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Nonlinear Stability of Traveling Waves in a Monostable Epidemic Model
with Delay

Xin Wu, Zhaohai Ma* and Rong Yuan

Abstract. This paper is concerned with the nonlinear stability of traveling waves
of a delayed monostable epidemic model with quasi-monotone condition. We prove
that the traveling wave front is exponentially stable by means of the weighted-energy
method and the comparison principle to perturbation in some exponentially weighted
L spaces, when the difference between initial data and traveling wave front decays
exponentially as x — —oo, but the initial data can be suitable large in other locations.

Finally, we present two examples to support our theoretical results.

1. Introduction

In this paper, we investigate the nonlinear stability of traveling waves for a general de-
layed monostable epidemic model arising from the spread of an epidemic by oral-faecal

transmission. This epidemic model can be described as

Ouq (z,t) 0uy(w,t)

(1.1) 5 é(hﬁ ) - 182 6362 ) — aqui(z,t) + g2 (uz(z, t — 1)),
U2\, U\, _
Qat = ds 323;2 — agua(z,t) + gi(wa(z,t —71)).

Here, di, da, a1 and ag are the positive constants, u(z, t) denotes the spatial concentration
of the bacteria at the point = in the habitat 2 = R and time ¢ > 0, and wua(x,t) denotes
the spatial density of the infective human population at the point z and time ¢ > 0. In this
model, aqu; is the natural death rate of the bacterial population, gs(us) is the contribution
of the infective humans to the growth rate of the bacteria, aouso is the natural diminishing
rate of the infective population, and g;(u;) is the infection rate of the human population
under the assumption that the total susceptible human population is constant during the

evolution of the epidemic. Mathematically, for simplification, if

~ ~ ~ ~ aq ~ ~
t=ot, up = u, ug = ug, T = \/dfa:, T = Q1T1, T2 = 272,
1
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(1.1) can be rewritten as the following system (dropping the tildes on z, ¢, ui, ug, 71, T2

for notational convenience)

ouy(z,t)  O*uy(x,t)

= —up(z,t) + g2(ua(x,t — 1)),
(1.2) ot P’
8u28(;3,t) _ da uazif,t) — Bua(z,t) + g1 (uy (z,t — 11)),

where d = %a ﬂ = %7 gl(u) - ailgl(u% gQ(u) - a%ﬁ?(u)
Throughout this article, we assume that ([1.2]) satisfies the initial conditions

(1.3) ui(z,s) = uio(z, s), (x,s) € R x [—7,0],
ug(x,8) = ug(z,s), (x,8) € R x[—7,0].

We make the following conditions.

(A1) g1 € C*([0,K1],R), g1(0) = ¢2(0) = 0, Ko = % > 0, g2 € C*([0,K2),R),
>

g2(g1(K1)) — K, and g2(g1(U))

5 u for u € (0, K1), where K is a positive constant;

B
(A2) 0 < gq(u1) < ¢q(0) for uy € [0, K], 0 < gh(u2) < g4(0) for ug € [0, Ka).

Wu and Hsu [25] showed the existence and qualitative features of entire solutions for the
system under the assumptions (Al) and (A2). It is easy to see that the system
has two equilibria w_ = (u;—,ug_) = (0,0) and uy = (u14,u2+) = (K1, K2) and (Al) is
a basic assumption to ensure that the system is monostable on [u_, u|.

The theory of traveling wave solutions of reaction-diffusion systems has attracted much
attention due to its significant nature in biology, chemistry, epidemiology and physics. For
the system , the spatial dynamics of some special cases have been extensively studied.
If m =m =0, system is rewritten as

Ay (x,t 0Pua (2, t G
Oui(z,t) _ dlLf’) — aqup(z,t) + ga(uz(z,t)),
(1.4) ot o7
Qus(w,t) _  Dus(x,t) (,t) + g1 (ur (2, 1))
5 =dy 922 agug(x, gi\ui(x,t)).

Hsu and Yang [4] proved the existence, uniqueness, monotonicity, and asymptotic behavior
of traveling wave fronts of ([L.4]) in the monostable case. If 5 = ds = 0, 71,d; > 0 and

g2(u) = yu, system (1.1]) is rewritten as

Ouy(x,t) d 0uy(,t)

(1.5) o~ U~ aw(af) + (),
Oua(z,t) B
= —oeu(z,t) + gi(u(z,t — 7).

Zhao and Thieme [19] proved the existence of spreading speed and minimal wave speed

of (1.5) in the quasi-monotone case. By constructing two auxiliary monotone integral
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equations, these results were then extended by Wu and Liu [26] to the non-quasi-monotone
case. If 71 = 0, the existence of monotone traveling waves and the minimal wave speed
was established in [20] for system in the monostable case. Moreover, it was proven
in [21] that this minimal wave speed coincides with the asymptotic speed of spread for
solutions with initial functions having compact supports. Later, Zhao and Wang [37]
proved the existence of Fisher type monotone traveling waves and the minimal wave speed
for system in the monostable case via the method of upper and lower solutions, and
Xu and Zhao [28,29] proved the existence, uniqueness, and globally exponential stability
of traveling wave fronts of in the bistable case by the monotone semi-flows approach

and spectrum analysis.

Among the basic problems in the theory of traveling wave solutions, the stability of
traveling wave solutions is an extremely important subject. Let us draw the background
on the progress of the study in this subject. By the spectral analysis, Sattinger [17] inves-
tigated a reaction diffusion system without delay and proved that the traveling wave fronts
were stable under the perturbations in some exponentially weighted L> spaces. Using the
semigroup estimates, Kapitula [6] also studied a reaction diffusion system without delay
and obtained that the traveling wave front is stable in polynomially weighted L°° spaces.
The stability of traveling waves of a quasi-monotone reaction-diffusion bistable equation
was obtained by Smith and Zhao [18] through the method of the upper-lower solutions
and squeezing technique developed by Chen [1] (see also [22}23] for this technique). For
the monostable case, the study of the stability of traveling waves is not the same as the
bistable case and the main difficulty is caused by the unstable equilibrium. The first
study of this case was obtained by Mei et al. [16] by using weighted energy method. They
studied the diffusive Nicholson’s blowflies equation with delay and obtained that if the
solution is sufficiently close to a traveling wave front initially, it converges exponentially
to the wavefront as t — oco. By means of the weighted-energy method and the comparison
principle, Lin and Mei [§] investigated Nicholson’s blowflies equation with diffusion and
found that the wavefront is time-asymptotically stable when the delay-time is sufficiently
small and the initial perturbation around the wavefront decays to zero exponentially in
space as * — 00, but it can be large in other locations. In [5], Huang et al. used the
anti-weighted-energy method developed by Chern et al. [2], considered a nonlocal disper-
sion equation with time-delay, and proved that all non-critical traveling waves (the wave
speed is greater than the minimum speed), including those oscillatory waves, are time-
exponentially stable, when the initial perturbations around the waves are small. The other
related results on the stability of traveling wave solutions can refer Guo and Johannes [3],
Mei et al. [7/10H15], Lv and Wang [9,24], Wu et al. [27], Yang and Liu [32], Yu and Mei [33]
and Zhang et al. [34-36).
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Recently, Yang et al. [31] obtained that the traveling waves of without quasi-
monotonicity are exponentially stable by using weighted energy method when the initial
perturbation around the traveling waves is suitably small in a weighted norm. If dy = v =
a1 =1 and g1 (u) = pue™®, (|1.5) is

uy(z,t)  0%ui(z,t)
at

oudle Ox?
% = —agua(x,t) + pui(x,t — 71)e

(16) —up(z,t) + ua(z,t),

—aui (z,t—T1)

In [30], Yang et al. proved that the traveling wave fronts of are exponentially stable
by means of the weighted-energy method and the comparison principle when the initial
perturbation around the traveling wave decays exponentially as z — —oo.

In this paper, we will further consider with a general reaction term and prove
that all noncritical traveling wave fronts with sufficiently large speeds ¢ > 1 are globally
exponentially stability by means of the weighted-energy method and the comparison prin-
ciple. The shortcoming of this paper is that we do not prove any nonlinear stability result
for the slower waves with ¢ > cpin (¢ can be arbitrarily close to ¢pin), where cpin denotes
critical wave speed, and particularly, for the critical traveling waves with cpin. We leave
this problem for further research.

The rest of this paper is organized as follows. In Section [2, we establish the compar-
ison principle of solutions to Cauchy problem and , present the proof of global
existence and uniqueness for the corresponding initial value problem in a Sobolev space,
and state our stability result. In Section 3] we devote to the a priori estimates, which are
the core of the paper. In Section [4] based on the a priori estimates, we shall prove our
main result on the exponential stability of traveling wave fronts. In Section |5, we present

two examples to support our theoretical results.

2. Preliminaries and main result

First, we introduce some notations throughout this paper. Let C' > 0 denote a generic
constant and C; > 0 (i = 1,2,...) be a specific constant. I is an interval, typically I = R.
Denote by L?(I) the space of square integrable functions defined on I and H*(I) (k > 0)
the Sobolev space of the L2-function f(z) defined on the interval I whose derivatives d‘zi f
(i =1,2,...,k) also belong to L?(I). L2 (I) denotes the weighted L?-space with a weight

function w(x) > 0 and its norm is defined by

11z = ([ wo) )P ac) "
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Let HE(I) be the weighted Sobolev space with the norm

s = (2 [t 2dx> "

If T > 0 is a number and B is a Banach space, we denote by C°([0,7],B) the space of
the B-valued continuous function on [0,7] and by L?([0,T], B) the space of the B-valued

L2-functions on [0,7]. The corresponding spaces of the B-valued L2-functions on [0, o0)

dxl

are defined similarly. Denote

| . , d
Lij := max g(j)(u)v i=1,2,j=1,2,3, M :=go(uay), Ma:= \/;gl(uu)-

w€[0,ui4]

A traveling wave solution of (1.2)) is a solution with the form

u1($?t):¢1(£)7 u2($7t) :¢2(€)7 §=x+ct,

where ¢ > 0 is called the wave speed and (¢1, ¢2) € C(R,R) is called the profile function.
Furthermore, (¢1, ¢2) with ¢ > 0 satisfies

1(6) — #1(8) + g2(¢2(& — cm2)),
dey (&) — Bda(E) + g1(d1(€ — cm)),

@ (§)

2.1
2 o))

and the following asymptotic boundary conditions
fhm (91(8), #2(8)) = (u1—,u2-), hm L (91(€), 92(8)) = (ur4, uz4).

To obtain the existence of traveling wave solutions, we consider the characteristic

function for (2.1)) with respect to the equilibrium (u;_,ug_):
AN c) == A1(A ) — Ag(N ¢),
where
AN 0) = (A2 —eA = 1)(dN? —ed = B),  Aa(A,c) = g} (0)gh(0)e A+,

Denote

c+ Vet +4 c+/c?+4d . _
)\11 = f’ )\21 = Tﬂ, A° := min {)\11,)\21}.

We have the following properties for the characteristic function A(A\,c).

Lemma 2.1. Assume that (A1)—(A2) hold. There exists ¢min > 0 such that
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o if ¢ > Cmin, then the equation A(X, ¢) = 0 has three positive real roots A\i(c), Aa2(c),
and A3(c) with 0 < A\1(c) < A2(c) < A¢ < A3(c) and

>0 if A€ (Ai(e), A2(e) U (A3(e), +00),

A\ c
) <0 if Ae (0,M1(c) U (Aa(c), As(c));

® if ¢ = Cpin, then 0 < A1(Cmin) = A2(Cmin) < A°.

Proof. We first prove the following claim.

Claim. A(\,c) has at most three distinct positive zeros for any given ¢ > 0.

Suppose to the contrary that A(\, ¢) would have more than three distinct positive
zeros. Using the Rolle’s Theorem, there exist at least three distinct n; > 0 such that
%A()\,C)b\:m =0,7=1,2,3. Since A;(Ai1,¢) = A1(A12,¢) = Ar1(A21,¢) = A1(Ae2,0) =
0, where Ao := # < 0, Ay := emyetads <0 @Al(/\,c) has three distinct real

2d > O0A
zeros and one of these zeros is negative, say A}, A5, A3 with A\] < 0. Define
1 0
A*(\c) = —— <A\
(A¢) X — \FOX (A¢)

c(11 + 72) g7 (0)gh(0)eAT1+72)
AN )

=4d(A = X)X = A3) + VA>0.

It is easy to see that A*(\, ¢) has the same number of positive zeros as %A()\, c). A direct
computation yields 88—/\22A*(/\, ¢) >0,V >0. We conclude that A*(\, c) has at most two
distinct positive zeros. Hence %A(A, ¢) has at most two distinct positive zeros and then

A(A, ¢) has at most three distinct positive zeros.

AlX )

Figure 2.1: Graph of y = A(\, ¢) with ¢ > ¢min.
Clearly, limc—oc A(1/3/c, ¢) = +o00. If ¢ is large enough, then we have A(A, ¢)[ =y, z >
0 and 0 < 1/i/c < A°. Define
Cmin := Inf {¢ > 0: A(X,¢) > 0 for some A € (0,\°)}.

From the assumptions (A1) and (A2), we have 8 < ¢1(0)g5(0), and then A(X,0) < 8 —
g1(0)g5(0) < 0 for A € (0, A°). Hence cpin > 0. Assume ¢ > cpin. Then there exists some
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A* € (0,X°) such that A(A*,¢) > 0. Since A(oo,c¢) = +o0, A(0,¢) <0, and A(X%¢) <0,
we conclude that A(\, ¢) has at least three distinct positive zeros and at least two of
these zeros distribute in (0, A°) and that at least one of these zeros distributes in (A€, +00)
for any ¢ > cmin (see Figure 2.1). Then, from the Claim, we know that A(),c) has
exactly three distinct positive zeros, two of these zeros distribute in (0, A¢), and one of
these zeros distributes in (A% +00), say Ai(c) < A2(c) < Az(c). Clearly, A\i(c) < A* <
A2(c) < A < A3(e). Since A(X*,¢) > 0 and A(oo,c) = +oo, we get A(N,¢) > 0 for
A€ (Ai(c), A2(c)) U (A3(c), +00). Obviously, Ai(c) = Aa(c) when ¢ = cpin. O

Let
B(E) = (¢1(6),92(6)) = (min {U1+, 6/\1(0)5} , min {u2+7A(c)e>‘1(0)5}) ,
(¢ = <?1 (5%?2(0) = (max {07 eM(e)E _ pegh(c)ﬁ} , max {0’ A(C)eAl(c)g — pD(e, g)eg/\l(c)g}) ’

where ¢ € (1,min {2, X\a(c)/A1(c)}), p > max{1,A(c)/T(c,0)} is large enough, A(c) =
g1 (0)e= @71 /[eA; (¢) — dA3(c) + B] and

gh(0)eM1(en

c(ori(c)) — d(oAi(c))2 + B < c(oMi(€)) — (oM (e))? + 1‘

gh(0)e~ i (lem

I'(c,0) <

It is easy to verify that ®(¢) and @(€) are a pair of upper and lower solutions of
system (2.1). By using the upper-lower solutions and Schauder’s fixed point theorem, Wu
and Hsu [25] proved the existence of traveling wave fronts of system (|1.2)).

Theorem 2.2 (Existence of traveling wave fronts). Assume that (A1)—(A2) hold. Then

for any ¢ > cmin, the system (1.2)) has a traveling front ®(&) = (1(£), 92(£)), £ = x + ct,
which satisfies ®(—o0) = u_, P(+00) = wuy. Furthermore, if ¢ > cmin, then

lm ¢ (€)e™ 8 =1, lim ¢g(€)e MO8 = p(c),
{——o0 §——o0

G1(€) < M8 hy(€) < b(e)eM D, g eR.

Lemma 2.3. Assume that (A1)—(A2) hold. Then for a given traveling wave front ®(§) =
(61(8), 92(8)), € = x + ct, of system (1.2) with ¢ > cmin, there holds

6(6)] < galuny), | 64(6)] < ggl<ul+>-

Proof. 1t is easy to see that

1

$1(§) = M= s

3 too
[/ 2679 gy (o (s — em2)) ds + / eM1E7) gy (a(s — em)) ds|
. ¢
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where A2 = (¢ — V¢? +4)/2. Then

1

¢1(€) = M1 — M2

13
[)\12 / ) gy (ga(s — em)) ds
“+o00
+ A1 / 6)‘11(5_5)92((252(8 — CTQ)) ds] .
3

By the fact that ga(¢2(§ — ¢72)) < ga(uoy) and A1 — A2 > 2, we get ¢ ()] < g2(uay).
Similarly,

3 +00
6a(6) = ——— [ / 22679 g1 (¢ (s — em)) ds + / A gy (g1 (s — em)) dS} :
¢

T oo

where \o2 = (¢ — v/¢? 4+ 4df3)/(2d). Then

1

$5(€) = o1 — M

13
[)\22/ ?2679) gy (1 (s — emy)) ds
+o0 A
+ >\21/ e 21@_5)91@)1(8 —c71)) ds]-
3

Since g1(¢1(§—cm1)) < g1(u1+) and Aa1 — Az > 24/3/d, we obtain [¢5(€)| < \/d/Bg1(u1+).
L]

Lemma 2.4. Assume that (A1)—(A2) hold and ¢j(uiy) + gh(uat+) < min{2,28}. Then
there exists &o > 0 such that for each & > &,

9i(6i(€)) < gi(uir) + e, gi(di(€ —cm)) < gi(uir) +€, i=1,2,

where e < min{(2 — gy (u14) — ga(u2+))/4, (28 — g1(ur4) — g5(ua+))/4}.
The proof is easy, so we omit it.

Lemma 2.5 (Boundedness). Assume that (A1)—(A2) hold. If ui— < wip(z,s) < wuiy,
(z,s) € R x [—7;,0], then the solution (uy(z,t),us(x,t)) of Cauchy problem (1.2) and
(1.3) satisfies

wi— < wui(x,t) <wuig, (x,t) € R x[0,400).

Proof. We first prove wu;(x,t) > 0. For t € [0, 2], then ua(z,t — 72) = ugp(z,t — 72) and
g2(ugo(x,t — 7)) > 0. Notice that u;(z,t) satisfies the following equation

uy(z,t) 0?uy (,t)
ot Ox?

Applying the comparison principle for parabolic equations, we have uj(z,t) > 0 on R X

+ Ul(l',t) = gg(Ugo(l’,t — TQ)) >0, (.%',t) € R x [0,7‘2].

[0,72]. Repeating this procedure to each interval [kTo, (k + 1)72], & = 1,2,..., we get
ui(x,t) >0 on R x [0, +00).
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Next we prove uj(z,t) < uj4. It is easy to see that

Uy — ur(x 2Ny 4 — ur (x
Olu 4 8t1( )] _ 07| 1+8$21( ,t)] — [urs — ur (2, t)] + ga(uas) — go(us(z,t — 12)).

Ast € [0, 7], then uo_ < ug(z,t—72) = ugp(z,t—72) < ugy. By the monotonicity of go(u),
we have go(ug+) — ga(ug(x,t — 72)) > 0. Thus uy(x,t) satisfies the following differential

equation

Oury —wi(z,t)]  0*[ury — i (z,t)]
ot 0x?

+ [ury —ui (2, t)] = ga(uay) — go(uz(z,t —72)) > 0.

Applying the comparison principle for parabolic equations again, we have u(z,t) < uj4
on R x [0,72]. Repeating this procedure to each interval [kro, (k + 1)m2], k = 1,2,..., we
get ui(x,t) < wuip on R x [0, +00).

Similarly, we can prove us— < ug(x,t) < ugy, (z,t) € R x [0, +00). O

Lemma 2.6 (Comparison principle). Assume that (A1)-(A2) hold. Let ut = (uf (z,1),
ug (z,t)) and u™ = (uj (z,t),uy (x,t)) be the solution of system (1.2) with the initial data
(ufo(z,8), uge(z, 8)) and (uiy(w, s), us(z,s)) respectively. If ui < u; (z,s) < ul(z,s) <

Uiy, (z,8) € R X [—7;,0], then
wi— < up (z,t) <uf(2,t) <wy,  (7,t) € R x [0, +00).

Proof. From Lemma it suffices to prove u; (z,t) < u} (x,t). We only prove uj (z,t)
uf (z,t) and the proof for u; (z,t) < uj (z,t) is similar. If we let uy(z,t) = uf (z,t) —

IA

uy (z,t) and uyo(z, s) = ufy(w, s) — ujy(z, s), then up(z,t) satisfies

Qui(x,t)  DPuy(w,t )
ulé;ﬁ ) B uala(:f ) +uy(z,t) = go(ug (x,t — 7)) — g2(uy (2,1 — 72)).

Since ug— < uy (z,t—72) < uj (z,t—73) < ugy for (z,t) € R x [0, 73], by the monotonicity
of ga(u), we have go(uy (,t — 1)) < go(ud (z,t — 72)). Therefore uy(r,t) satisfies the
following differential equation

Oou(z,t)  0*uy(x,t)

ot ox2 +ui(z,t) = g2(ug (z,t — 72)) — g2(uy (z,t — 72)) > 0.

Applying the comparison principle for parabolic equations, we have uq(z,t) > 0 on R X
[0,72]. Repeating this procedure to each interval [k7o, (k + 1)1, & = 1,2,..., we get
up(z,t) > 0 on R x [0, +00), which implies u] (z,t) < uf (z,1). O

Next, we present the global existence and uniqueness result of solution (uj(z,t), us(z,t))

to Cauchy problem (1.2 and (1.3]).
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Theorem 2.7 (Global Existence and Uniqueness). Assume that the initial data satisfy

wi— < uio(x,s) < uiy and are continuous for any (x,s) € R x [—7;,0]. For a given

traveling wave front ®(§) = (¢1(€), $2(£)), € = x + ct, of the system (L.2), if the initial

perturbation wio(z,s) — ¢;(z + cs) € C([—7;,0], HL(R)), then there exists a unique global

solution (ul(x t),ua(x,t)) of Cauchy problem (1.2) and such that u;(z,t) — ¢i(x +
ct) € C([0,+00), H'(R)).

Let Vi(z,t) = wi(w,t) — di(x + ct), where ®(§) = (¢1(£),¢2(¢)), € = z +ct, is a
given traveling wave front of system ([1.2]). Then Cauchy problem (|1.2)) and (1.3)) can be

rewritten as

Vi(x,t)  *Vi(a,t)

— Vl(a;,t) + Gg(x,t — 7'2),

(2.2) vie s P
Y =d 92 — pVa(x,t) + Gi(z,t — 1),
with
(2.3) Vi(z,s) = uio(z,s) — ¢1(z + cs) = Vig(x, 8), (7,s8) € R x [—71,0],
Va(z,s) = ugo(x, 5) — ¢2(x + cs) = Vao(w,5), (v,8) € R x [~72,0],
where

Gi(z,t — 1) =g (Vi(z,t — 1)+ d1(z + ct — er1)) — g1(P1(x + ¢t — e7p)),
Ga(z,t —19) = go(Va(z,t — 12) + da(x + ct — c12)) — go(Pa(x + ct — c13)).

We give the following two lemmas on the local existence, uniqueness, extension of

solutions and boundedness of solutions of (2.2) and (2.3|), which will imply Theorem

Lemma 2.8 (Local Existence and Uniqueness). For Vio(z,s) € C([~7;,0], HY(R)), there
exists tg > 0 such that Cauchy problem and has a unique solution (Vi(z,t),
Va(z,t)) € C([0,t0), (HY(R))?). Furthermore, if [0, Tmax) is its mazimal interval of ex-
istence and (Vy(x,t), Va(z,t)) € C([0, Tmax), (HY(R))?), then either Thax = +00 or the
solution blows up in finite time, i.e., Thax < +00 and

lim [[Vi(-, )l g ) = +o°-

t—Tmax

It can be proved by using the standard iteration method (see [7,/15[16]), so we omit it.

Lemma 2.9 (Boundedness). If (Vi(z,t), Va(x,t)) € C([0,T), (H*(R))?) is a solution of
Cauchy problem (2.2)) and (2.3]), where 0 < T < 400, then there exist positive constants
A and B, independent of T, such that

(2.4) Vi) 1 gy < A (ZHVzo N &) +Z/

—T;

[[Vio(s ||H1R)d5> o
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for allt € [0,T), where
A =max {1, L1 + L1oMy, Loy + Loo Mo}, B = Li1 + Loy + Loa(My + My).

Proof. Multiplying the first and the second equations of system ([2.2)) by 2Vj(x,t) and
2Vs(x,t), respectively, we have

(2.5) (VD) = 2(ViVig)s + 2V + 2V = 2Gy(x,t — ) Vi (, 1),
2.6 V) — 2d(VaVag )y + 2dVE, + 28V = 2G4 (z,t — 1) Va(x, t).
2 2z 2

Integrating (2.5) and (2.6)) over R x [0, ¢] with respect to £ and ¢, respectively, we get

t t
IO +2 | V(o) Fagey ds 42 [ 1Va(6)] ey d
(2.7) 0 0

t
~ Wio )l +2 [ [ Galos = Vi, s) dads,
0JR

t t
IVa(8)|12x) + 24 /0 Vo (s) 22 g, ds + 28 /0 1Va(5) 22 m) ds
(2.8)

t
= ||V20(0)H2LQ(R) + 2// Gi(x,s — m1)Va(z, s) dzds.
0JR
By the mean-value theorem, we get
(2.9) ‘G1<1',8—T1)’ §L11"/1<1',8—T1)‘, ‘GQ(@',S—TQ)‘ SLQl“/Q(l',S—TQ)‘.

From (2.7)—(2.9) and the Cauchy inequality, we obtain
2 2 t 2 t 2
S IVi) 2oy +2 /0 Vi ()2 sy s + 2d /0 1Vau () 22y ds
=1
¢ 2 ¢ 2
1 / IVi(8) 2 ds + 28 / 1Va(5) |22 m) ds

—ZHV,() HL2(R +2//G2 x,s — 1) Vi(x, s) dads

=1

+2//Gl((L‘,S—Tl)VQ([IJ,S)d.%’dS
0

<Z|rv;o |rLz<R>+ZLu | W)l as

Ti

+ (L11 + L21) Z/ [Vi(s HLQ(IR

Similarly, by the mean-value theorem, we have

(2.11) ]Glx(w, S — Tl)’ < L11 ]le(aﬁ,s — 7'1)‘ + L9 M, ‘Vl({L',S — 7'1>| ,
(2.12) |Gox(2,8 — 12)| < Loy |Var(x,8 — 72)| + Looa My |Va(x, s — 12)| .
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Differentiating the first and second equations of system (2.2)) with respect to z and mul-
tiplying them by 2V, (z,t) and 2Va,(x,t), respectively, we have

(2.13) (V12a:)t —2(VizViga)x + 2V12ma: + 2V12x = 2G2; (7, t — 12)Via(z, 1),
(2.14) (V2 )t — 2d(VarVags )z + 2dVa, + 28V, = 2G 1. (x,t — 1) Vay(x, t).

Integrating (2.13) and (| over R x [0,t] with respect to x and ¢, from -,

and the Cauchy 1nequahty, we obtain

(2.15)
2

t t
S Vialt) 22y +2 /0 Vi (5) 2y ds + 2 /0 |Vaza(5) 22y ds
=1
¢ 2 ¢ 2

1o / 1Via(s) 22 g, ds + 28 / Vo ()12 ) ds

2

Z Vizo( ||L2(R +2//G2x x,8 — 12)Vig(x, s) deds

+2//Glx(l‘,S—Tl)sz(ZL‘,S)diL‘dS

0 ) 2 0 )

<Z||vwo e, +ZL2M IVio()|Z2y ds + 3 Lis / [Vieo(5) |22 g ds

—Ti i=1 —Ti

2 t
+ (L11 + Lot + L1o My + Lo My) Z/ ”ViI(S)HiQ(R) ds
— Jo

2 t
3" LMy [ IV 0o
i=1

From ([2.10)) and (2.15)), we have

2 0
STV @ <Z|mo HH1R>+Z Lit + LioM;) / [Vio(8)l 771 gy ds
=1

i=1 —Ti

2 t
+ (L11 + L21 + Lia My + Loa M) Z/ HVi(S)H%{l(R) ds

(Zmo W e +Z/T,
+B/Zuv )11 gy ds

Vio ()1 311 gy ds )

where

A =max{1,L11 + LioMy, Loy + LooMs}, B = Lyj + Loy + Li12M; + Log M.
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From the Gronwall’s inequality, we obtain

2 2 2
S Vi) < A (Z Vio (O) 17y +
i=1 =1 =

0
Vo () 1211 (g ds) e,

7
ie.,

2 2 0
Vi)l < A (Z 1Vio (0) 1771 sy + Z/ Vio(5) 7 (ry ds) e, O
=1 =1 " Ti

Thus, Theorem [2.7] follows immediately from Lemmas 2.8 and [2.9]

In order to state our stability result, we make some technique assumptions.
(A3) ¢/ (u1) <0 for uy € [0, K1], ¢5(u2) <0 for ug € [0, Kal;
(Ad) g(ury) + ghluzy) < min {2,28};
(A5) g1 € C*([0,u14],R+) and g2 € C¥([0, ug4], Ry).

We define a weight function as

e~ 7E=6) if £ < &,
1 if & > &,

(2.16) w(€) =

where v = ¢/(d+ 1) and & is defined as in Lemma
Now, we present the corresponding stability theorem for Cauchy problem ((1.2) and

(1.3]) as follows.

Theorem 2.10 (Stability). Assume that (A1)—(A5) hold. For any given traveling wave
front ®(&) = (41(£), P2(§)) (€ = x + ct) of system with the wave speed

¢ > max {cmm, (d+ 1)\/Igi(0) +95(0) — 25, \/(d 21)2 191(0) + 95(0) — 2!} ,

if the initial data satisfies

and the initial perturbations satisfy

uio(x,s) — ¢y (x + cs) € C°([—,0], HL(R)), (z,s) € R x [—71,0],
ugo(z, ) — ¢o(z + cs) € CO([—m2, 0], Hy(R)), (z,5) € R x [—72,0],
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where the weight function w(§) is defined by (2.16), then the solution (ui(z,t),us(z,t)) of
Cauchy problem (1.2) and . satisfies
- <wi(z,t) < uig, (z,t) € Rx[0,40), i =1,2,
ui(z,t) — ¢i(z + ct) € CO([0, +00), Hy(R)) N L*([0,+00), Hpy(R)), i=1,2
for some positive constant p and C.

Furthermore, the solution (uj(z,t),us(z,t)) converges to the traveling wave front

(¢p1(z + ct), pa(x + ct)) exponentially in time t, i.e.,

(2.17) sup |ui(w,t) — gi(x +ct)| < Ce ™™, t>0,i=1,2.
z€R

3. A priori estimates

In this section, we are going to establish the a priori estimates, by means of the weighted-
energy method and the comparison principle.

Let the initial data (u19(z, s), ugo(x, s)) satisty

ui— < uyo(z,s) < uiy, (z,s) € R x [—711,0],
uz— < ugp(z,s) < ugy, (z,s) € R x [—72,0].
Define
Ui (z,8) = max {uio(z, ), 1 (x + cs)}, (x,8) € R x [—7,0],
Uz, s) = min {uip(z, s), ¢1(z + cs)}, (z,8) € R x [—7,0],
Uso(, 8) = max {uzo(, 5), 2 (2 +¢s)},  (2,5) € R x [-7,0],
Uso(x,s) = min {ugo(x, s), p2(x +cs)}, (x,8) € R x [—72,0].
Obviously,
ui— < Upg(w, s) < upo(z,s) < Ufh(z, s) < uis, (z,s) € R x [—7,0],
(3.1) u— < Upg(w, s) < ¢1(z + cs) < Uph(z,s) < ury, (z,s) € R x [—7,0],
us— < Uyy(w, s) < ugo(z,8) < Uy (w,8) < ugy (x,8) € R x [—72,0],
(3.2) us— < Usg(z,8) < do(z + cs) < Ugh(w, s) < uay, (x,8) € R x [—72,0]

Let (U (z,t),U5 (z,t)) and (U; (,t),U, (z,t)) be the solutions of (1.2) and (L.3) with
the initial data (U;5(z, s), Usy(z,8)) and (Ug(z, 8), Uy (2, 8)), i.e.,

U (x,t)  O2UTF (x,t
1 ( ) = 1 (2 ) — Uli(l',t) —|—92(U2i(l',t—’7'2)),

vty U

z,t) x, n n

26t =d 5962 — BU5 (z,t) + g1 (Ug (x,t — 1)),
Uli(x,s) = Ulio(:v, s), (x,8) € Rx[—7,0],

Ugi(a:,s) = Ugf)(x,s), (x,8) € R x [—72,0].
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It follows from the comparison principle that

(3.3) ul— S Uf

(3.4) us— < Uy (2,t) <
Let ¢ =2+ ¢t and

Vi(€, 1) = Ui () — ¢i(8), i=1,2,
Vio(&,8) = U{B(:):,s) — ¢1(x + cs), (x,8) € R x [—7,0],
Vao (&, ) 2—5( S)—¢2($+CS), (.’L‘,S) € R x [—7’2,0}.

Then by " " " and ‘ , We have
Vi(&,t) >0, Vip(&,8) >0, i=1,2.

First of all, we are going to derive the a priori estimates for Vi (&, ) and Va2(&,t) in the
weighted Sobolev space H. (R).

Lemma 3.1. Assume that (A1)—(A3) hold. Then for any ¢ > cmin, it holds that
t
Zezut [Vi(t) HL2 / 2 ||V1£(5)H%2W(R) ds + d/ e HV2£(3)”12U(R) ds

/ / B (Ow(E)VE(E, s)déds + / / BRL(Ow(&)V (€, 5)déds

<2]mo 2 s +§j/t/2““ﬂ W(E + em)gl(:(E)VA(E, 5) deds,

— T

where
/ I\ 2
( Bl(}zv(f) =2u—c <1111))> - <1Z)> +2
3.5)
- lenl€ - cm)) = m LD 6 )
/ N\ 2
Bl(fzu(f) =—2u—c (Z) —d (Z) + 28
(36) ’ 2o w(é +cm)
—g1(¢1(§—cm)) —e Wgz(@(é)),

the weight function w(&) is defined by (2.16), and u is arbitrarily given positive constant

at this moment and defined later.
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Proof. 1t is easy to verify that V;(§,t), i = 1,2 satisfy

Ve | &N PV
ot o€ &2

= P({ —cmo,t — T2),

M) | OVED) Ve

(3.7) ot ¢ o2

=Q(& —cm,t—1),

Vi(€,s) = Vio(&:s),  (&8) € R x [—7,0],

‘/2(575) = ‘/20(578)7 (573) eERx [_7—270]7

+ Vi(€,1) — g5(d2(§ — c72))Va(§ — 72, t — 72)

+ BVa(&,t) — 91 (d1(§ — em))Vi(§ — et — 71)

where

P(§ = cmp,t = 72) = g2(Va(§ — T2, T — 72) + ¢2(§ — c72))

— g2(02(€ — c12)) — go(d2(€ — cm2))Va(€ — cmo,t — 7o),
Q¢ —cr t—7) =g (Vi(§ —emi,t —11) + ¢1( — cm))

—g1(¢1(€§ —em)) — g1 (#1(€ — er )V (€ — emi,t — ).

Multiplying the first equation of (3.7) by e2**w(&)Vi(€,t), where > 0 is a small constant

to be specified later, we obtain

1 1 1 !
—etVE L e —cwVE —wViVigy +{—p—=c )4 ety V2
2 , 2 ¢ 2"\ w

+ M ViVie + Vi — ew(€) gh(d2(€ — em)) Vi€, )Va(E — era,t — T2)
= Mw(@VA(E, P = erayt = 7).

(3.8)

By the Cauchy inequality |zy| < ex® + y?/(4¢), we obtain

1 (w)?
|62“tw’V1V1§‘ < 662“th12§ + T (Z) werQ“t.

Let € = 1/2. Then (3.8) reduces to

1 1
{eQ“thf} + 1t {chf - leVlg}
2 . 2 ¢

1 (o 1 w2 1 b2ty
(3.9) YRR <w> "2 <w> Hlpemwh
+ %ezﬂthfg — e w(€)g(da(€ — ema)) Vi (€, )Va(E — cTa, t — 7o)

< eP(OVL(E, )P (€ — cro,t — 7).
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Integrating (3.9)) over R x [0,t] with respect to £ and ¢, respectively, we have

t W' w' 2
o2ht Hvl(t)”QLi(R) _|_/O/]R {—Q,U —c <w> — <w> + 2} e2rsw(E)VE(€, s) déds

t
b [ e Vi), ds
(3.10) 0

t
2 [ [ @) (6a(6 - V(e )Vale — emas - ) deds
0JR
t
< IOy +2 | [ AN P~ erais = ) deas
Using the Cauchy inequality again, we have
| w (&) gh(P2 (& — cma) VA (€, 5)Va(€ — cra, 5 — 1)

2 2¢ _
< e w(€)gy(¢2(€ — cm)) [Vl (2578) + V2 (€ 672—2’5 72)} .

Thus, the fourth term on the left hand side of (3.10]) is reduced to

t
2 / / How()gh (o€ — )V (E, 5)Val€ — e, s — ) déds
0JR

t
< 2// |25 w (&) gh(d2(€ — em2) VA (&, 5)Va(€ — cma, s — 12) | déds
tO R
<[] e u€isslonte - er)Vie.s) agas
t
+ /O/R(g%sw(f)gé(@(f — ) )V2(E — o, 5 — 7o) déds
t
- /0/]1‘{62#511)(5)9’2((?2(5 - CTQ))VE(& 3) déds

t—T1o

* /Rez““*”’w@ + e12)gh($a(€))VE(E, 5) déds
t
< /0 /R 0w (€)gh(a(€ — era))VE(E, 5) déds
0
4 / / M (6 4 emy)gh (a(€)) VD (€, 5) déds
—712J R
t
+ /0 /R T (€ 4 emy)gh (9(€) VE(E, ) deds.
Then, is reduced to
2 |Vi(8) 25 my + / 2 [Vig() 2, g s

- /0 /R 2w (€ + e13) gy (92(€)) VE(E, 5) déds
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g+ f t / {—m o (“’) - (“’/)2 2 gh(oale - cn))}ez“Sw(f)Vf(&s) agds

< Vo0l x [/ M (€ 1 o) gh(92(E)) VD (€, 5) déds

+2 /O /R 2w (E)V1 (€, s)P(€ — cma, 5 — T2) déds.

Multiplying the second equation of (3.7)) by e?**w(&)Va(€,t) and integrating it over Rx [0, ]
with respect to £ and t, respectively, we can similarly obtain

PO o)+ [ Vo) e 0
-/ t [l + e (6n() V2 (6. s
(3.12) // s (EVE(E, 5 { 2u—c< )—d(Z)Q+2/3—g’1<¢>1(£—cn>>}d§ds
< Vao(O) s ) + / [t + enaior(©)Vi €.5) deds

t
+2 /O /R 2w (E)Va (€, 5)Q(€ — ey, s — ) déds.

From (3.11)) and (3.12)), we get

(3. 13)

Ze2ﬂt||V<>||Lz(R)+ / 2 |[Vig(s) 2 gy s +d / 2 [Vae(3)]12, g, ds
// 2MS Vl 57
N2
{ e (f’u) () +2- htente - cm) - emwgm(s»}dﬁds
t
218 2
+ [ [ eruevies

‘ {—m o (2‘;) _d (:‘;) 28— (6l —em)) — ezmwgm(a»} deds

2 2 0
<Y WOl + 30 [ [ el + engl i€ V(E.5) deds
i=1 i=17/ TR
t
2 Hew(E)Vi (€, 8)P(E — — 75) déd
2 [ [ e (e - orns - m) deds

+2 /ot/R 2 w(E)Va(€,8)Q(E — ey, s — 1) déds.
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For the nonlinearity P(§ — c7o,t — 72), using Taylor’s formula, we have

P —cmp,t — 1) = g2(Va(§ — cmo,t — o) + $2(€ — cm2))
— g2(92(€ — em2)) — go(@2(& — e72))Va(€ — 7o, t — T2)

B

where g3 € [¢2(E—cT2), Va(€—cTa, t—T2)+¢2(E—c)]. Since Va(E—cra, t—72)+d2(E—cT2) €
[ug—, us4], from (A2), we get 9’2’(52) <0, ie., P(§ —cm,t — 1) < 0. Since Vi(£,t) >0

we have .
2// 25w (Vi (€, 8)P(€ — cma, 5 — 1) déds < 0.
0JR

Similarly, we get

t
2// 5w (€)Va(€, 8)Q(€ — ey, s — 1) déds < 0.
0JR
Thus (3.13) is reduced to

Zemnv 2: & / 2 [Vig(s) 2 ) ds +d / 2 | Vae ()2 g ds
/ / B, (€)e%=w(€)VA(€, 5) deds + / / JeHw(€)VE(E, 5) déds

<2va 12 & +Z / / ) (€ 4 erp) gl (i(E))VE(E, ) deds,

where B&)ﬂ(f ) and B,SQZU (&) are given in and (3.6)). O
Let
Co) = = 2= 25— g (0) — gl 0)e>
(d+1)2
() = 2 — gi(uwg — g5(p2+) 21— gl (0)(e% ™ — 1),
Coli) = 53+ 20— 20— 0) ~ (O™

and

04('u) _ 20 — g'l(m;) - gé(/u2+) —2u— gé(o)(elm—g _ 1)

Lemma 3.2. Assume that (A4) holds. Then for any
1(0) + 93(0) —2I},

there exists a unique root p; € (0,00) for the equation Ci(n) =0, i = 1,2, 3,4 respectively.

¢ > max {cmin, (d+1),/19(0) + g5(0)
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Proof. We first prove that the equation Ci(x) = 0 has a unique root in (0,00). Let
Hi(p) = dc?/(d+1)% + 2 — gh(0) — 2 and Ha(p) = ¢;(0)e* ™. Since H1(0) = dc?/(d +
1)242—g5(0) > ¢1(0) = H3(0), sketching the graphs of Hy (1) and Ha(u) (see Figure,
it is easy to verify that there exists only one root up in (0, 00).

(0, Hy{(0))
y = Hi(u)

(0, Hs(0))9
(0, H(0)) y = Hj(p)
y = Halp)

y= Hz(p)

(0, Ha(0))

)
L
[
y
[

I H2 Iz

(a) (b)

Figure 3.1: (a) Graphs of y = Hi(u) and y = Ha(u). (b) Graphs of y = Hs(u) and
y = Hy(p).

= 0 has a unique root in (0, 00). Let H3(u) =
(2 — gy (p1s) — gh(par))/2 — 2u and Hy(p) = g(0)(e®*™ — 1). By the condition (A4), we
get H3(0) = (2 — g1 (111+) — g5(p2+))/2 > 0 = Hy(0). It can be verified by sketching the
graphs of Hs(u) and Hy(u) (see Figure that there exists a unique root ug in (0, 00).
Using the similar method above, we can prove that the equation C;(u) =0 (i = 3,4) has

Next, we prove that the equation Cy(p)

a unique root in (0, co). O

Lemma 3.3. Assume that (A1)—(A4) hold. Let w(&) be the weight function defined as in
(2.16)). Then for any

¢> mx{m @+ 00 + 50 20/ L 15 0) -+ 5000 - 2|} ,
we have
(3.14) B,(€) > €5 (1) = min {C1 (1), Ca(p)}
and
(3.15) BE,(€) > P () = min {Cy(u), Ca(p)}

forall§ € R and 0 < p < po = min {p1, po, i3, fa}, where p; > 0 is the unique solution
to the equation Ci(pn) =0, i =1,2,3,4.
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Proof. We only prove (3.14), because another is similar. From (A3), we have 0 <

91(61()), 91(61(§ — em1)) < 91(0) and 0 < g5(62(£)), g2(P2(§ — cm2)) < g5(0).
Case 1: &€ < &. From (2.16), we have w(¢) = e~ 7(67%). Since w(¢) is non-increasing,

we obtain

BUL(E) = —2u+ ey — 12+ 2 — gh(dale — em)) — 2 UET ) i (6

w(§)
> —2p+cy — 7% +2— gh(0) — e*7 g} (0)
A o g gh(0) - g ()
(d+1)2
= C1(p) > 0.

Case 2: & > &. In this case, w(§) = w(§ + ¢m) = 1 and w'(§) = 0. Thus, by

Lemma [2.4] we have

2uT w(f + CTl)

BLb(€) = =241+ 2 = gh(0a(¢ — em2)) = ¥ =0 ogh (04(6))

> =20 42 = gy(d2(€ — em)) — g1 (61(8)) — (€™ = 1)gi(1(€))
> =24+ 2 — ghluay) — g (uas) — 2 — (3™ — 1)1 (0)
> 2 - gll(:u1+) - gé(:u2+) i 2M i gi(o)(eZu,Tl - 1)

- 2
= Ca(u) > 0.
If we choose C(gl)(u) = min {C1(p), Ca(p) }, then (3.14) holds. O

Applying Lemma [3.1] and dropping the positive term

t t
/0 /R B, (€)™ w(€)V2(E, ) deds, /0 /R BE)(6) P w()VA(E, ) deds
and
t 2us 2 t 2us 2
e Wielo) iy ey s, d [ IVag(o) 3 s

we immediately obtain that

2

2 2 0
> e Vi)l gy < Cs (Z IVio(O) 172 z) + Y / IVio(s) 172 ) ds) ,
i=1 i=1Y"Ti

i=1
where C5 = max {1,62‘”1L11,e2“72L21}. Thus, we obtain the first energy estimates as

follows.

Lemma 3.4. Assume that (A1)—(A4) hold. Let w(&) be the weight function defined as in
(2.16). Then for any

c> mx{m @+ 1)/l + 550 21/ o) 1 g50) - 2|} ,
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it holds that
2
IVi®)llz2 m)

2 2 0
< Cse 2 (Z IVio ()22 (&) + Z/ Vio(5) 172 (ky ds> . t>0,i=1,2,
i=1 i=177Ti

where Cs = max {1, e2HT 1y, 62‘”2L21} and 0 < p < po = min {p1, po, 13, 4}
Next, we derive the estimates for Vi¢(€,t) and Vog(§, ).

Lemma 3.5. Assume that (A1)—(A5) hold. Let w(&) be the weight function defined as in
(2.16)). Then for any

c>max{cmin,(d+ 1)\/|gi(0)+ ; / 0)+g§(0)—2|},

it holds that
|Vie(t) Hiz

< Cre 2 (Z | Vio (0 HHl +Z/

—T;

where C7 = max {06 Z?:l (3LZ'2M¢ + 2L0ui+ + %LigMiuH_) 62“”, Cs + Lisuiy, Cs +
Laguay }, Cg = Cs max {1, 1/d,1/Cs,1/C5V (), 1/03”(”)} and 0 < pi < o = min{p,
25 13, fa -

Proof. Differentiating the first and second equations of (3.7)) with respect to £ and multi-
plying them by e?*w(&)Vig(€,t) and 2w (€)Vae (€, t) respectively, we get

1 1 1 w'
{2€2Htwvl2§}t 4 e2mt {zchfE — wV1§V1§§}£ + {—/l — 56 (w> + 1} 62;»th12§

(316) e wVigVige + e wVi — e w(€)gh(62(§ — em2)) Vae (€, )Vae (€ — emast — 1)
= 2w (&) gy (d2(€ — c72))P5(§ — cTa)Vie(§, )Va(€ — cma,t — T)
+ Mw(E)Vig(€,8) Pe(€ — cra, t — o)

and

1 1 1 !
{262utwv22§} + 2mt {QCwVQ% — dw‘éf‘égf}{ { = ge (w > + 5} 2uth22£
t
(317) e u VaeVage + de™ wVise — @ w(€)gh (61(€ — em1))Vae (€, )Vae(€ — emi, t —71)

= e w(€)gy (1(€ — em1)) B (€ — em)Vag (&, )i (€ — eyt — 1)
+ 2w () Voe (£, 1) Qe (€ — eri,t — 11).
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Integrating (3.16]) and (3.17)) over R x [0, ¢] with respect to £ and ¢, respectively, we have

2 t
Z€2Mt||‘/i£(t)||igu(m+/62“8HV1§5( )7z @ d8+d/ € | Vage(s) 172 my ds
+Z / / B, (€)e2mw(€)VE(E, ) deds

(va@ 2 +2 /

—Ti

Vieo(s)125 ds)
(3.18)
2 / / 9w (E)Vie (€, 3)Pe(€ — era. s — ) déds
OtR
2 /0 /R 2w (€)Vae (€, 3)Qe (€ — em1, s — ) déds
t
2 / / €250 (€) g ($a(€ — em2))BH(E — era)Vie (€, 5)Va(€ — ey, s — 1) déds

+ 2// 28y, // ¢1(€ - Cﬁ))ﬁ%(ﬁ — CTl)Vgg(f, 5)V1(§ — 11,8 — 7-1) déds.

Let

5y = Zumo )2, sz / IVio(5)I12 g ds.

—Ti

Then, we have

VA ()72 ) < Codi, e |[Va(t) 122 =) < Coot,
¢ t
/0 e VA (5) 113 (v ds < Codi, /0 e [Va(s)lI 7 ) ds < Codr,
t t
/0 e [Vag(s)IIZz ) ds < Cod, /0 e |[Vae(s)1 73 ) ds < Con,

where Cg = Cj max{l, 1/d,1/Cs, 1/0(51)(/0, 1/C(()2)(u)}. By the Cauchy inequality, we
get

5w (€) gy (h2 (€ — c12)) (€ — cmo)Vig(€, 5)Va(€ — T, s — T2) déds

/ / 290(€) gl ($a(E — ema))dh(E — ema)]| [VE(E, ) + VE(E — ema, s — )] déds

. -
< Lty | / P Vie(o) [} ay ds + [ [ S w(@VEE ~ erays = ) deds
(3.19) 0 v 0JR J

t t
SLzzMz[ / 2 | Vig(s)]12, gy ds + / M) |V (s) |2, g, ds

0
+/ 62M(s+7—2)|Vv20(8)||i%)(]1{)d5:|
.

S 306L22M26162HT2 .
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Similarly, we have

e w (&) gy (d1(€ — em1)) ) (€ — em1)Vae (&, 5)Vi(€ — eri, s — 1) déds

< 306L12M15162‘”1.

(3.20)

For the nonlinearity Pe¢(§ — cr2, s — 72), using Taylor’s formula, we have
Pe(§ —cma, 5 — 1) = 9’2’(52)‘/2(5 — 72,8 = T2)Vag(§ — cT2, 8 — T2)
+ 9/2”(¢2)¢2(§ — ) V3 (& — ey, 5 — T2),

where @y, 0y € [$2(€ — c72), Vo€ — ot — 72) + ¢2(§ — c72)] and up < Gy, G < uay.
Changing variables ¢ — ¢ — &, s — 79 — s and using the Cauchy inequality, we get

t
2 / / 5w (E)Vig(€, s)Pe(€ — eTa, s — ) déds

<2// ou(E) V(e o) |

95 (§g) 95 (€ — cma)| VS (€ — cTay 8 — Tz)] déds

G5 ($2)Va(€ — cTa, 5 — T2)Vae (€ — cTa, 5 — )

(3.21)
< L22u2+// 2180y V1£ & s)+ V22§(§ —CT9,8 — 7‘2)} déds

+ L23u2+M2// ey V15 £,8)+ VEE—cm, s — 72)] déds

3 0
< <2L22 + 2L23M2> Cdruzs €™ + Logug ™ / s ||V2§0(8)||igv(R) ds.

—T9

Similarly, we have

t
i 5w (&) Vae (€, 8)Qe (€ — cri, s — 1) déds

(3.22) .

3
< (2L12 + 2L13M1) 0651U1+62m—1 + L12’U,1+62w—1 / e2Hs ||Vv150(3)||i120(R) ds.

.
From (3.18))—(3.22)), we obtain

2
S Ve (D)2, ) < (Z Vieo ()12 s +Z /

i=1 —Ti

HVZ£0 ||L2 2 (R) ds >

0
+3 Lt e | Wieo(o)l oy ds

i=1 —Ti
2 3
+ Cgd1 Z <3Li2Mi + 2Ljouiy + 2Li3MiUi+> 21T
=1

2 2 0
Cr <Z ”WO(O)”?{;(R) + Z/ ||V;O(S)H§I&)(R) d5> )
i=1 i=1v T
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where C'; = max {06 212:1 (3LZ‘2Mi + 2L0ui+ + %Lii’)Miui—i-) 62“7—1', Cs + Liguy4,Cs +
L22u2+}, which implies

2 2 0
IVie(®)]125 gy < Cre <Z||vio<0>uzgu(m+2 / \m@ﬂﬁmds), i=1,2 O
i=1 i=1"Y"Ti

From Lemmas and we obtain the following a prior estimates.

Lemma 3.6. Assume that (A1)-(A5) hold. Let w(&) be the weight function defined as in
(2.16). Then for any

> max {cmin, @+ 0yt + 50— 281, L it )+ 45000 - 2|} ,

it holds that
HW(@H?{;(R)
9 2
< Cge™ 2t (Z Vo (O) 171 ) + D
i=1 =1

where Cg = C5 + C7 and 0 < p < po = min {uq, po, p3, pia}-

0
HV;O(S)H%I}U(]R) dS) , t > 07 1= 1727

—T;

4. Asymptotic stability

This section is devoted to the proof of the asymptotic stability (2.17]).
Using the Sobolev’s embedding theorem H!(R) < C°(R) and the embedding inequal-
ity HL(R) — H*(R) due to w(¢) > 1, we can immediately get

sup Vi(€, )] < Co Vi ey < Cuo WilOlg ey 7= 1,2
Thanks to Lemma [3.6] we obtain

(4.1) sup |Ui"'(x,t) — ¢i(z+ct)| =sup|V;(&,t)| < Ce™™, t>0,i=1,2,
r€R £eR

where 0 < p < po = min {1, po, ps, pa}. Let &€ = x + ct and

V;(é.vt) :¢i(§)_Ui_(xat)7 1=1,2,
Vio(&, s) = ¢1(x + es) — Uy, s), (z,8) € R x [—7,0],
V20(£7S) :¢2(JJ+CS)—U2_0(SU,S), (st) €R x [_7—270}-

By using the same method as in Lemma [3.6] we get

(4.2) sup |Ui_(ac,t) — ¢i(z + ct)‘ =sup|V;(&,t)| < Ce ™™, t>0,i=1,2,
T€R £eER
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where 0 < p < po = min {u1, po, p3, pat. From (4.1) and (4.2)), by the squeezing argument,
we immediately obtain

sup |ui(z,t) — ¢i(x +ct)| < Ce ™™, >0, i=1,2,
zeR

where 0 < p < pig = min {411, fi2, p3, pa}-

5. Applications

In this section, we apply our main result Theorem to some monostable evolution

equations and obtain the global exponential stability of traveling wave fronts.

Example 5.1. We consider the following monostable reaction-diffusion system with delay

2
us(z, ) _9 w(z,?) —ui(x,t) + aug(x,t — 1),

(5.1) ot Ox?
' Ous(z,t g (z, t u(z,t — 7
2(2,t) _ 2(2 )_5u2($’t)+ pua( )
ot ox 1+ qui(z,t — 1)
where p,q > 0.

Assume that 8 < ap. It is clear that (5.1) has a trivial equilibrium uw_ = (0,0)
and a unique positive equilibrium w4 = (O‘%;B , aé’/gf ) Moreover, gi(u) = 1-{1;1; is non-
decreasing on [0, 00), and

/ p / 7 —2pq
w=—2" <g(0)=p, dlu)=—"1_<0
gl( ) (1+qu)2 —gl( ) p gl( ) (1+qu)3 =
Therefore, (A1)—(A3) hold. We have the following result.
Theorem 5.2. Assume that o + f—; < min{2,26}. For any given traveling wave front

D) = (h1(£),02(8)) (E=x+ct) of with the wave speed

d+1)2
C>max{cmin>(d+1)\/|p+a_2ﬁa\/(—:l)|p+a_2|}7

if the initial data satisfies

0< UIO(xas) < ; (.fL',S) € R x [_7_170]7

0 < um(e,s) < PP (2,) € R x [, 0],

and the initial perturbations satisfy

uio(z, s) — ¢1(z +cs) € CO([—Tl,O],H;](R)), (x,s) € R x [—71,0],
ugo(x, 8) — ¢o(x + cs) € C¥([—m2, 0], HL(R)), (z,5) € R x [—13,0],
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where w(§) is the weight function defined as in (2.16)), then the solution (u1(x,t),us(x,t))

of Cauchy problem (5.1)) and (1.3)) satisfies

ap — B ap—f
Bqg afq

ui(x,t) — ¢i(x 4 ct) € CO([0, +00), HL (R)) N L*([0, +00), H2(R)), i=1,2

0 <uy(z,t) < 0 <wug(z,t) < (x,t) € R x [0,+00),

for some positive constants p and C.
Furthermore, the solution (ui(z,t),us(z,t)) converges to the traveling wave front

(¢p1(z + ct), pa(x + ct)) exponentially in time t, i.e.,

sup |ui(x,t) — gi(x +ct)| < Ce ™, t>0,4i=1,2.
z€R

Example 5.3. We consider the following reaction-diffusion system with delay

2
Ous (2, ) _9 w(z,?) —ui(x,t) + auz(x,t — 12),

ot Ox?
(52) Gug(x, t) 82'&2(1‘, t) —qui (z,t—71)
e d e Bug(z,t) + pui(x,t — 1 )e ,

where «a, p,q > 0.
Assume that 1 < ap/S < e. It is clear that (5.2) has a trivial equilibrium u_ = (0,0)

and a unique positive equilibrium w4 = %ln % L

ap _ —qu
s aq 0% ). Moreover, g1(u) = pue™™" is

non-decreasing on [0,1/¢| and
gi(u) = pe”™(1 - qu) < g1(0) = p, g (u) = —pge” (2 — qu) < 0.
Thus, it is easy to see that (A1)—(A3) hold. We have the following result.

Theorem 5.4. Assume that 1 < ap/f <e, a+ 5(1-In %) < min{2,28}. For any given

«

traveling wave front ®(&) = (¢1(£), P2(§)) (€ =x + ct) of with the wave speed

d+1)2
c>max{cmin,(d—i-l)\/]p—i—a—Qﬂ,\/( _{c—l) \p—l—a—Q!},

if the initial data satisfies

ap

1
0 <wujp(z,s) < —In F’ (x,8) € R x [—7,0],
q
1 ap
0< < —1In— R —79,0
_qu(x,s)_aq n 5 (x,8) € R x [—72,0],

and the initial perturbations satisfy

uio(z, s) — ¢1(z +cs) € CO([—Tl,O],H;](R)), (x,s) € R x [—71,0],
ugo(x, 8) — ¢o(x + cs) € C¥([—m2, 0], HL(R)), (z,5) € R x [—13,0],
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where w(§) is the weight function defined as in (2.16)), then the solution (u1(x,t),us(x,t))
of Cauchy problem (5.2)) and (1.3)) satisfies

for

1. ap 1 ap
0<ui(z,t) < -In—, 0<ui(x,t) < —In—,
(@) g B (@) ag B

ui(z,t) — ¢i(z + ct) € C°([0, +o0), Hy(R)) N L2([0, +00), Hy(R)), i=1,2

(z,1) € R x [0, 4-00),

some positive constants . and C'.

Furthermore, the solution (uy(x,t),us(x,t)) converges to the traveling wave front

(61(x + ct), pa(x + ct)) exponentially in time t, i.e.,

sup |ui(x,t) — gi(x +ct)| < Ce ™™, t>0,i=1,2.
z€R
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