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Analysis of a Stochastic Lotka-Volterra Competitive Model with Infinite

Delay and Impulsive Perturbations

Chun Lu* and Qiang Ma

Abstract. This paper considers a stochastic Lotka-Volterra competitive model with

infinite delay and impulsive perturbations. This model is new, more feasible and more

accordance with the actual. The aim is to analyze what happens under the impulsive

perturbations. With space Cg as phase space, sufficient conditions for permanence in

time average are established as well as extinction, stability in time average and global

attractivity of each population. Numerical simulations are also exhibited to illustrate

the validity of the results in this paper. In addition, a knowledge is given to illustrate

that the statement in [21] is incorrect by choosing space Cg as phase space. Our

results demonstrate that impulsive perturbations which may represent human factor

play a key role in protecting the population when environmental noise and interaction

rates are disadvantageous to population survival.

1. Introduction

Recently, functional differential equations with infinite delay have long played important

roles in the history of population dynamics, and they will no doubt continue to serve as in

dispensable tools in future investigations (see e.g., [4,5,7,11,14]). A classic Lotka-Volterra

competitive model with infinite delay can be expressed by

dx1(t)

dt
= x1(t)

(
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

)
,

dx2(t)

dt
= x2(t)

(
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

)
,

(1.1)

where xi denotes the size of the ith population; bi > 0, aij > 0 and µi(θ) is a probability

measure on (−∞, 0]. A further and extensive feature is considered in the model (1.1)
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or models similar to (1.1) towards persistence, extinction or other dynamical behavior.

Here, we only refer to Kuang and Smith [14], Gopalsamy [4, 5], He and Gopalsamy [9],

Lisena [19] and Kuang [13]. In particular, Kuang (see [13, p. 231]) claimed that if Ψ1 > 0

and Ψ2 > 0, then model (1.1) has a positive equilibrium x∗ = (x∗1, x
∗
2) = (Ψ1/Ψ,Ψ2/Ψ)

which is globally asymptotically stable, where Ψ = a11a22 − a12a21, Ψ1 = b1a22 − b2a12,
Ψ2 = b2a11 − b1a21. It is important to point out that if Ψ1 > 0 and Ψ2 > 0, then Ψ > 0.

In the real world, the intrinsic growth rates of many species are always disturbed by

environmental noise (see e.g., [2,10,16,18,22,28,29,32,34,36,41,42]). In particular, May [36]

has pointed out that due to environmental noise, the birth rates, carrying capacity and

other parameters involved in the model should be stochastic. In this paper, we assume

that b1 and b2 are stochastic, then by the central limit theorem, we can replace b1 and b2

by

b1 → b1 + σ1Ḃ1(t), b2 → b2 + σ2Ḃ2(t),

where, for i = 1, 2, Bi(t) represents a standard Brownian motion defined on a complete

probability space (Ω,F ,P), σ2i is the intensity of the environmental noise. Then we obtain

the following stochastic Lotka-Volterra competitive model with infinite delay:

dx1(t) = x1(t)

(
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

)
dt+ σ1x1(t) dB1(t),

dx2(t) = x2(t)

(
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

)
dt+ σ2x2(t) dB2(t).

Anything else, affected by a variety of factors manly, such as crop-dusting, planting,

hunting and harvesting, the inner discipline of species or environment often suffers some

dispersed changes over a relatively short time interval at the fixed times. In mathematics

perspective, such sudden changes could be described by impulses (see e.g., [1,15,17,20,23–

25]). In particularly, Liu and Wang incorporated the impulsive perturbation into stochastic

population model at first time (see e.g., [23–25]), to the best of our knowledge. Motivated

by these, we will study the following stochastic Lotka-Volterra competitive model with

infinite delay and impulsive perturbations

dx1(t) = x1(t)

(
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

)
dt

+ σ1x1(t) dB1(t), t 6= tk, k ∈ N,

x1(t
+
k )− x1(tk) = Ikx1(tk), k ∈ N,

dx2(t) = x2(t)

(
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

)
dt

+ σ2x2(t) dB2(t), t 6= tk, k ∈ N,

x2(t
+
k )− x2(tk) = Hkx2(tk), k ∈ N.

(1.2)
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Here N denotes the set of positive integers, 0 < t1 < t2 · · · , limk→+∞ tk = +∞. As is

known to all, permanence, extinction and stability is one of the most important questions

in biomathematics. In this paper, we establish the sufficient conditions for permanence in

time average, extinction, stability in time average and global attractivity of model (1.2)

and investigate how impulsive perturbations affect on permanence in time average, ex-

tinction, stability in time average and global attractivity. Our results show that the

impulse perturbations have no effect on permanence in time average, extinction and sta-

bility in time average if the impulsive perturbations are bounded. However, permanence

in time average, extinction and stability in time average could be changed significantly

when the impulsive perturbations are unbounded. Moreover, under the assumption that

the impulsive perturbations are bounded, we find that the global attractivity have closer

relationships with the impulsive perturbations.

In model (1.2), we let the initial value ξ = (ξ1, ξ2) be positive and belong to the phase

space Cg (see [6, 7]) which is defined by

Cg =

{
ϕ ∈ C((−∞, 0];R2) : ‖ϕ‖cg = sup

−∞<s≤0
ers |ϕ(s)| < +∞

}
,

where we choose g(s) = e−rs, r > 0 and let | · | denote the Euclidean norm in R2.

For model (1.2) we always assume:

(A1) From biological meanings, we consider 1+Ik > 0, 1+Hk > 0, Ik 6= 0, Hk 6= 0, k ∈ N .

When Ik > 0 or Hk > 0, is satisfied, the perturbation turn to be the description

process of planting of species and harvesting if not.

(A2) For i = 1, 2, µi is the probability measure on (−∞, 0] satisfying that

µr =

∫ 0

−∞
e−2rθ dµi(θ) < +∞.

Clearly, the above assumption (A2) holds when µi(θ) = ekrθ (k > 2) for θ ≤ 0, thus

there is a large number of these probability measures.

For convenience, we introduce the following notations

R2
+ =

{
g = (g1, g2) ∈ R2 | gi > 0, i = 1, 2

}
, 〈f(t)〉 = t−1

∫ t

0
f(s) ds.

Throughout this paper, K stands for a generic positive constant whose values may be

different at different places.

The rest of the paper is arranged as follows. In Section 2, we established the sufficient

condition for permanence in time average and extinction for model (1.2). In Section 3,

we obtained the sufficient condition for global attractivity of model (1.2). In Section 4,

we introduced an example to illustrate the main results. Finally, we close the paper with

conclusions and remarks in Section 5.
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2. Permanence, stability and extinction

In the initial stage, we draw into a new concept raised by Lu and Wu [30]. Now let

(Ω,F , {Ft}t≥0 ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions. Let W (t) denote a m-dimension standard Brownian motion defined on

this probability space.

Definition 2.1. Considering the following impulsive stochastic functional differential

equation with infinite delay:

dX(t) = F1(t,X(t− τ), Xt) dt+ F2(t,X(t− τ), Xt) dW (t), t 6= tk, k ∈ N,

X(t+k )−X(tk) = IkX(tk), k ∈ N,
(2.1)

where X(t) = (X1(t), . . . , Xd(t))
T , t ∈ R+. Since phase space BC((−∞, 0];Rd) may cause

the usual well-posedness questions related to functional equations of unbounded delay (see

e.g., [14, 37,40]), we choose space Cg (see [7, 37]) as phase place, which is defined by

Cg =

{
ϕ ∈ C((−∞, 0];Rd) : ‖ϕ‖cg = sup

−∞<s≤0
ers |ϕ(s)| < +∞

}
,

where we choose g(s) = e−rs, r > 0 and let | · | denote the Euclidean norm in Rd. Fur-

thermore, Cg is an admissible Banach space (see [4]).

In (2.1), Xt = {X(t+ θ) : −∞ < θ ≤ 0} can be regarded as Cg-value stochastic pro-

cess. The initial value X(t), t ≤ 0 is nonrandom and positive, and belongs to the phase

space Cg above. An Rd-value stochastic process X(t) defined on R is called a solution of

the equation (2.1) with initial data above, if X(t) has the following properties:

(i) X(t) is Ft-adapted and continuous on (0, t1) and (tk, tk+1), k ∈ N ; t→ F1(t,Xt) ∈
L1(R+;Rd) and t → F2(t,Xt) ∈ L2(R+;Rd×m), where Lk(R+,Rd) is all Rd valued

Ft adapted processes f(t) such that
∫ T
0 |f(t)| dt < +∞ a.s. (almost surely) for all

T > 0. Lk(R+,Rd×m) is defined similarly.

(ii) for each tk, k ∈ N , X(t+k ) = limt→t+k
X(t) and X(t−k ) = limt→t−k

X(t) exist and

X(t−k ) = X(tk) with probability one.

(iii) X(t) = ξ(t) for t ≤ 0, for almost all t ∈ [0, t1], X(t) obeys the integral equation

X(t) = ξ(0) +

∫ t

0
F1(s,X(s− τ), Xs) ds+

∫ t

0
F2(s,X(s− τ), Xs) dW (s).

And for almost all t ∈ (tk, tk+1], k ∈ N , X(t) obeys the integral equation

X(t) = X(t+k ) +

∫ t

tk

F1(s,X(s− τ), Xs) ds+

∫ t

tk

F2(s,X(s− τ), Xs) dW (s).
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Moreover, X(t) satisfies the impulsive conditions at each t = tk, k ∈ N with proba-

bility one.

Lemma 2.2. (Liu et al. [27]) Suppose that z(t) ∈ C(Ω× [0,+∞),R+).

(i) If there exist two positive constants T and ρ0 such that ln z(t) ≤ ρt− ρ0
∫ t
0 z(s) ds

+
∑2

i=1 αiBi(t) for all t ≥ T , where αi, i = 1, 2, are constants, then

lim sup
t→+∞

〈z(t)〉 ≤ ρ/ρ0 a.s. if ρ ≥ 0,

lim
t→+∞

z(t) = 0 a.s. if ρ < 0.

(ii) If there exist three positive constants T , ρ and ρ0 such that ln z(t) ≥ ρt−ρ0
∫ t
0 z(s) ds

+
∑2

i=1 αiBi(t) for all t ≥ T , then lim inft→+∞ 〈z(t)〉 ≥ ρ/ρ0 a.s.

Lemma 2.3. Let the assumptions (A1)–(A2) hold. For any given initial value ξ ∈ Cg,
then system (1.2) has a unique positive solution (x1(t), x2(t)) on t ∈ R and the solution

will remain in R2
+ with probability 1, namely (x1(t), x2(t)) ∈ R2

+ for all t ∈ R almost

surely.

Proof. The proof of existence and unique of positive solution to model (1.2) is motivated

by Liu and Wang [25]. Consider the following stochastic delay differential equation without

impulsive perturbations:

dy1(t) = y(t)

[
b1 −

∏
0<tk<t

(1 + Ik)a11y1(t)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(t+ θ) dµ2(θ)

]
dt

+ σ1y1(t) dB1(t),

dy2(t) = y(t)

[
b2 − a21

∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y1(t+ θ) dµ1(θ)−
∏

0<tk<t

(1 +Hk)a22y2(t)

]
dt

+ σ2y2(t) dB2(t)

(2.2)

with the same initial value as model (1.2). Now let us prove model (2.2) has a unique pos-

itive solution (y1(t), y2(t)) on t ∈ R and the solution will remain in R+ with probability 1.

The proof is standard and hence is omitted (see e.g., [8, 28]).

Let

x1(t) =
∏

0<tk<t

(1 + Ik)y1(t), x2(t) =
∏

0<tk<t

(1 +Hk)y2(t),

where (y1(t), y2(t)) is the solution of the model (2.2). We need only to clarify that

(x1(t), x2(t)) is the solution of (1.2). As a matter of fact, x1(t) is continuous on (tk, tk+1) ⊂
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(0,+∞), k ∈ N and for every t 6= tk,

dx1(t) = d

[ ∏
0<tk<t

(1 + Ik)y1(t)

]
=

∏
0<tk<t

(1 + Ik) dy1(t)

=
∏

0<tk<t

(1 + Ik)y1(t)

×

[
b1 −

∏
0<tk<t

(1 + Ik)a11y1(t)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(t+ θ) dµ2(θ)

]
dt

+ σ1

( ∏
0<tk<t

(1 + Ik)

)
y1(t) dB1(t)

= x1(t)

[
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

]
dt+ σ1x1(t) dB1(t).

Similarly, we have

dx2(t) = x2(t)

[
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

]
dt+ σ2x2(t) dB2(t).

In addition, for every k ∈ N and tk ∈ [0,+∞),

x1(t
+
k ) = lim

t→t+k

∏
0<tj<t

(1 + Ij)y1(t) =
∏

0<tj≤tk

(1 + Ij)y1(t
+
k )

= (1 + Ik)
∏

0<tj<tk

(1 + Ij)y1(tk) = (1 + Ik)x1(tk).

At the same time,

x1(t
−
k ) = lim

t→t−k

∏
0<tj<t

(1 + Ij)y1(t) =
∏

0<tj<tk

(1 + Ij)y1(t
−
k )

=
∏

0<tj<tk

(1 + Ij)y1(tk) = x1(tk).

Similarly, for every k ∈ N and tk ∈ [0,+∞),

x2(t
+
k ) = lim

t→t+k

∏
0<tj<t

(1 +Hj)y2(t) =
∏

0<tj≤tk

(1 +Hj)y2(t
+
k )

= (1 +Hk)
∏

0<tj<tk

(1 +Hj)y2(tk) = (1 +Hk)x2(tk)

and

x2(t
−
k ) = lim

t→t−k

∏
0<tj<t

(1 +Hj)y2(t) =
∏

0<tj<tk

(1 +Hj)y2(t
−
k )

=
∏

0<tj<tk

(1 +Hj)y2(tk) = x2(tk).
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Our next job is to prove the uniqueness of the solution for model (1.2). For t ∈ [0, t1], the

model (1.2) becomes the following equation:

dx1(t) = x1(t)

[
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

]
dt+ σ1x1(t) dB1(t),

dx2(t) = x2(t)

[
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

]
dt+ σ2x2(t) dB2(t).

(2.3)

Owing to the coefficients of (2.3) are locally Lipschitz continuous, by the theory of stochas-

tic differential equation [40, 41], the solution of (2.3) is unique. For t ∈ (tk, tk+1], k ∈ N ,

the model (1.2) becomes

dx1(t) = x1(t)

[
b1 − a11x1(t)− a12

∫ 0

−∞
x2(t+ θ) dµ2(θ)

]
dt+ σ1x1(t) dB1(t),

dx2(t) = x2(t)

[
b2 − a21

∫ 0

−∞
x1(t+ θ) dµ1(θ)− a22x2(t)

]
dt+ σ2x2(t) dB2(t).

(2.4)

Note that the coefficients of (2.4) are also locally Lipschitz continuous, then the solution

of (2.4) is also unique. Consequently, the solution of the model (1.2) is unique. The proof

is complete.

A lot of authors have paid their attention to the permanence (see e.g., [8,10,31], which

is one of the dominant themes in investigating dynamical of population. Now we study

the permanence of model (1.2). We first do some preparation work.

Definition 2.4. System (1.2) is said to be permanent in time average a.s. if there are

positive constants mi and Mi (i = 1, 2) such that

mi ≤ lim inf
t→∞

1

t

∫ t

0
xi(s) ds ≤ lim sup

t→∞

1

t

∫ t

0
xi(s) ds ≤Mi a.s., i = 1, 2,

hold for any solution (x1(t), x2(t)) of system (1.2) with initial condition ξ ∈ Cg.

Theorem 2.5. For model (1.2), we let the assumptions (A1)–(A2) hold.

(I) If b1 < 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and b2 < 0.5σ22 − lim supt→+∞[

t−1
∑

0<tk<t
ln(1 +Hk)

]
, then both x1 and x2 are extinct almost surely (a.s.), i.e.,

limt→+∞ xi(t) = 0 a.s., i = 1, 2.

(II) If b1 > 0.5σ21 − lim inft→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and b2 < 0.5σ22 − lim supt→+∞[

t−1
∑

0<tk<t
ln(1+Hk)

]
, then x2 is extinct a.s. and x1 is permanent in time average

a.s., i.e.,

lim inf
t→+∞

〈x1(t)〉 ≥
b1 − 0.5σ21 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

a.s.,

lim sup
t→+∞

〈x1(t)〉 ≤
b1 − 0.5σ21 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

a.s.



1420 Chun Lu and Qiang Ma

(III) If b1 < 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and b2 > 0.5σ22 − lim inft→+∞[

t−1
∑

0<tk<t
ln(1+Hk)

]
, then x1 is extinct a.s. and x2 is permanent in time average

a.s., i.e.,

lim inf
t→+∞

〈x2(t)〉 ≥
b2 − 0.5σ22 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
a22

a.s.,

lim sup
t→+∞

〈x2(t)〉 ≤
b2 − 0.5σ22 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
a22

a.s.

(IV) If the conditions b1 > 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
, b2 > 0.5σ22 −

lim supt→+∞
[
t−1
∑

0<tk<t
ln(1+Hk)

]
, b1 > 0.5σ21− lim inft→+∞

[
t−1
∑

0<tk<t
ln(1+

Ik)
]

+ a12M2 and b2 > 0.5σ22 − lim inft→+∞
[
t−1
∑

0<tk<t
ln(1 +Hk)

]
+ a21M1 hold,

then for any initial data ξ ∈ Cg, the solution (x1(t), x2(t)) of (1.2) has the properties

that
lim sup
t→+∞

〈x1(t)〉 ≤M1 a.s., lim sup
t→+∞

〈x2(t)〉 ≤M2 a.s.,

lim inf
t→+∞

〈x1(t)〉 ≥ m1 a.s., lim inf
t→+∞

〈x2(t)〉 ≥ m2 a.s.,

where

M1 =
b1 − 0.5σ21 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

,

M2 =
b2 − 0.5σ22 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
a22

,

m1 =
b1 − 0.5σ21 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
− a12M2

a11
,

m2 =
b2 − 0.5σ22 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
− a21M1

a22
.

That is, model (1.2) will be permanent in time average a.s.

Proof. Applying Itô’s formula to the first equality in (2.2), we obtain

ln y1(t)− ln y1(0)

= (b1 − 0.5σ21)t− a11
∫ t

0

∑
0<tk<s

ln(1 + Ik)y1(s) ds

− a12
∫ t

0

∫ 0

−∞

∏
0<tk<s+θ

(1 +Hk)y2(s+ θ) dµ2(θ)ds+ σ1B1(t)

= (b1 − 0.5σ21)t− a11
∫ t

0
x1(s) ds− a12

∫ t

0

∫ 0

−∞
x2(s+ θ) dµ2(θ)ds+ σ1B1(t).

(2.5)
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On the other hand, it follows from (2.5) that∑
0<tk<t

ln(1 + Ik) + ln y1(t)− ln y1(0)

=
∑

0<tk<t

ln(1 + Ik) + (b1 − 0.5σ2
1)t− a11

∫ t

0

∑
0<tk<s

ln(1 + Ik)y1(s) ds

− a12
∫ t

0

∫ 0

−∞

∏
0<tk<s+θ

(1 +Hk)y2(s+ θ) dµ2(θ)ds+ σ1B1(t)

=
∑

0<tk<t

ln(1 + Ik) + (b1 − 0.5σ2
1)t− a11

∫ t

0

x1(s) ds

− a12
∫ t

0

∫ 0

−∞
x2(s+ θ) dµ2(θ)ds+ σ1B1(t).

In other words, we have

lnx1(t)− lnx1(0)

=
∑

0<tk<t

ln(1 + Ik) + (b1 − 0.5σ21)t− a11
∫ t

0

∑
0<tk<s

ln(1 + Ik)y1(s) ds

− a12
∫ t

0

∫ 0

−∞

∏
0<tk<s+θ

(1 +Hk)y2(s+ θ) dµ2(θ)ds+ σ1B1(t)

=
∑

0<tk<t

ln(1 + Ik) + (b1 − 0.5σ21)t− a11
∫ t

0
x1(s) ds

− a12
∫ t

0

∫ 0

−∞
x2(s+ θ) dµ2(θ)ds+ σ1B1(t).

(2.6)

For i = 1, 2, we compute∫ t

0

∫ 0

−∞
xi(s+ θ) dµi(θ)ds

=

∫ t

0

[∫ −s
−∞

xi(s+ θ) dµ(θ)ds+

∫ 0

−s
xi(s+ θ) dµi(θ)

]
ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ 0

−t
dµi(θ)

∫ t

−θ
xi(s+ θ) ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ 0

−t
dµi(θ)

∫ t+θ

0
xi(s) ds.

(2.7)

By the assumption (A1), for i = 1, 2, we get that∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ)

≤
∫ t

0
ds

∫ −s
−∞

er(s+θ) |x(s+ θ)| e−r(s+θ) dµi(θ) ≤ ‖ξ‖cg

∫ t

0
e−rs ds

∫ 0

−∞
e−rθ dµi(θ)

≤ ‖ξ‖cg

∫ t

0
e−rs ds

∫ 0

−∞
e−2rθ dµi(θ) ≤

1

r
‖ξ‖cg µr(1− e

−rt).

(2.8)
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Substituting (2.7) into (2.6), we derive that

lnx1(t)− lnx1(0) =

t−1 ∑
0<tk<t

ln(1 + Ik) + (b1 − 0.5σ21)

 t

− a11
∫ t

0
x1(s) ds− a12

∫ 0

−t
dµ2(θ)

∫ t+θ

0
x2(s) ds

− a12
∫ t

0
ds

∫ −s
−∞

er(s+θ)x2(s+ θ)e−r(s+θ) dµ2(θ) + σ1B1(t).

(2.9)

Similarly,

lnx2(t)− lnx2(0) =

t−1 ∑
0<tk<t

ln(1 +Hk) + (b2 − 0.5σ22)

 t

− a22
∫ t

0
x2(s) ds− a21

∫ 0

−t
dµ1(θ)

∫ t+θ

0
x1(s) ds

− a21
∫ t

0
ds

∫ −s
−∞

er(s+θ)x1(s+ θ)e−r(s+θ) dµ1(θ) + σ2B2(t).

(2.10)

(I) Assume that b1 < 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and b2 < 0.5σ22 −

lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 +Hk)

]
. By (2.9), we get

t−1 ln
x1(t)

x1(0)
≤ b1 − 0.5σ21 + lim sup

t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

+ t−1σ1B1(t).

In view of the strong law of large numbers for martingles, we obtain limt→+∞B1(t)/t = 0

a.s. Therefore, we have

lim sup
t→+∞

t−1 lnx1(t) ≤ b1 − 0.5σ21 + lim sup
t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

 < 0.

Consequently, limt→+∞ x1(t) = 0 a.s. Likewise, by (2.10), we can show that if b2 <

0.5σ22 − t−1
∑

0<tk<t
ln(1 +Hk), then limt→+∞ x2(t) = 0 a.s.

(II) Suppose that b1 > 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and b2 < 0.5σ22 −

lim supt→+∞
[
t−1
∑

0<tk<t
ln(1+Hk)

]
. Since b2 < 0.5σ22−lim supt→+∞

[
t−1
∑

0<tk<t
ln(1+

Hk)
]
, then by (I), we have limt→+∞ x2(t) = 0 a.s. Therefore, in virtue of (2.8), for

arbitrary ε > 0, there is T > 0 such that for t ≥ T ,

t−1
∫ 0

−t
dµ(θ)

∫ t+θ

0
x2(s) ds ≤ t−1

∫ t

0
x2(s) ds ≤

ε

4
,

1

r
‖ξ‖cg µr(1− e

−rt) ≤ ε

4
.

This implies that

−ε/2 ≤ a12t−1
∫ t

0

∫ 0

−∞
x2(s+ θ)dµ2(θ)ds ≤

ε

2
.
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Since x1(0) is bounded, we can see that

−ε
2
≤ t−1 lnx1(0) ≤ ε

2
.

Substituting the two inequalities above into (2.9), we can derive that for t ≥ T ,

lnx1(t) ≤

b1 − 0.5σ21 + lim sup
t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

+ ε

 t
− a11

∫ t

0
x1(s) ds+ σ1B1(t),

(2.11)

lnx1(t) ≥

b1 − 0.5σ21 + lim inf
t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

− ε
 t

− a11
∫ t

0
x1(s) ds+ σ1B1(t).

(2.12)

Owing to b1 > 0.5σ21, we can choose ε sufficiently small such that b1 − 0.5σ21 − ε > 0.

Applying (i) and (ii) in Lemma 2.2 to (2.11), (2.12) and the arbitrariness of ε respectively,

we derive

lim inf
t→+∞

〈x1(t)〉 ≥
b1 − 0.5σ21 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

a.s.

and

lim sup
t→+∞

〈x1(t)〉 ≤
b1 − 0.5σ21 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

a.s.

The proof of (III) is similar to (II), so we omit it here.

(IV) By assumption (A1), for i = 1, 2, we may compute that∫ t

0

∫ 0

−∞
xi(s+ θ) dµi(θ)ds

=

∫ t

0

[∫ −s
−∞

x(s+ θ) dµi(θ)ds+

∫ 0

−s
xi(s+ θ) dµi(θ)

]
ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ 0

−t
dµi(θ)

∫ t

−θ
xi(s+ θ) ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ 0

−t
dµi(θ)

∫ t+θ

0
xi(s) ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ)(2.13)

+

∫ 0

−t
dµi(θ)

∫ t

0
xi(s) ds+

∫ 0

−t
dµi(θ)

∫ t+θ

t
xi(s) ds
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=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ t

0
xi(s) ds

−
∫ −t
−∞

dµi(θ)

∫ t

0
xi(s) ds+

∫ 0

−t
dµi(θ)

∫ t+θ

t
xi(s) ds

=

∫ t

0
ds

∫ −s
−∞

er(s+θ)xi(s+ θ)e−r(s+θ) dµi(θ) +

∫ t

0
xi(s) ds

−
∫ −t
−∞

dµi(θ)

∫ t

0
xi(s) ds−

∫ 0

−t
dµi(θ)

∫ t

t+θ
xi(s) ds.

Substituting (2.13) into (2.6), we have

lnx1(t)− lnx1(0)

=

t−1 ∑
0<tk<t

ln(1 + Ik) + b1 − 0.5σ21

 t− a11
∫ t

0
x1(s) ds

− a12
∫ t

0
x2(s) ds− a12

∫ t

0
ds

∫ −s
−∞

er(s+θ)x2(s+ θ)e−r(s+θ) dµ2(θ)

+ a12

∫ 0

−t
dµ2(θ)

∫ t

t+θ
x2(s)ds+ a12

∫ −t
−∞

dµ2(θ)

∫ t

0
x2(s) ds+ σ1B1(t).

(2.14)

Similarly, by (2.10) and (2.13), we obtain

lnx2(t)− lnx2(0)

=

t−1 ∑
0<tk<t

ln(1 +Hk) + b2 − 0.5σ22

 t− a22
∫ t

0
x2(s) ds

− a21
∫ t

0
x1(s) ds− a21

∫ t

0
ds

∫ −s
−∞

er(s+θ)x1(s+ θ)e−r(s+θ) dµ1(θ)

+ a21

∫ 0

−t
dµ1(θ)

∫ t

t+θ
x1(s) ds+ a21

∫ −t
−∞

dµ1(θ)

∫ t

0
x1(s) ds+ σ2B2(t).

(2.15)

Making use of the conditions b1 > 0.5σ21−lim supt→+∞
[
t−1
∑

0<tk<t
ln(1+Ik)

]
and (2.11),

we obtain

(2.16) lim sup
t→+∞

〈x1(t)〉 ≤
b1 − 0.5σ21 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

= M1 a.s.

In the same way, we can get that if b2 > 0.5σ22, then

(2.17)

lim sup
t→+∞

〈x2(t)〉 ≤
b2 − 0.5σ22 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
a22

= M2 a.s.

Let ε be sufficiently small such that lim inft→+∞
[
t−1
∑

0<tk<t
ln(1 +Hk)

]
+ b2 − 0.5σ22 −
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a21M1 > a21ε. When (2.16) and (2.8) are used in (2.15), we have

t−1 lnx2(t)− t−1 lnx2(0)

=

t−1 ∑
0<tk<t

ln(1 +Hk) + b2 − 0.5σ22

− a22 〈x2(t)〉
− a21 〈x1(t)〉 − t−1a21

∫ t

0
ds

∫ −s
−∞

er(s+θ)x1(s+ θ)e−r(s+θ) dµ1(θ)

+ t−1a21

∫ 0

−t
dµ1(θ)

∫ t

t+θ
x1(s) ds+ t−1a21

∫ −t
−∞

dµ1(θ)

∫ t

0
x1(s) ds+ t−1σ2B2(t)

≥

t−1 ∑
0<tk<t

ln(1 +Hk) + b2 − 0.5σ22

− a22 〈x2(t)〉 − a21 lim sup
t→+∞

〈x1(t)〉 − a21ε

≥

lim inf
t→+∞

t−1 ∑
0<tk<t

ln(1 +Hk)

+ b2 − 0.5σ22

− a22 〈x2(t)〉 − a21M1 − a21ε

for sufficiently large t. In view of (ii) in Lemma 2.2 and the arbitrariness of ε, we get

lim inf
t→+∞

〈x2(t)〉 ≥
b2 − 0.5σ22 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
− a21M1

a22

= m2 a.s.

Similarly, by (2.17) and (2.8) are used in (2.14), we derive

lim inf
t→+∞

〈x1(t)〉 ≥
b1 − 0.5σ21 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
− a12M2

a11

= m1 a.s.

The whole proof is completed.

Remark 2.6. By (II) in Theorem 2.5, we can see that when

lim sup
t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

 = lim inf
t→+∞

t−1 ∑
0<tk<t

ln(1 + Ik)

 ,
then

lim
t→+∞

〈x1(t)〉 =
b1 − 0.5σ21 + limt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a11

a.s.

This means x1 is stable in time average a.s. Similarly, in virtue of (III) in Theorem 2.5,

we can obtain that x2 is stable in time average a.s. when

lim sup
t→+∞

t−1 ∑
0<tk<t

ln(1 +Hk)

 = lim inf
t→+∞

t−1 ∑
0<tk<t

ln(1 +Hk)

 .
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Remark 2.7. In view of (I)–(IV) in Theorem 2.5, we can find that the impulsive pertur-

bations does not affect extinction and permanence in time average if the impulsive per-

turbations are bounded. When impulsive perturbations are unbounded, it can maintain

some important and significant properties of population models as much as possible. For

example, (I) in Theorem 2.5 shows that all the species modelled by stochastic model (1.2)

are extinct when suffering environmental noise; whereas (II) and (III) in Theorem 2.5 show

that one population of stochastic model (1.2) is permanent in time average when enlarge

the intensity of impulsive perturbations. In addition, (IV) in Theorem 2.5 points out the

important fact that all the species described by stochastic model (1.2) can survive for a

long time under the control of impulsive perturbations which represent human behavior.

Remark 2.8. From the condition b1 < 0.5σ21 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Ik)

]
and

b2 < 0.5σ22 − lim supt→+∞
[
t−1
∑

0<tk<t
ln(1 + Hk)

]
in (I) of Theorem 2.5, it is easy to

see that the environmental noise is disadvantageous of permanence in time average of

model (1.2) if we enhance the intensity of the noise σ21 and σ22, simultaneously.

Remark 2.9. From the conditions of (IV) in Theorem 2.5, it is easy to see that the interac-

tion rate aij (i = 1, 2, i 6= j) is unfavorable for permanence in time average of model (1.2).

3. Global attractivity

In this section, we turn to establish sufficient criteria for the global attractivity of (1.2).

To end this, we prepare some useful definition and lemmas.

Definition 3.1. Let x(t) = (x1(t), x2(t)) and x∗(t) = (x∗1(t), x
∗
2(t) be two arbitrary solu-

tions of model (1.2) with initial values ξ ∈ Cg and ξ∗ ∈ Cg, respectively. If, for i = 1, 2,

limt→+∞ |xi(t)− x∗i (t)| = 0 a.s., then we say model (1.2) is globally attractive (globally

asymptotically stable).

(A3) There are two positive constants li and Li such that l1 ≤
∏

0<tk<t
(1 + Ik) ≤ L1 and

l2 ≤
∏

0<tk<t
(1 +Hk) ≤ L2 for all t > 0, respectively.

Remark 3.2. Assumption (A3) is easy to be satisfied. For example, if Ik = e(−1)
k+1/k2 −1,

then e0.75 <
∏

0<tk<t
(1 + Ik) < e for all t > 0. Thus 1 ≤

∏
0<tk<t

(1 + Ik) ≤ e for all t > 0.

Lemma 3.3. Let the assumptions (A1)–(A3) hold. For any initial value ξ ∈ Cg and

p > 0, there is a constant K = K(p) > 0 such that the solution y(t) = (y1(t), y2(t)) of

model (2.2) satisfies

E(ypi (t)) ≤ Ki(p), t ≥ 0, p > 0, i = 1, 2.

Proof. The proof is rather standard and hence is omitted (see e.g., [23, 26,28]).
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Lemma 3.4. [12, 33] Suppose that an n-dimensional stochastic process X(t) on t ≥ 0

satisfies the condition

E |X(t)−X(s)|α ≤ c |t− s|1+β , 0 ≤ s, t <∞

for some positive constants α, β and c. Then there exists a continuous modification X̃(t)

of X(t), which has the property that for every γ ∈ (0, β/α), there is a positive random

variable h(w) such that

p

ω : sup
0<|t−s|<h(ω)

0≤s,t<∞

∣∣∣X̃(t, ω)− X̃(s, ω)
∣∣∣

|t− s|γ
≤ 2

1− 2−γ

 = 1.

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous

with exponent γ.

Lemma 3.5. Let the assumptions (A1)–(A3) hold. If y(t) = (y1(t), y2(t)) is a solution of

model (2.2) with initial value ξ ∈ Cg, then almost every sample path of y(t) is uniformly

continuous on t ≥ 0.

Proof. We shall consider the following stochastic integral equation instead of (2.2):

y1(t) = y1(0) +

∫ t

0

y1(s)
(
b1 − a11

∏
0<tk<t

(1 + Ik)y1(s)

− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(s+ θ) dµ2(θ)
)
ds+

∫ t

0

σ1y1(s) dBi(s),

y2(t) = y2(0) +

∫ t

0

y2(s)
(
b2 − a21

∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y1(s+ θ) dµ1(θ)

− a22
∏

0<tk<t

(1 +Hk)y2(s)
)
ds+

∫ t

0

σ2y2(s) dB2(s).

Note that

E

∣∣∣∣∣y1(s)

(
b1 − a11

∏
0<tk<t

(1 + Ik)y1(s)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(s+ θ) dµ2(θ)

)∣∣∣∣∣
= E

[
|y1(s)|p

∣∣∣∣∣b1 − a11 ∏
0<tk<t+θ

(1 + Ik)y1(s)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(s+ θ) dµ2(θ)

∣∣∣∣∣
p]

≤ 0.5E |y1(s)|2p + 0.5E

∣∣∣∣b1 − a11 ∏
0<tk<t+θ

(1 + Ik)y1(s)

− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(s+ θ) dµ2(θ)

∣∣∣∣2p

≤ 0.5

{
E |y1(s)|2p + 32p−1E

[
b2p1 + a2p11L

2p
1 E |y1(s)|2p + a2p12L

2p
2 E

∣∣∣∣∫ 0

−∞
y2(s+ θ) dµ2(θ)

∣∣∣∣2p
]}
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≤ 0.5

{
E |y1(s)|2p + 32p−1

[
b2p1 + a2p11L

2p
1 E |y1(s)|2p + a2p12L

2p
2 E

(∫ 0

−∞
|y2(s+ θ)| dµ2(θ)

)2p
]}

≤ 0.5

{
E |y1(s)|2p + 32p−1

[
b2p1 + a2p11L

2p
1 E |y1(s)|2p + a2p12L

2p
2 E

∫ 0

−∞
|y2(s+ θ)|2p dµ2(θ)

]}
≤ 0.5

{
E |y1(s)|2p + 32p−1

[
b2p1 + a2p11L

2p
1 E |y1(s)|2p + a2p12L

2p
2

∫ 0

−∞
E |y2(s+ θ)|2p dµ2(θ)

]}
≤ 0.5

{
L2p
1 + 32p−1E

[
b2p1 + a2p11L

2p
1 K1(2p) + a2p12L

2p
2

∫ 0

−∞
K2(2p) dµ2(θ)

]}
= 0.5

{
L2p
1 + 32p−1E

[
b2p1 + a2p11L

2p
1 K1(2p) + a2p12L

2p
2 K2(2p)

]}
= K.

Here the second inequality follows from the discrete Hölder inequality. In the same way,

we have

E

∣∣∣∣∣y2(s)

[
b2 − a22

∏
0<tk<t

(1 +Hk)y2(s)− a21
∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y1(s+ θ) dµ1(θ)

]∣∣∣∣∣ ≤ K.
The rest of proof is similar to Lemma 9 in [23], we hence omit it.

Lemma 3.6. [3] Let f(t) be a nonnegative function defined on [0,∞) such that f(t) is

integrable on [0,∞) and is uniformly continuous on [0,∞). Then limt→∞ f(t) = 0.

Now, we are in the position to give our main result of this section.

Theorem 3.7. Let the assumptions (A1)–(A3) hold. If l1a11 > L1a21, l2a22 > L2a12,

then model (1.2) is global attractivity.

Proof. Let (x1(t), x2(t)) and (x∗1(t), x
∗
2(t)) be two arbitrary solutions of (1.2) with initial

values ξ ∈ Cg, ξ∗ ∈ Cg, respectively. Suppose that the solution of

dy1(t) = y1(t)

[
b1 −

∏
0<tk<t

(1 + Ik)a11y1(t)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)y2(t+ θ) dµ2(θ)

]
dt

+ σ1y1(t) dB1(t),

dy2(t) = y2(t)

[
b2 − a21

∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y1(t+ θ) dµ1(θ)−
∏

0<tk<t

(1 +Hk)a22y2(t)

]
dt

+ σ2y2(t) dB2(t)

is (y1(t), y2(t)) and the same initial values ξ ∈ Cg as (1.2). On the other hand, the solution

of

dy1(t) = y(t)

[
b1 −

∏
0<tk<t

(1 + Ik)a11y1(t)− a12
∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y2(t+ θ) dµ(θ)

]
dt

+ σ1y1(t) dB1(t),

dy2(t) = y(t)

[
b2 − a21

∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)y1(t+ θ) dµ1(θ)−
∏

0<tk<t

(1 +Hk)a22y2(t)

]
dt

+ σ2y2(t) dB2(t)
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is (y∗1(t), y∗2(t)) and the same initial values ξ∗ ∈ Cg as (1.2). Then we have

x1(t) =
∏

0<tk<t

(1 + Ik)y1(t), x2(t) =
∏

0<tk<t

(1 +Hk)y2(t),

x∗1(t) =
∏

0<tk<t

(1 + Ik)y
∗
1(t), x∗2(t) =

∏
0<tk<t

(1 +Hk)y
∗
2(t).

Define

V (t) =

2∑
i=1

|ln(yi(t))− ln(y∗i (t))|+ a21L1

∫ 0

−∞

∫ t

t+θ
|y1(s)− y∗1(s)| dsdµ1(θ)

+ a12L2

∫ 0

−∞

∫ t

t+θ
|y2(s)− y∗2(s)| dsdµ2(θ).

A calculation of the right differential D+V (t), and then making use of the generalized

Itô’s formula, we can observe

D+V (t)

=

2∑
i=1

sgn(y1(t)− y∗1(t)) d(ln(yi(t))− ln(y∗i (t)))

+ a21L1

∫ 0

−∞
|y1(t)− y∗1(t)| dµ1(θ)dt− a21L1

∫ 0

−∞
|y1(t+ θ)− y∗1(t+ θ)| dµ1(θ)dt

+ a12L1

∫ 0

−∞
|y2(t)− y∗2(t)| dµ2(θ)dt− a12L1

∫ 0

−∞
|y2(t+ θ)− y∗2(t+ θ)| dµ2(θ)dt

= sgn(y1(t)− y∗1(t))

(
− a11

∏
0<tk<t

(1 + Ik)(y1(t)− y∗1(t))

− a12
(∫ 0

−∞

∏
0<tk<t+θ

(1 +Hk)(y2(t+ θ)− y∗2(t+ θ)) dµ2(θ)

))
dt

+ sgn(y2(t)− y∗2(t))

(
− a22

∏
0<tk<t

(1 +Hk)(y2(t)− x2(t))

− a21
(∫ 0

−∞

∏
0<tk<t+θ

(1 + Ik)(y1(t+ θ)− y∗1(t+ θ)) dµ2(θ)

))
dt

+ a21L1

∫ 0

−∞
|y1(t)− y∗1(t)| dµ1(θ)dt− a21L1

∫ 0

−∞
|y1(t+ θ)− y∗1(t+ θ)| dµ1(θ)dt

+ a12L1

∫ 0

−∞
|y2(t)− y∗2(t)| dµ2(θ)dt− a12L1

∫ 0

−∞
|y2(t+ θ)− y∗2(t+ θ)| dµ2(θ)dt

≤ −a11l1 |y1(t)− y∗1(t)| dt+ a12L2

∫ 0

−∞
|y2(t+ θ)− y∗2(t+ θ)| dµ2(θ)dt

− a22l2 |y1(t)− y∗1(t)| dt+ a21L1

∫ 0

−∞
|y1(t+ θ)− y∗1(s+ θ)| dµ2(θ)dt
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+ a21L1

∫ 0

−∞
|y1(t)− y∗1(t)| dµ1(θ)dt− a21L1

∫ 0

−∞
|y1(t+ θ)− y∗1(t+ θ)| dµ1(θ)dt

+ a12L2

∫ 0

−∞
|y2(t)− y∗2(t)| dµ2(θ)dt− a12L2

∫ 0

−∞
|y2(t+ θ)− y∗2(t+ θ)| dµ2(θ)dt

= −(a11l1 − a21L1) |y1(t)− y∗1(t)| dt− (a22l2 − a12L2) |y2(t)− y∗2(t)| dt.

Integrating both sides and then taking the expectation yield

V (t) ≤ V (0)−
∫ t

0

(a11l1 − a21L1) |y1(s)− y∗1(s)| ds−
∫ t

0

(a22l2 − a12L2) |y2(s)− y∗2(s)| ds.

In other words, we have already shown that

V (t) +

∫ t

0
(a11l1 − a21L1) |y1(s)− y∗1(s)| ds+

∫ t

0
(a22l2 − a12L2) |y2(s)− y∗2(s)| ds

≤ V (0) <∞.

From l1a11 > L1a21 and l2a22 > L2a12, we derive, for i = 1, 2,

|yi(t)− y∗i (t)| ∈ L1[0,+∞).

Then it follows from Lemmas 3.5 and 3.6 that, for i = 1, 2,

lim
t→+∞

|yi(t)− y∗i (t)| = 0,

from almost all ω ∈ Ω. Therefore,

lim
t→+∞

|x1(t)− x∗1(t)| = lim
t→+∞

∏
0<tk<t

(1 + Ik) |y1(t)− y∗1(t)| = 0,

from almost all ω ∈ Ω;

lim
t→+∞

|x2(t)− x∗2(t)| = lim
t→+∞

∏
0<tk<t

(1 +Hk) |y2(t)− y∗2(t)| = 0,

from almost all ω ∈ Ω. This completes the proof of Theorem 3.7.

Remark 3.8. From Theorems 2.5 and 3.7, it is easy to see that infinite delay does not

effect the extinction, permanence in time average and global attractivity of model (1.2).

4. Examples and numerical simulations

In this section, we shall use the Euler scheme (see e.g., [39]) to illustrate the analytical

findings.
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Figure 4.1: The horizontal axis and the vertical axis in this and following figures represent

the time t and the populations size (step size ∆t = 0.001).

In Figure 4.1, we choose the initial data ξ1(θ) = 0.3eθ, ξ2(θ) = 0.4eθ, b1 = 0.58,

b2 = 0.52, a11 = 0.78, a22 = 0.7, a12 = a21 = 0.4, σ21 = 1.3, σ22 = 1.2, tk = 10k. Then

Ψ = a11a22−a12a21 = 0.25, Ψ1 = b1a22−b2a12 = 0.046, Ψ2 = b2a11−b1a21 = 0.16. We let

σ1 = σ2 = 0. Then by virtue of Kuang’s work [13], we have that the positive equilibrium

(Ψ1/Ψ,Ψ2/Ψ) = (0.184, 0.64) is globally asymptotically stable.

In addition, the only difference in Figure 4.1(a)–(c) is that the representations of Ik

and Hk are different. In Figure 4.1(a), we choose Ik = Hk = 0. From (I) of Theorem 2.5,

the population x1(t) and x2(t) are extinct a.s. In Figure 4.1(b), we choose Ik = e0.9 − 1,

Hk = 0. In view of (II) of Theorem 2.5, population x1(t) will be permanent in time

average a.s., x2(t) is extinct a.s. In Figure 4.1(c), we consider Ik = e4 − 1, Hk = e5 − 1,

then

lim sup
t→+∞

〈x1(t)〉 ≤M1 =
b1 − 0.5σ21 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
a11

= 0.538 a.s.,

lim sup
t→+∞

〈x2(t)〉 ≤M2 =
b2 − 0.5σ22 + lim supt→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
a22

= 0.471 a.s.,

lim inf
t→+∞

〈x1(t)〉 ≥
b1 − 0.5σ21 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 + Ik)

]
− a12M2

a11

= m1 = 0.296 a.s.,
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lim inf
t→+∞

〈x2(t)〉 ≥
b2 − 0.5σ22 + lim inft→+∞

[
t−1
∑

0<tk<t
ln(1 +Hk)

]
− a21M1

a22

= m2 = 0.164 a.s.

By virtue of Theorem 2.5, population xi(t) will be permanent in time average a.s., i = 1, 2.

By comparing Figure 4.1(a)–(c), we can see that the impulsive perturbation can change

the properties of the population system significantly.

In Figure 4.1(d), we choose the initial data ξ1(θ) = 0.3eθ, ξ2(θ) = 0.4eθ, b1 = 0.62,

b2 = 0.54, a11 = 0.78, a22 = 0.7, a12 = 0.3, a21 = 0.2, σ21 = 0.5, σ22 = 0.2. Let

Ik = Hk = e(−1)
k+1/k2 − 1, then e0.75 <

∏
0<tk<t

(1 + Ik) < e for all t > 0. Thus we set

li = e0.75, Li = e for i = 1, 2. Making use of Theorem 3.7, the model (1.2) will be global

attractivity.

5. Conclusions and remarks

This paper incorporates two important factors, environmental noise and impulsive per-

turbations, into the classic delay competitive model (1.1) for the first time and obtain the

nice dynamical properties including permanence in time average, extinction, stability in

time average and global attractivity of model (1.2) by choosing Cg space as phase space.

From the conclusions we know that the impulsive perturbations can have important im-

pact on the population. In particular, when the population will be extinct, we should

take measure, i.e., positive impulsive perturbation, to avert the case as far as possible.

Furthermore, the results also implies that, firstly, environmental noise have an influence

on permanence in time average, extinction and stability in time average; secondly, infinite

delay has not affect permanence in time average, extinction, stability in time average and

global attractivity of model (1.2); thirdly, permanence in time average of model (1.2) has

close relationships with the interaction rates.

Some interesting and significant topics deserve our further engagement. One may find

a more realistic and sophisticated model to introduce the Lévy jumps [2] into the model.

Recently, Liu and Chen [21] investigated the general stochastic non-autonomous logistic

model with delays and Lévy jumps:

dx(t) = x(t)

[
r(t)− a(t)x(t) + b(t)x(t− τ(t)) + c(t)

∫ 0

−∞
x(t+ θ) dµ(θ)

]
dt

+ σ1(t)x(t) dω1(t) + σ2(t)x
1+α(t) dω2(t) + σ3(t)x

2(t)xβ(t− τ(t)) dω3(t)

+ σ4(t)x(t)

∫ 0

−∞
x(t+ θ) dµ(θ)dω4(t) +

∫
Y
γ(t, u)x(t−1)Ñ(dt, du),

(5.1)

where, x(t−) = lims↑t x(s), ωi(t) (i = 1, 2, 3, 4) are the white noises, N(dt, du) is a real-

valued Poisson counting measure with characteristic measure λ on a measurable subset Y
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of R+ with λ(Y) < +∞, Ñ(dt, du) = N(dt, du)− λ(du)dt. By choosing space Cg as phase

space, they discussed the persistence and extinction of model (5.1). Here

Cg =

{
ϕ ∈ C((−∞, 0];R) : ‖ϕ‖cg = sup

−∞<s≤0
ers |ϕ(s)| < +∞

}
,

where g(s) = e−rs, r > 0. However, we need point out the fact that unlike the Brown pro-

cess whose almost all sample paths are continuous, the Poisson random measure Ñ(dt, du)

is a jump process and has the sample paths which are right-continuous and have left lim-

its (see e.g., [35, 38]). Because all sample paths are continuous in Cg above (see [40, 41]),

the statement from [21] is incorrect with space Cg as phase space. Therefore, we will

find another space as phase space when studying stochastic model with infinite delay and

impulsive perturbation, and such investigations are to be done in future.
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