and fn ∈ N (xn) then,

xn(t) = C(t)x0 + S(t)y0 +

∫ t

0
S(t− s)[Bun(s) + fn(s)] ds

+

∫ t

0
S(t− s)g(s, xn(s)) dw(s)

+

∫ t

0
S(t− s)

∫
Z
h(s, xn(s), η(s))‹N(ds, dη), ∀ t ∈ J.

Also x0 is the mild solution corresponding to u0 and f0 ∈ N (x0) then

x0(t) = C(t)x0 + S(t)y0 +

∫ t

0
S(t− s)[Bu0(s) + f0(s)] ds

+

∫ t

0
S(t− s)g(s, x0(s)) dw(s)

+

∫ t

0
S(t− s)

∫
Z
h(s, x0(s), η(s))‹N(ds, dη), ∀ t ∈ J.

From the boundedness of {un},
{
u0
}

and Theorem 3.4, it follows that there exists a

positive number M such that E ‖xn‖2 ≤M , E
∥∥x0∥∥2 ≤M .

For every t ∈ J , we obtain that

E
∥∥xn(t)− x0(t)

∥∥2
≤ 4

ï ∫ t

0

E ‖S(t− s)‖2
∥∥Bun(s)−Bu0(s)

∥∥2 ds+

∫ t

0

E ‖S(t− s)‖2
∥∥fn(s)− f0(s)

∥∥2 ds
+ LG

∫ t

0

E ‖S(t− s)‖2
∥∥g(s, xn(s))− g(s, x0(s))

∥∥2 ds
+

∫ t

0

E ‖S(t− s)‖2
∫
Z

E
∥∥h(s, xn(s), η)− h(s, x0(s), η)λ(dη)

∥∥2 dsò
≤ 4M2

s

ï ∫ t

0

E
∥∥Bun(s)−Bu0(s)

∥∥2 ds+

∫ t

0

sup
Ä
E
∥∥fn(s)− f0(s)

∥∥2ä ds
+ LGMg

∫ t

0

E
∥∥xn(s)− x0(s)

∥∥2 ds+MhE
∫ t

0

E
∥∥xn(s)− x0(s)

∥∥2 dsò
= 4M2

s

ï ∫ t

0

E
∥∥Bun(s)−Bu0(s)

∥∥2 ds+

∫ t

0

E
∥∥∂F (s, xn(s))− ∂F (s, x0(s))

∥∥2 ds
+ LGMg

∫ t

0

E
∥∥xn(s)− x0(s)

∥∥2 ds+MhE
∫ t

0

E
∥∥xn(s)− x0(s)

∥∥2 dsò
≤ 4M2

s

∫ t

0

E
∥∥Bun(s)−Bu0(s)

∥∥2 ds+ 4M2
s (Mf + LGMg +Mh)

∫ t

0

E
∥∥xn(s)− x0(s)

∥∥2 ds.
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By the virtue of singular version of Gronwall’s inequality, there exists a constant M̃ > 0

such that

E
∥∥∥xn(t)− x0(t)

∥∥∥2 ≤ M̃E
∥∥∥Bun −Bu0∥∥∥2

L2
F
(J,Y )

,

where M̃ = 4M2
s Te

αT and α is a positive constant. Also we have that B is strongly

continuous and un → u0 weakly then E
∥∥Bun −Bu0∥∥2L2

F
(J,Y ) → 0 weakly as n → ∞.

Therefore, E
∥∥xn(t)− x0(t)

∥∥2 → 0 weakly as n → ∞. This provides xn → x0 weakly in

C(J, L2(F, H)) as n→∞ [1].

Note that the assumptions (H5) implies that all the hypotheses of Balder’s theorem [2]

are satisfied. Thus, (x, u) → E
Ä∫ t

0 L(t, x0(t), u0(t)) dt
ä

is sequentially lower semicontiu-

nous in L2
F(J, Y ). Hence J is weakly lower semicontinuous. Using the condition (H5)(iv),

J attains its infimum at u0 ∈ U , i.e.,

m = lim
n→∞

E
∫ t

0
L(t, xn(t), un(t)) dt ≥ E

∫ t

0
L(t, x0(t), u0(t)) dt = J (x0, u0) ≥ m,

i.e.,

E
∫ t

0
L(t, x0(t), u0(t)) dt = J (x0, u0) = m = inf

u∈U
J (x, u).

Hence (x0, u0) is the required optimal control pair.

4. Example

We consider the nonlinear stochastic wave equation with initial and boundary conditions

driven by Poisson jumps as

∂

Å
∂y(t, x)

∂t

ã
=

ï
∂2y(t, x)

∂x2
+ f(t, x)

ò
∂t+ h1

Ç
t,

∫ 1

0

p1(s)y(t, x) ds

å
dw(t)

+

Ç∫ 1

0

b(x, s)u(s, t) ds

å
∂t+

∫
Z

y(t, x)η‹N(dt, dη), t ∈ [0, 1] = J, x ∈ [0, π],

y(t, 0) = y(t, π) = 0 and y(0, x) = y0(x), 0 ≤ t ≤ 1,

∂y(0, x)

∂t
= y1(x), 0 < x < π.

(4.1)

Let H = U = L2([0, π]). Let (Ω,F,P) be the complete probability space. Let f be

the known measurable Ft-adapted multivalued function of y of the form −f(t, x) ∈
∂F (x, t, y(t, x)) a.e. Here ∂F (x, t, ξ) denotes the Clarke’s generalized gradient with re-

spect to the last variable of the function F and F : [0, π] × [0, 1] × R → R is a locally

Lipschitz energy function in ξ which is generally nonsmooth and nonconvex. The multi-

valued function ∂F (x, t, ξ) : R → 2R is non-monotone and it includes the vertical jumps.

Here h1 : [0,∞) × R → LQ(R), p1 : [0,∞) → R be the continuous functions. Let w(t) be
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the Ft-adapted standard Wiener process in H. Let {k(t) : t ∈ J} is a Ft-adapted Poisson

point process, independent of the Wiener process w(t), taking its values in the space [0,∞)

with σ-finite measure λ(dη). Let N(ds, dη) be the Poisson counting measure induced by

k(·) and ‹N(ds, dη) = N(ds, dη)− λ(dη)ds be its compensating martingale. The operator

A is defined as

Aζ = ζ ′′

with the domain D(A) = {ζ ∈ H : ζ, ζ ′ are absolutely continuous ζ ′′ ∈ H, ζ(0) = ζ(1) =

0}. The spectrum of A consists of eigenvalues −n2 for n ∈ N with associated eigenvectors

en(ζ) =
»

2/π sin(nζ). Moreover, the set {en : n ∈ N} is an orthonormal basis of H.

Ax =
∞∑
n=1

−n2 〈x, en〉 en, x ∈ D(A).

The operators

C(t)x =
∞∑
n=1

cos(nt) 〈x, en〉 en, e ∈ R,

S(t)x =
∞∑
n=1

sin(nt)

n
〈x, en〉 en, e ∈ R.

From [22], ∀x ∈ H and t ∈ R, ‖S(t)‖ ≤ 1 and ‖C(t)‖ ≤ 1. Now consider the function

F : (0, 1)→ R defined by

F (t, y) =

∫ T

0
σ(x, t, y(x)) dx for a.e. t ∈ (0, 1), y ∈ H,

where σ(x, t, z) =
∫ z
0 φ(x, t, θ) dθ, (x, t) ∈ (0, π) × (0, 1), z ∈ R. Assume that φ : (0, π) ×

(0, 1)× R→ R is a function satisfying

(i) for every x ∈ (0, π) and z ∈ R, φ( · , x, z) : (0, 1)→ R is measurable.

(ii) for every t ∈ (0, 1) and z ∈ R, φ(t, · , z) : (0, π)→ R is continuous.

(iii) for all z ∈ R, there exists a positive constant r1 such that |φ( · , · , z)| ≤ r1(1 + |z|).

(iv) for all z ∈ R, φ( · , · , z ± 0) exists.

If φ satisfies the conditions (iii), then we have that ∂σ(z) ⊂ [φ(z), φ(z)] for z ∈ R (omit

(x, t) here), where φ(z) and φ(z) denote the essential supremum and essential infimum of

φ at z (see p. 34 in [3]).

If φ satisfies the conditions (i)–(iv), then the function σ defined above is such that

(i) for every x ∈ (0, π), z ∈ R, σ( · , x, z) : (0, 1) → R is measurable and σ( · , · , 0) ∈
L2((0, π)× (0, 1)).
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(ii) for every t ∈ (0, 1), z ∈ R, σ(t, · , z) : (0, π)→ R is continuous.

(iii) for all (x, t) ∈ (0, π)× (0, 1), σ(x, t, · ) : R→ R is locally Lipschitz.

(iv) there exists r2 > 0 such that |γ| ≤ r2(1 + |z|) for all γ ∈ ∂σ(x, t, z, ), (x, t) ∈
(0, π)× (0, 1).

(v) there exists r3 > 0 such that σ0(x, t, z;−z) ≤ r3(1+ |z|) for all (x, t) ∈ (0, π)× (0, 1).

We take the function u : Ψx([0, 1]) → R as the control such that u ∈ L2(Ψx([0, 1])) and

t → u(t) is measurable. The set C = {u ∈ U : ‖u‖U ≤ µ} where µ ∈ L2(J,R+). We

restricted that the admissible controls to be all u ∈ L2(Ψx([0, 1])) such that ‖u( · , t)‖2 ≤
µ(t) a.e. t ∈ J .

Now consider

y(t)(x) = y(t, x), t ∈ [0, 1], x ∈ [0, π],

B(t)u(t, x) = B(t)u(t)(x) =

∫ 1

0
b(x, s)u(s, t) ds,

Q1(φ(ξ)) =

∫ 1

0
p1(θ)φ(θ, ξ) dθ,

σ(t, x) = h1(t, Q1(t)(x)), h(t, y, η) = y(t, x)η = y(t)(x)η.

By assuming that the nonlinear functions satisfying the hypotheses (H2)–(H4) and the

boundedness of the above functions, we observe that the system (4.1) can be rewritten in

the abstract form of (3.1). Since all the hypotheses of Theorem 3.4 are satisfied, there

exists a mild solution for the system (4.1). Consider the following cost function: J (u) =

E
¶∫ 1

0 L(t, y(t), u(t)) dt
©

where L(t, y(t), u(t))(x) =
∫ 1
0

∫ 1
0 |y(t, x)|2 dxdt+

∫ 1
0

∫ 1
0 |u(t, x)|2 dxdt

and it is easy to see that the hypotheses of the Theorem 3.5 are satisfied. Therefore, there

exists at least one optimal pair for the problem (4.1).

5. Conclusion

This paper has investigated that the optimal control study of second order stochastic evo-

lution hemivariational inequalities with Poisson jumps in Hilbert space. The existence of

mild solution for the proposed system has been formulated and proved by utilizing the

semigroup of operators theory, stochastic analysis techniques, properties of generalized

Clarke subdifferential operators and a fixed point theorem of multivalued maps. Addi-

tionally, the existence of optimal control for the considered system has been discussed.

Finally, the obtained results have been verified through an example. Due to the impor-

tance of SEEs and hemivariational inequalities in both theoretical and real-life applications

to mechanical problems, it is significant to find its existence, optimal control results and
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other quantitative and qualitative properties in infinite dimensional spaces. Some kinds of

dynamical systems requires both Poisson jumps and fractional Brownian motion to model

its dynamics. Hence in the forthcoming paper, we will consider the optimal control results

for fractional differential equations with delays and having mixed fractional Brownian

motion in Hilbert spaces.
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[16] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational

Inequalities: Models and analysis of contact problems, Advances in Mechanics and

Mathematics 26, Springer, New York, 2013.

https://doi.org/10.1007/978-1-4614-4232-5

[17] P. D. Panagiotopoulos, Non-convex superpotentials in the sence of F.H. Clarke and

applications, Mech. Res. Comm. 8 (1981), no. 6, 335–340.

https://doi.org/10.1016/0093-6413(81)90064-1

[18] , Hemivariational Inequalities: Applications in Mechanics and Engineering,

Springer-Verlag, Berlin, 1993. https://doi.org/10.1007/978-3-642-51677-1

[19] J. Y. Park and J. U. Jeong, Optimal control of hemivariational inequalities with

delays, Taiwanese J. Math. 15 (2011), no. 2, 433–447.

https://doi.org/10.1016/j.camwa.2015.08.029
https://doi.org/10.14232/ejqtde.2015.1.100
https://doi.org/10.1007/978-1-4612-4260-4
https://doi.org/10.1016/j.amc.2015.07.023
https://doi.org/10.1137/050632725
https://doi.org/10.1023/A:1026555014562
https://doi.org/10.1007/978-1-4614-4232-5
https://doi.org/10.1016/0093-6413(81)90064-1
https://doi.org/10.1007/978-3-642-51677-1


Hemivariational Inequalities with Poisson Jumps 1475

[20] J. Y. Park and S. H. Park, Existence of solutions and optimal control problems for

hyperbolic hemivariational inequalities, ANZIAM J. 47 (2005), no. 1, 51–63.

https://doi.org/10.1017/s1446181100009767

[21] C. Rajivganthi and P. Muthukumar, Almost automorphic solutions for fractional

stochastic differential equations and its optimal control, Optimal Control Appl. Meth-

ods 37 (2016), no. 4, 663–681. https://doi.org/10.1002/oca.2186

[22] Y. Ren and R. Sakthivel, Existence, uniqueness, and stability of mild solutions for

second-order neutral stochastic evolution equations with infinite delay and Poisson

jumps, J. Math. Phys. 53 (2012), no. 7, 073517, 14 pp.

https://doi.org/10.1063/1.4739406

[23] J. Ren and J. Wu, The optimal control problem associated with multi-valued stochastic

differential equations with jumps, Nonlinear Anal. 86 (2013), 30–51.

https://doi.org/10.1016/j.na.2013.03.006

[24] J. Shi, Optimal control for stochastic differential delay equations with Poisson jumps

and applications, Random Oper. Stoch. Equ. 23 (2015), no. 1, 39–52.

https://doi.org/10.1515/rose-2014-0028

[25] J. Zhou, Infinite horizon optimal control problem for stochastic evolution equations

in Hilbert spaces, J. Dyn. Control Syst. 22 (2016), no. 3, 531–554.

https://doi.org/10.1007/s10883-015-9307-2

[26] J. Zhou and B. Liu, Optimal control problem for stochastic evolution equations in

Hilbert spaces, Internat. J. Control 83 (2010), no. 9, 1771–1784.

https://doi.org/10.1080/00207179.2010.495161

Palanisamy Muthukumar and Nagarajan Durga

Department of Mathematics, The Gandhigram Rural Institute - Deemed University,

Gandhigram - 624 302, Tamil Nadu, India

E-mail address: pmuthukumargri@gmail.com, durga1992mdu@gmail.com

Fathalla A. Rihan and Chinnathambi Rajivganthi

Department of Mathematical Sciences, College of Science, UAE University, Al-Ain

15551, UAE

E-mail address: frihan@uaeu.ac.ae, rajivganthic@uaeu.ac.ae

https://doi.org/10.1017/s1446181100009767
https://doi.org/10.1002/oca.2186
https://doi.org/10.1063/1.4739406
https://doi.org/10.1016/j.na.2013.03.006
https://doi.org/10.1515/rose-2014-0028
https://doi.org/10.1007/s10883-015-9307-2
https://doi.org/10.1080/00207179.2010.495161

	Introduction
	Preliminaries
	Main results
	Existence of mild solutions
	Existence of optimal control

	Example
	Conclusion

