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Multiplicity of Solutions for a Class of Quasilinear Elliptic Systems in

Orlicz-Sobolev Spaces

Liben Wang, Xingyong Zhang* and Hui Fang

Abstract. In this paper, we investigate the following nonlinear and non-homogeneous
elliptic system

—div(ai(|Vu|)Vu) = M Fy(z,u,v) — A2Gy(x,u,v) — AgHy (2, u,v) in Q,

—div(az(|Vu|)Vv) = M Fy(x,u,v) — MGy (2, u,v) — AgHy(z,u,v)  in Q,

=0 on 0F),

where € is a bounded domain in R (N > 1) with smooth boundary 9Q, A1, Ao, A3 are
three parameters, ¢;(t) = a;(|t|)t (i = 1, 2) are two increasing homeomorphisms from R
onto R, and functions F, G, H are of class C*(£2 x R?,R) and satisfy some reasonable
growth conditions. By using a three critical points theorem due to B. Ricceri, we
obtain that system has at least three solutions. With some additional conditions, by
using a four critical points theorem due to G. Anello, we obtain that system has at

least four solutions.

1. Introduction and main results

Consider the following nonlinear and non-homogeneous elliptic system in Orlicz-Sobolev

spaces:

—div(ai(|Vu|)Vu) = M Fy(z, u,v) — AaGy(z,u,v) — AgHy(x,u,v) in €,
(1.1) —div(az(|Vv])Vv) = M Fy(z,u,v) — AoGy(z,u,v) — AsHy(z,u,v)  in Q,
u=0v=0 on 012,

where Q is a bounded domain in R (N > 1) with smooth boundary 99, A1, A2, A3 € R,
F.G,H: QxR xR — R are three C' functions which satisfy some reasonable growth

conditions, a;: ]0,+o00[— R (i = 1,2) are two functions satisfying
(1) ¢i: R — R (i = 1,2) defined by

a;([t|)t for t # 0,

0 for t =0,
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are two increasing homeomorphisms from R onto R. Therefore, functions ®;: [0, +oo[ —
[0, +00] (i = 1,2) defined by ®;(¢) := fg ¢i(s) ds are strictly convex in [0, +o00].

Set as = a1, v = u, F(z,u,v) = F(z,v,u), G(z,u,v) = F(z,v,u) and H(xz,u,v) =
F(x,v,u). Then system (1.1)) reduces to the following quasilinear elliptic type equation:

—div(ai1(|Vu|)Vu) = f(z,u) in Q,

(1.3)
u=20 on 0f).

When a;(|t))t = p|t|P >t (p > 1), equation becomes the well-known p-Laplacian
equation which has been studied extensively (see [3L[15H17,23,24] and references therein).
In fact, under the assumption (¢;), equations like may be allowed to possess com-
plicated non-homogeneous operator ®; which can be used for modeling many phenomena
(see |2,/19]):

(1) (p,q)-Laplacian: ®q(t) =P +1t4, ¢ > p > 1;
(2) nonlinear elasticity: ®q(¢) = (1 +¢2)Y —1, v > 1/2;
(3) plasticity: ®1(t) = t*(log(1 +1))?, a>1, 8> 0;

(4) generalized Newtonian fluids: ®;(¢) = fg s'=%(sinh's)ds, 0 < a <1, 8> 0.

Based on these interesting facts, equations like have aroused keen interest among
scholars in recent years. In Clément et al. |[14], the authors firstly proved that equa-
tion has a nontrivial solution by variational method. From then on, variational
method has been used widely to study the existence and multiplicity of solutions for this
type of nonlinear or non-homogeneous elliptic equations (see [9}/13,/18.25/26] and references
therein).

To study the existence or multiplicity of solutions for equations like , some ap-
propriate Orlicz-Sobolev spaces might be defined. For this purpose, in most of references,

the authors assumed at least one of the following conditions holds:
(&1) m1 <min{N,}};

(&2) N < ly;

(&3) my <I3;

(€4) the function t — ®1(v/%) is convex for all t € [0, +oo],

where N denotes the dimension of the space RY and

LN .
to1(t) — to1(t) and IF e N ifli <N,

l1 == inf
>0 P1(t) +oo  ifly > N,

- t>0 (I)l(t) ’
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where ¢, and ®; are defined by . To be precise, (€1) is assumed in [13,|18,[25} 26,
(&2) is assumed in [8,9], (£3) is assumed in [11], and (&4) is assumed in [8}[11H13}26].

To the best of our knowledge, there are few papers to consider the systems like ([1.1)
except for [22|31,32.34]. In [22], for systems with Ao = A3 = 0 and F' has the form

F(z,u,v) = A1(z,u) + b(x)['1 (u)T2(v) + Aa(z, v),

Huentutripay-Mandsevich translated the existence of solution into a suitable minimizing
problem and proved the existence of nontrivial solution under some reasonable restriction.
In [32], for systems with A\ =1, A2 = A3 = 0 and F satisfies the so-called subcritical
and super-linear Orlicz-Sobolev growth conditions at infinity, by using the mountain pass

theorem, Xia-Wang proved the existence of nontrivial solution. In [34], for system

div(ar(|Vu)Vu) = a(|2]) f(v) in RY,
div(az(|Vv|)Vv) = b(|z|)g(v) in RY,
(u,v) € C*RYN) x CH(RN),
by using a monotone iterative method and Arzela-Ascoli theorem, Zhang proved the ex-

istence of positive radial solution. In [31], we investigated the following system in Orlicz-

Sobolev spaces:
—div(¢1 (|Vu|)Vu) + Vi(z) o1 (Ju))u = Fy(x,u,v) in RY,
— div(62(|Vu)) Vo) + Va(@)a(v)o = Fy(z,u,v)  in RY,
(u,v) € WHEL(RN) x W1P2(RN) with N > 2,

where the functions V;(x) (i = 1,2) are bounded and positive in R", the functions ¢; ()t
(i = 1,2) satisfy (¢1) and

(¢2)" 1 <l;:=infisg tfij)(g) < SUP;g % =:mi < min {N, [}, where [} := z\lfi\g

By using the least action principle, we proved that system possesses at least one nontrivial
solution if F': RN x R x R — R is a C'* function, F(z,0,0) = 0 and satisfies

(F1) there exist constants p; € [m;,[f) (i = 1,2), max{1/p1,1/p2} < q1 < g2 < --- <
qr, < min {ly/p1,l2/p2}, and functions a5, as;, asj, asj € LYO=a)(RN [0, +00)) (j =
1,2,...,k) such that

k 1 p2(ﬁ1qj'*1)
|Fy(z,u,v)| < Z x) |uPre —|—Za2] TR

: ] 1

k p1(p2g;—1) k 1
|Fo(z,u,0)| <) agjx) [l 72 + ) ag(x) o

j=1 j=1

for all (z,u,v) € RN x R x R;
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(F3) there exist an open set Q C RY with |Q| > 0, and constants ag € [1,11), Bo € [1,12),
§>0,c>0and ¢,s € R with :2 + k2 # 0 such that

F(z,ut,xt) > ¢ (|Lt|°‘0 + |m§\ﬁ°> for all (x,t) € Q x [0,0].

Moreover, suppose that F' also satisfies the symmetric condition
F(z,—u,—v) = F(z,u,v) for all (z,u,v) € RY x R x R.

Then, by using the genus theory, we proved that system possesses infinitely many solutions.

In recent years, Ricceri, Anello and Bonanno have turned their interests to the multi-
plicity of critical points for a class of functional on a reflexive real Banach space. With the
aid of variational method, they have worked out a series of abstract multiplicity theorems
(see [4H7,28-30]). Then, by using those theorems, some scholars studied the multiplicity
of nontrivial solutions for equations like even if the nonlinear term f is without sym-
metry (see [8,/11,{12]). Next, for readers’ convenience, we recall the two abstract critical

theorems in [30] and [5], which will be used to prove our results.

Theorem 1.1. [30, Theorem 3] Let X be a reflexive real Banach space; I: X — R a
sequentially weakly lower semicontinuous, coercive, bounded on each bounded subset of X,
C! functional whose derivative admits a continuous inverse on X*; W, ®: X — R two C*
functionals with compact derivative. Suppose also that the functional W + A® is bounded
below for all A > 0 and that

lim inf ¥(z) =
||| —+oo I(x)

Then, for each r > sup,; ®, where M 1is the set of all global minima of I, each p >
max {0, u* (I, ¥, ®,7)}, and each compact interval [a,b] C |0, B(ul + ¥, P, 7)[, there exists
a constant p > 0 with the following property: for every A € [a,b] and every C' functional
I': X — R with compact derivative, there exists a constant § > 0 such that, for each
v € [0,4], the equation

pl' (z) + V' (x) + A0 (z) + vV (x) =0

has at least three solutions in X whose norms are less than p, where

I(x) + 9(x) — infgr (] + 0
Bl + 0. D)= sup pl () + ¥ (x) — infp-1()—o0 ) (1 )
z€®—1(Jr,400) r—= (I)(.’L')
and
U(z)—~y+r
nr — I(x)
where v = infx (V(z) + ®(x)) and 0, = inf cp-1(y ().

M*(I,\II,CD,T):inf{ :xeX,q)(x)<r,I(ac)<nr},
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Theorem 1.2. [5, Theorem 1] Let X be a reflexive real Banach space and I: X — R be
a sequentially weakly lower semicontinuous and coercive C' functional whose derivative
admits a continuous inverse on X*. Assume also that T, U, ®: X — R are three C*
functionals with compact derivative satisfying the following conditions:

(a) liminf”mHﬁoo % > 0,‘

(b) limsupj,| e % < +o00;
(C) limianxH—xxx \}j((;:)) = —0Q;

(d) infrex(¥(x) + A®(x)) > —o0 for all X > 0;

(e) there exists a strict local minimum xo € X of I such that

(e1) I(zo) = I'(zo) = ¥(20) = ®(xo) = 0;
(e2) liminf, 4, 1;((3 >0;

(e3) liminf, 4, \}/((;E)) > —00;

(e4) liminf ) > —oo;

(f) there exists yo € X such that T'(yg) < 0.

Then, for each v €]0,00[ with v > —I(yo)/T'(v0), there exists a constant Ao > 0 with
the following property: for all X €]0, \o], there exists a constant oy > 0 such that, for all
o €)0,0,|, there exist four pairwise distinct critical points including xo of [+vT+A¥ 0.

In this paper, we also consider system in Orlicz-Sobolev spaces, and by using
Theorem we obtain that system has at least three solutions, and by using
Theorem |1.2, we obtain that system has at least four solutions which include the
trivial solution.

Next, we prepare to present our results. For this purpose, we need to make the following

two assumptions:

(¢2) functions ¢;, ®;: [0, +oo[ — [0, +00] (i = 1,2) defined by (¢;) satisfy

LN .
i(t i - if ll < N,
1<li::inft¢()§ ti(t) =m; <l = N—l;
>0 ©;(t) ~ >0 Pi(t) +o0 ifl; > N;

(¢3) functions ¢;, ®;: [0, +oo[ — [0, +00] (i = 1,2) defined by (¢;) satisfy

() to;(t)
bli=1g,0) =5 3.0

=:m; <min{N,e;},

where

e 10t -
(1.4) e = ltlin-&&f i(t) and e; = N o
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Remark 1.3. (£1) and (&3) imply that N can not be large enough when [; # m;, and (&2)
implies N is less than [;. However, our assumption (¢2) implies that N can be arbitrary

positive integer even if system (|1.1]) reduces to the equation case.

Next, we fix two notations. Assume that functions ¢; (i = 1,2) defined by (|1.2) satisfy
(¢1) and (¢2). We denote by A; the class of C! functions A: QxR xR — R which possess
the following properties:

(i) if N > min{ly,l2}, then A(x,0,0) € L*°(Q2) and there exist constants C; > 0,
a; €|m;, ] such that

az(a;—1)

|Ay(a,y,2) <O {1+ |y 4]z o ),

(1.5)

aj(ag—1)

As(z,y,2) <O {1+ ]yl 2 + 227!

for all (z,y,2) € 2 xR x R;
(i) if N < min {l1,l2}, then A(x,0,0) € L'(Q) and for each K > 0, the functions

(1.6) 2 — sup |Ay(z,y,2)] and z— sup |A.(z,y,2)| belong to L'(Q).
I(y,2)|<K [(y,2)|I<K

When A € Ay, by a simple computation, it is easy to obtain that
(i) if N > min{ly,l2}, then there exists Cy > 0 such that
(1.7) |A(2,y,2)] < Co(1+ [yl + [2[™)
for all (z,y,2) € Q x R x R;
(ii) if N < min{ly,l2}, then for each K > 0, the function

(1.8) r— sup |A(x,y,2)| belongs to L'(Q).
(y,2)| <K

Assume that functions ¢; (i = 1,2) defined by (1.2)) satisfy (¢1) and (¢3). We denote
by As the class of C! functions A: Q x R x R — R which possess the following properties:
if A(x,0,0) € L*°(f) and there exist constants C3 > 0 and @; € |my, e[, (i = 1,2) such
that

ay@ —1)

|Ay(z,y,2)| < Cs 1+ [y 2] & ),

a(ay—-1)

|Au(2,y,2) < Cs (14 [y = +[2™7!

(1.9)

for all (z,y,2) € @ x R x R.

Now, it is time to present all assumptions on potential functions F', G and H.
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(I;) functions F' and G belong to Aj;
(I2) functions F, G and H belong to Aj;
(I3) functions F' and G belong to As;
(I4) functions F, G and H belong to Aj;
(IT) there exist an open set Qy C Q with |Qg| > 0, ag > m1, ag > mg and ¢,k € R with
12 + k? = 1 such that
F t, kKt
(1.10) ltlinig M > (0 uniformly in z € Qo;
(ITI) for each A > 0, there exists a function A\(z) € L'(£2) such that
AG(JZ, Y, Z) - F(J?, Y, Z) > )\($)
for all (z,y,2) € 2 xR x R;
(IV) liminf|(, .y 5o % > 0 uniformly in z € Q;
(V) limsup)ey .)|—oo % < 400 uniformly in x € ;
(VI) H(x,0,0) =0 for z € Q and [, F(2,0,0)dz = [, G(x,0,0)dz = 0;
(VIT) liminf)q, .)-0 % > 0 uniformly in z € Q;
(VII) limsupyq, .)—o \yll’j‘(f% < 400 uniformly in x € €;
(IX) liminf|(, .y0 % > —oo uniformly in z € €;
(X) there exist a closed set ©; C Q with 21| > 0, a point (b1,bs) € R? and a constant
C4 > 0 such that
H(x,b1,b2) < —C4
for all z € Q5.
Define
I(u,v) = / & (|Vul) dx —I—/ Oo(|Vo|)dz, Jrp(u,v) = —/ F(z,u,v)dz,
Q Q Q
(1.11) Ja(u,v) = / G(z,u,v)dr, Jg(u,v)= / H(z,u,v)dz, uweW,
Q Q
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where the definition of W is given in Section [3] below. We also fix some notations that
will be used in our results. For each A1 > 0 and r > infy Jg, we put
~ 1 I(u,v) + M Jp(u,v) —inf j—1q_ o (L + A JF)

/B()‘lal)JFN]GuT):i Sup
AL (uw)edo=L (Jrtool) r—Ja(u,v)

and

Jp(u,v) =5 +71 B
mr — 1 (u,v) Hwv) €W, Jo(u,v) < r I(u,v) < g

w(l, Jp, Jg,r) = inf{

where 7 = infy (Jr(u, v) + Ja(u, v)) and 7, = inf| n L(u,0).

u,v)GJél(

Theorem 1.4. Assume that functions ¢;, F and G (i = 1,2) satisfy (¢1), (¢2), (I1),
(IT) and (III). Then, for each r > [, G(x,0,0)dz, each Ay €]0

and

1
’ max{07ﬁ(17JF7JG7T)}|:
each compact interval [a,b] C0,B(A1,I,Jr, Jg,7)], there exists a constant p > 0 with

the following property: for every Aa/A1 € [a,b] and every function H € Ay, there ezists a
constant § > 0 such that, for each A3 € [0, 6], system (1.1 has at least three weak solutions

in W whose norms are less than p.

Theorem 1.5. Assume that functions ¢;, F, G and H (i = 1,2) satisfy (¢1), (¢2), (I2)
and (II)~(X). Then, there exists a point (ug,vo) € W such that Jg(uo,vo) < 0 and for each
Az > —1(uo,vo)/Ju(uo, vo), there exists a constant A} > 0 with the following property: for
all \y €]0, \]], there exists a constant A3, > 0 such that, for all Ay €]0, A5, [, system

has at least a trivial weak solution and three nontrivial weak solutions in W.

Theorem 1.6. Assume that functions ¢;, F' and G (i = 1,2) satisfy (¢1), (¢3), (Is3), (II)
and (III). Then the same conclusion of Theorem holds.

Theorem 1.7. Assume that functions ¢;, F, G and H (i = 1,2) satisfy (¢1), (¢3), (I4)
and (I1)—~(X). Then the same conclusion of Theorem holds.

2. Preliminaries

In this section, we recall Orlicz and Orlicz-Sobolev spaces and some important properties
about them. For more details, we refer the reader to the books [1,27] and references
therein.

First, we recall the notion and some properties of N-function which will be used to
define Orlicz space. Let ¢: [0, +00] — [0, 4+00[ be a right continuous, monotone increasing

function satisfying
(1) ¢(0) = 0;

(2) limy o0 $(t) = +00;
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(3) &(t) > 0 whenever ¢t > 0.

Then the function defined by & fo s)ds, t € [0,+o0[ is called an N-function.
N-function ® satisfies a global Ag condition if it holds that sup;.q @((25) < +4o00. For
N-function @, the complement of ® is defined by
®(t) = max {ts — ®(s)} for ¢t > 0.
s>0

Then, ® is also an N-function and ® = ®. Moreover, the following Young’s inequality
holds:
st < ®(s)+ ®(t) forall s,¢> 0.

Now, we recall the Orlicz space L®(2) correlated with the N-function ®. When &
satisfies a global As-condition, the Orlicz space L® (€) is the vector space of the measurable

functions u: Q — R with

/ O (|u]) de < +o0,
Q

where  is a domain in RY. Moreover, L®(Q) is a Banach space equipped with the

Luxemburg norm

[ullg izinf{/\>0:/ ( ‘)dx<1} for u € L*(Q).
Q

In particular, when ®(t) = ||’ (1 < p < +o0), the corresponding Orlicz space L®(Q2) and

the Luxemburg norm ||u||4 reduce to the classical Lebesgue space LP(2) and the norm

1/p
el o e = (/Q \u(a;)|de> for u € IP(),

respectively. In this paper, we denote [|u|[;»q) by [lul,-

Moreover, the Orlicz-Sobolev space deﬁned by

Whe(Q) .= {u e L%(Q) : g“ L2(Q),i = 1,2,...,N}
a:.Z
is a Banach space equipped with the norm
= llulle +[Vullg -

When (2 is bounded, VVO1 () as the closure of C&°(Q) in WH®(Q) has an equivalent norm
lullo.e = [[Vullg ,
which can be obtained by using the Poincaré inequality in [21] given as

(2.1) Jullg < 2d[|Vullg for all u e Wy ®(),
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where d = diam(€2).
Next, we summarize some important properties about N-function, Orlicz and Orlicz-

Sobolev spaces.

Lemma 2.1. [1,18] Assume that ® is an N-function. Then, the following three conditions

are equivalent:

(1)

. to(t) to(t) _ ,
(2.2) 1§l—%ggﬂ§ig§w—m<+oo7

(2) let Co(t) = min {t',t™}, ¢(1(t) = max {¢',t™} for t > 0. ® satisfies
G2 (p) < (pt) < G(1)®(p) for all p,t > 0;

(3) @ satisfies a global Ag-condition.

Lemma 2.2. [18] Assume that ® is an N-function and (2.2) holds. Then
Golllll) < [ Sl do < Gulluly) o allu e L),

Lemma 2.3. 18] Assume that ® is an N-function and ([2.2) holds with | > 1. Let ®
be the complement of ® and (2(t) = min {tl tm}, (3(t) = max {tl tm} for t > 0, where

l:=1/(1—1), m:=m/(m—1). Then

- . 6/ 5/ ~
(1) m =infy5g % < sup;sg % =1

(2) C(t)®(p) < B(pt) < C3(t)B(p) for all p,t > 0;
3) G(llullz) < i, ®(ul) de < G(||ullz) for all u € LT(S).

If

1 (I)fl +oo P
(2.3) / N+(1) ds < +00 and / N+(1) ds = +o0,
0 1

S N S N

then the Sobolev conjugate N-function function ®, of ® is given in [1] by

t (I)_l

o7 (1) :/ fo) ds fort > 0.
0 s N

Lemma 2.4. [18] Assume that ® is an N-function and (2.2]) holds with l,m €]1, N|.

Then (2.3|) holds. Let (4(t) = min {tl*,tm*}, G(t) = max{tl*,tm*} for t > 0, where
=IN/(N —1), m" :=mN/(N —m). Then
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. @, vl =
(1) I* =infio t@((tt)) < SuPssg té*((tt)) -

(2) C)Ps(p) < Pulpt) < G5(1)®s(p) for all p,t > 0;

3) Calllul

Lemma 2.5. [1,127] Assume that ® is an N-function and holds with I > 1. Then
the embedding Wol’q)(ﬂ) — WOI’Z(Q) is continuous, where WOI’Z(Q) is the classical Sobolev
space. So the embedding from Wol’(b(Q) into LP(QY) is continuous for 1 < p <1* and into
L1(Q) is compact for 1 < q < I*, where

o.) < Jo @u(lul) dz < G5(|lullg,) for all u € L*(Q).

" HifL< N,

400 ifl > N.

Therefore, when 1 < p <1*, there exists a constant C, > 0 such that
(2.4) [ull, < Cp|[Vullg  for allu € W&’¢(Q).

Lemma 2.6. [1,27] Assume that ® is an N-function and (2.2) holds with I,m €]1, N|.
Then the embedding from WOL@(Q) into L2+ (Q) is continuous and into LY (Q) is compact
for any N-function Y increasing essentially more slowly than ®,. near infinity, that is

. Y(et)
N0

=0

for any constant ¢ > 0.

Remark 2.7. Assume that ® is an N-function and (2.2) holds with [ > 1. Then Lemmas2.1|
and imply that both ® and ® satisfy a global As-condition. Thus the Banach spaces
L®(Q), Wh*(Q) and WOI’(I)(Q) are separable and reflexive (see [1}27]).

3. Proofs
By (¢1) and (¢2) or (¢1) and (¢3), we define space W := Wol’q)l(Q) X I/VOMI)2 (©) with norm
[(w, )| := Nlullo.g, + [1v]lo.e, = Vullg, +Vollg, -

Then W is a separable and reflexive Banach space by Remark
On W, define functional J by

- J(u,v) ::/Qq)l(\Vu|)d:E—|—/Q<I>2(|VU|)dx—)q/QF(:U,u,U)dx
+)\Q/S]G(a:,u,v)da:+)\3/QH(x,u,v)d3:, (u,v) € W.
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By (1.11]), we have
J(u,v) = I(u,v) + M Jp(u,v) + XaJa(u,v) + A3Jg(u,v), (u,v) € W.

Moreover, the critical points of J on W are weak solutions of system ([1.1)). With a similar
argument as [20], (¢1) and (¢2) assure that I: W — R is of class C1(W,R) and

(3.2) <I’(u,fu),(ﬂ,'ﬁ)>:/Qal(]Vu\)Vu-Vﬂdx—i—/gag(Wv\)Vv-V'ﬁdx

for all (u,v) € W.
We point out that C' is used for denoting a positive constant that may be variable in

different places.

Lemma 3.1. Assume that (¢1) and (¢2) hold. Then C* functional I: W — R is sequen-
tially weakly lower semicontinuous, coercive, bounded on each bounded subset of X, and

whose derivative I' admits a continuous inverse I'™1 on the dual space W* of W .

Proof. First, we prove that I is weakly lower semicontinuous. It is sufficient to prove that
I is convex and (strongly) continuous by Remark 6 in Chapter 3 of [10]. In fact, it is easy
to check that I is strictly convex by (¢1). This, together with the continuity of I, implies
that I is weakly lower semicontinuous. So I is sequentially weakly lower semicontinuous
(see |10]). Now, we prove that I is coercive. By Lemma we have

. l . l l l
I(u,0) 2 min {|Vullg, ,IVulg! } +min {Vollg, , IVoll52 } > IVulg, + Vo), -2,

which implies that I(u,v) — 400 as |[(u,v)|| = [[Vullg, + [[Vv|p, — +00. Moreover, by

Lemma [2:2] we also have
l l
I(u,v) < max { [ Vully, , [Vullg? b+ max {IIVollz, , IVol52 } < IVullg? + [Voll52 +2,

which implies that I is bounded on each bounded subset of X. Next, we prove that
I': W — W* admits an inverse I'"!: W* — W and I’"! is continuous on W*. By (3.2),
(¢2) and Lemma[2.2] we have
(I'(u,0), (u,0))  Joar(Vul) [Vul> dz + [y as(|Vo]) [Vo|? do
[[(w; v) IVullg, + IVollg,
b Joy @1 (V) do + 1y J @5(Ve]) da
- IVullg, + [IVllg,
 tomin (vl IValg, } + o win {90l Vol }
- IVullg, +[[Vollg,
1 1
L |[Vullg, +12(Vvlg, =l — 1o
- [Vullg, + [[VVllg,
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for all (u,v) € W. Then limj|(,, |- Wrﬁziw = 400, that is, I is coercive in W. Fur-
thermore, the continuity of I’ implies that I’ is hemicontinuous and the strictly convexity
of I implies that I’ is strictly monotone in W. Thus by Theorem 26.A(d) in [33], we know
that the inverse I’~! of I’ exists and is bounded in W*. We now prove that I’~! is contin-
uous by showing that it is sequentially continuous. Let {w,} C W* be any given sequence
such that w, — w € W*. Set (up,v,) = I' Y wy,), n = 1,2,..., and (u,v) = I'"1(w).
We claim that (u,,v,) — (u,v) in W. Since I'"! is bounded and w, — w in W*, then
{(tn,vy)} is bounded in W. Without loss of generality, we assume that (u,, v,) — (uo,vo)
in W, which implies that w, — g in Wol’cbl(Q) and v, — vp in VVOL(I)2 (€2), respectively.
Since wy, — w in W* and {(un,v,)} is bounded in W, then

(wy, — w, (Up, vy) — (ug,v)) = 0 as n — oo,
which, together with the fact that
(W, (tn,vn) = (uo,v0)) = 0 and  (I'(uo,v0), (un,vn) — (uo,v0)) = 0 asn — oo,
implies that

0= lim <wn7 (umvn) - (UO,U0)> - <I/(UO7UO)7 (Umvn> - (u07v0)>
n—oo
= lim (I'(up,vyn) — I'(uo, v0), (tn, — ug, vy — v0))
n—oo

(8:3) —lim [ (0 (V) Vitn — ar (Vo) Vo) - (Vi — Vo) dar

n—o0 0

+ ILm (a2(|Vup|) Vo, — aa(|Vuo|) V) - (Vu, — Vug) dx.
n—oo O
Define operators 7;: Wol’@i(Q) — Wol’(bi(Q)* (1=1,2) by
(T3 (), 70) = / a1([Vu)VaVide, wie W (Q)
Q

and
(Ta(v), ) ::/Qagqvv\)vuvmx, 0,7 € WhP2(Q).

1) implies that 7; (¢ = 1,2) are strictly monotone in W L) (i = 1,2), respectively.
0
Then it follows from (3.3)) that

lim [ (a1(|Vug|)Vuy, —a1(|Vuo|) Vo) - (Vu, — Vug) de =0

n—00 Q

and
lim [ (a2(|Von|)Vu, — a2(|Vul) V) - (Vu, — Vug) dz = 0,

n—oo Q
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which imply that
lim / a1(|Vuy|)Vuy, - (Vuy, — Vug)dr =0
n—oo 0

and

lim / as(|Vop|) Vo, - (Vo, — Vug) dz =0
n—oo 0

because u, — ug in Wol’q)l(Q) and v, — v in WOI’%(Q), respectively. Now we can
conclude that u,, — ug in VVO1 1 (Q) and v,, — v in WO1 P2 (), respectively, from Lemma 5
in [26]. Thus, (un,v,) — (ug,vo) in W, which implies that I'(u,,v,) — I'(ug,v9) =
I'(u,v) in W*. The injectivity of I’ implies that (ug,v9) = (u,v). Therefore, the claim is

valid and I’ is continuous. O

Lemma 3.2. Assume that A € A;. Then Ja: W — R defined by

JA(u,v):/QA(a:,u,v)dac

is a C1 functional with compact derivative. Moreover,
(3.4) (Jy(u,v), (@,0)) = /QAy(x,u,v)adx + /QAZ(Lu,v)ﬁd:c
for all (u,v) € W.
Proof. First, suppose N > min {l1,l2}. By and Lemma 2.5 we have
Iau) < [ 1AGe )| do < Co (90+ [l + 0l3) < € (1+ [Vl + [V0l5).

Thus J4 is well defined in W. We now prove that (3.4)) holds. For any given (u,v), (u,v) €

W, we have
- 1 ~ ~
(Jy(u,v), (@, 0)) = lim —(Ja(u + htt,v + hv) — Ja(u,v))
h—0 h
A(z,u + hu,v+ hv) — A(z, u,v + hv)

= lim dx
h—0 Jq h
A v)— A
(3.5) +lim (z,u,v + hv) (z,u,v) i
h—0 Jo h

=lim | Ay(z,u+ 601(z)hu,v + ho)udx
h—0 Jo

+ lim | A,(x,u,v+ 02(x)hv)v de,
h—0 Jo

where 61,02: Q — 10, 1[. By the continuity of A, and A., we obtain that

(3.6) Ay(z,u+ 01 (x)hu, v + ho)u — Ay(x,u,v)u
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and

(3.7) A (z,u,v + O2(x)h0)v — A, (z,u,v)v

as h — 0 for a.e. x € Q. Moreover, for all h €| —1, 1[, by (1.5) and the Young’s inequality,

we have

|Ay(z,u + 61 (x)hu, v + hv)u

ag(a;—1)
<Ci <1 + |u+ 01 (z)hat]™ ™ + |v + AT ol ) ||

a;—1 ~ja1—1 ag(ay—1) _ag(@ =D\
1 + |'U/‘ + |’U/‘ + |U| al —|— |'U| a |u|

<C
< O ([af + [ul™ + @™ + o] + [0]*) =: g1 ().
By Lemma we have
(3.9) /le(ff) dz = C (|[ully + [lullg; + l12lg; + vllg: + [19lg;) < +oe.

Then it follows from (3.6, (3.8)), (3.9) and Lebesgue’s dominated convergence theorem
that

(3.10) lim | Ay(z,u+ 01(x)hu,v + hv)ude = / Ay(z,u,v)ude.
h—0 Jo Q
Similarly, by (3.7), we can also obtain that

(3.11) lim [ A.(x,u,v+ 02(x)hv)vde = / A, (z,u,v)vdx.
h—0 Jo Q

Combining (3.10)) and (3.11)) with (3.5)), we can conclude that (3.4]) holds. Next, we prove
the continuity of J/. Let (un,vn) — (uo,v0) in W. For all (u,v) € W, by (3.4]), Holder’s
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inequality and Lemma we have
‘ <‘]1/4(u717 /Un) - ‘]1/4(“07 UO)? (a7 fﬁ)> ‘

/Ay(a:,un,vn)ﬂdx—i-/Az(a:,un,vn)i?da:—/Ay(a:,uo,vo)ﬁdx
Q Q Q

/ Az('xa UQ, ’Uo)/ﬁdl'

Q
< / Ay (&, tn, 0) — Ay (&, 0, v0) | [7] de
Q

+/ | A, (2, U, vy) — Az (z, ug,v0)| [0] da
(3.12) @

(a1—
< ([ om0 = 4y )@ Das) T
Q

(a2—1)/a2
+ < / A (2, tn, vn) — A (2, ug, vo)|*2/ (227D dx) [t
Q

(a1—1)/ax
<C

(/ |Ay(x,un,vn) — Ay(iﬂ,uo,voﬂal/(al*l) da:)
Q

(a2—1)/a2
i ( [ 1A=t ) Ao w2 d:c> 1,5l
Q

We claim that

(3.13) / | Ay (2, U, vn) — Ay (2,10, v0)| ™V de -0 asn — oco.
Q

Otherwise, there exist a constant 9 > 0 and a subsequence of {(uy,v,)} denoted by
{(n,,vn,)} such that

(3.14) / |Ay (2, up,, vpn,;) — Ay(:z,uo,vo)‘“l/(alfl) dx > ¢y for all n; € N.
Q

Since (un,, vn;) — (ug,vo) in W, then u,, — g in Wol’(bl(Q) and vy, — vg in Wol’%(Q),
respectively. It follows from Lemma [2.5| that u,, — up in L* () and vy, — vo in L*2(Q),
respectively. By [10, Theorem 4.9], there exist subsequences of {u,,} and {v,,}, still
denoted by {uy,} and {vy,}, respectively, and functions h; € L (Q2) and hy € L%()
such that

(3.15) Un, () = up(x), vp,(z) = vo(x) ae. ze€ld

and
[un, ()] < hi(x), |vn,(x)] < ho(x) forall n; €N, ae. z € Q.

By (3.15) and the continuity of A,, we have

(3.16) |Ay(z, up, (), vp, (z)) — Ay(m,uo(m),vo(x))|“1/(“1—1) —0 ae z€Q.
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By (L.5) and (3.15)), for all n; € N, a.e. x € Q, we have

|Ay(x’uni7lvni) - Ay($,’UJO,’U0)|a1/(a171)
=C (|Ay($v“niavmﬂal/(al_l) + | Ay (z, UO,UO)|Q1/(01—1))

<C |:Cf1/(04—1) (1 + |un‘|a1_1 + |,Un‘|a2(a1_1)/a1)a1/(a1,1)
(3.17)

+cp/teh (1 + Juo|™ ™ + Ivo|“z<a11>/a1>a1/<a11)]

<O (14 Jung " + v, " + |uo|™ + vol™)
< C (L4 A7 + hy? + |ug|™ + [vo]™) =: g2(x).

By Lemma [2.5] we have

(3.18) /Qgg(a:) dx < +o0.

Then it follows from f and Lebesgue’s dominated convergence theorem that
/Q |Ay(x, Un,, Un,) — Ay(z, u, v0)|a1/(a171) dr — 0 asn; — 0o,

which contradicts . Then holds. Similarly, we can also obtain that

(3.19) / 1AL (2, tn, vn) — As(,u0,v0)|2/ @ Vde =0 asn — .
Q

Combining (3.13) and (3.19) with (3.12), we can conclude that .J/; is continuous. To prove
the compactness of J/;, we take any sequence {(un,v,)} C W which is bounded. By the
reflexivity of W and Lemma we obtain that there exists a subsequence {(uy,,vn,)}
of {(un,vyn)} such that (un,,vn,) = (uo,v0) € W, and u,, — up in L*(Q) and v,, — vo

in L%(Q), respectively. Then, with the same discussion as above, we can prove that
Iy (U, n;) = Ty (w0, v0) in W*. So Jy is compact.

Secondly, suppose N < min {ly,ls}. Lemma implies that the embeddings WO1 ’q)i(Q)
— L*(Q) (i = 1,2) are continuous. Then for any given (u,v) € W, we have |jul|, +
|v]|o < o0, which, together with (L.8), implies that

JA(u,v):/A(x,u,U)de/ |A(z, u,v)|dx
Q Q

< / sup |A(z,y, z)| de < +00.
Q1(y,2)

I<llull oo vl oo
So J4 is well defined in W. Now, we prove that holds. It is easy to see that f
are still hold for this case. Moreover, for all h €] — 1,1[, by and Lemma
we have
(3.20)

|Ay(x,u+ 61 (x)hu, v+ ho)u| < ||ul| sup |Ay(z,y,2)| € L)
|,2) | <Ml oo + 1l oo+ 10l oo +1P1l oo
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and

(3.21)  |Ai(z,u, v+ ba(x)hv)v| < ||V o sup |A,(z,y, 2)| € LY(Q).
(:2) | <[l + 1Vl oo +1Pll oo

Combining (3.5)—(3.7)), (3.20) and (3.21)) with Lebesgue’s dominated convergence theorem,
we can conclude that (3.4) holds. Next, we prove the continuity of J;. Let (uy,v,) —

(ug,vo) in W. For all (u,v) € W, by (3.4) and Lemma we have

(3.22)
(T4 (tt, vn) — Ty (ug, o), (@, D))

/Ay(;v Un, Un uda:+/Az T, Un, Up vdw—/ Ay(x,up, vo)udr
Q 0 Q

- / A, (x,ug,v9)v dz
Q

< HﬁHoo /g‘) ‘Ay(xaunavn) - Ay(x’u()vv()” dr + ”:JHoo/Q ]Az(a?,un,vn) - AZ(QZ,UO,U[)” dx
<C </ | Ay (2, Un, vn) — Ay(x, ug, vo)| dz —I—/ | A (2, up, vp) — Az (z, w0, v0)| dx)
0 Q
x ||(w,v)]| .

Moreover, because the embeddings Wol’q)i(Q) — L>(Q) (i = 1,2) are continuous, (up,vy,)
— (up,vo) in W implies that u, — ug and v,, — vy in L*>(€2). Then

(3.23) un(x) = up(z), wvn(x) = vo(z) ae xzeN
and there exists a K7 > 0 such that
(3.24) lunllo + lnllo < K1 foralln=0,1,2,....

By (3.23) and the continuity of A, and A,, we have

(3.25) |Ay (2, un (), vn(z)) — Ay(z, uo(z), v0(2))] = 0 a.e. z€Q
and
(3.26) | AL (2, up(x), vn(x)) — Az(z,u(x),v0(x))| = 0 a.e. x € Q.

By (3.24) and (|1.6]), we have

‘Ay(x’umvn) - Ay(:c,uo,vo)| < \Ay(ac,un,vn)] + ’Ay({L’,U(),’U())‘

<2 sup |Ay(z,y,2)| € LYQ)
(y,2)|<K:

(3.27)
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and

‘AZ(.’L',UTL,’UTL) - Az(x7u07v0)‘ S ]Az(x,un,vnﬂ + ‘AZ(IE,U(),’U()”

<2 sup |A.(z,y,2)| € LYQ).
|(y,2)|<EK:

Combining (3.25)—(3.28)) with (3.22), by Lebesgue’s dominated convergence theorem, we
can conclude that J/ is continuous. To prove the compactness of J/;, we take any sequence

(3.28)

{(up,vn)} € W which is bounded. By the reflexivity of W, there exists a subsequence of
{(un, vn)}, still denoted by {(un,v,)} such that (u,,v,) = (ug,v0) € W. By Lemma [2.5

we can assume that (3.23]) and (3.24)) hold. Then, with a similar discussion as above, we

can prove that J'y (u,, v,) = J'y(uo, vo) in W*. Then J'; is compact. O

Lemma 3.3. Assume that (¢1), (¢2), (1), (II) and (II1) hold. Then functionals I, Jg, Jg:
W — R satisfy

(1) Hminf) e )0 Jr(u, v) /I(u,v) = —o00;
(2) functional Jp + NJg: W — R is bounded below for all A > 0.

Proof. (1) By the definitions of I and Jp, it is sufficient to prove

. Jo F(z,u,v) dx
(3.29) lim sup
)| —oo Jo P1(IVU]) dz + [ 2(|V0])

Now, we take ug € C§°(€p) \ {0} with up(z) > 0, which, together with the Poincaré
inequality (2.1), implies that

dr oo

[Vuollg, #0, [[Vuollg, #0, [uoll,, #0 and [luol,, # 0.

Let (ui,v1) = (tug, kup). Then (u1,v1) € W satisfying ||(tui,tv1)| — oo as t — +oo.
Moreover, by Lemma we have

t_l}+m [/ @1(|LtVu0])dx+/@g(\ﬁtVu0|)dm]
(3.30) > L/a Q

. l l
> Jim (Llltll [Vuollg, + K2t || Vuol|2, — 2) = +o0.
By (II), there exist € > 0 and ¢y > 0 such that

(3.31) F(z,ut, kt) > € (|et]" + |st|*) for all z € Qq, t > to.

First, suppose N > min {ly,l3}. Since F belongs to A;, then by (3.31)) and (1.7)), we

have

(3.32) F(z,ut,kt) > e(Jet|* + |kt|*™) — C5 for all z € Qp, t >0,
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where Cs = Cao(1+|uto|* +|kto|*?) +€(|eto| ™ +|rto|*). Then by (3.32)), (3.30), Lemma2.2]
and the fact that az > my, as > mg and uy € C5°(Q) \ {0}, we have

i Jo F(x, tug, tr) de
im
t—-+oo fQ Q4 (|Vituy|) dx—i—fQ Oy (|Vivy]) dx
— im fQ x, ttug, ktug) dx

t=+oo [ @1(|tVug|) dz + [, P2(|ktVuol) da

' fQO x,Ltuo,/ituo)da:—l—fQ\Qo F(x, ttug, ktug) dz

= lim

t—oo Jo @1([etVug|) dx + [, Po(|KtVug|) da
Jo, € (Jetuo]® + [Ktuo|*) — C5] dw + fQ\QO F(2,0,0) dz

> 1l

= e Jo @1([etVug|) dx + [, Po( |kt Vug|) da

> Jo le (Jetuo]™ + |ktug|™) — Cs] dx — [ | F(x,0,0)| dx
= t—+oo Jo @1([etVuo|) dx + [, Po(|KtVug|) da

e ol e ol — €
= 5400 Jo @1(|etVugl) dx + [, P2(|tVug|) dx
€L93¢93 Hu0|| + ex4t4 ||u0||

y
= 1o v [V |37 + rmatms uwon% 12

= +OO’

which implies that (3.29) holds.
Secondly, suppose N < min {l1,l2}. By (3.31)), we have

(3.33) F(x,ut,kt) > € (|et]™ + |st|*) — Cs — sup |F(z,y,2)| forall xz € Qqy, t >0,
\(y,z)|§t0

where Cg = € ([ttg]™ + |Kto|™). Note that F belongs to Ay, ag > my, ag > mg and

up € C§°(Qp) \ {0}. Then by (3.33), (1.8)), (3.30) and Lemma we have

-~ Jo F(z, tuy, tvy) do
t—too [ ®1(|Viur]) de + [, @o|Vivy|) da
Jo, F(=, Ltuo,ntuo)deer\Q F(x,tug, ktug) dx

= lim

=400 Jo @1(|tVug|) dz + [, P2(|stVue|) da
> lim fQO [ (|Ltu0‘ + |I<EtU0| ) CG dx — fQO Sup\ (y,2)|<to ‘F(ZL’ Y,z |d£C + fQ\QO F(l’, Oa 0) dx
T t—+oo fQ |LtVu0| dCL' + fQ (I>2 |I€tV’U,0|) dx
. Jo le (Jetuo|™ + [Ktuo|™) = Col dx — [ supy(y 2y <o |1 F(2,y, 2)|dz — [, [F(2,0,0)] dx
= 5% oo Jo @1([etVug|) dz + [, Po(|xtVug|) da
€™t Jlug |32 4 ex®t* [luglly: — C

t— b0 Jo @1(|etVug)) dx—l—fQ b, |/<atVu0|)d:r

1175 5 + x4 o]l

= 10 i [V [0 + /7267 Vo[22

which implies that (3.29) holds.
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(2) For any given A > 0, by (III), we have

inf (Jp+AJg)= inf ()\G(aj u,v) — F(z,u,v))dx > / Az) dx

(u,v)EW u ’U EW Q
/ |A(z)|dx > —o0.
Then functional Jr + AJg is bounded below. ]

Proof of Theorem [1.4] To apply Theorem let X = W, I defined by , v =Jp,
®=Jg, T =Jy, p=1/A, A=X/A\ and v = \3/A\;. Then 8 =3, pu* = [i, v = 7,
nr = 1y and J given by satisfies puJ = pl + ¥ + A® + vI'. By (1), Lemmas
and all conditions of Theorem hold. Moreover, it is easy to see that M = {(0,0)},
and H € A; implies that Jy is C! functional with compact derivative. Then Theorem
shows that for eachj > [ G(2,0,0) dx, each A €]0, maX{O,ﬁ(Il,JF,Jg,r)}[
interval [a,b] C]0,B8(A1,I,JF,Jg,7)[, there exists a constant p > 0 with the following

and each compact

property: for every Ao/A; € [a,b] and every function H € A;, there exists a constant
d > 0 such that, for each A3 € [0, 4], )\%J’ = ul' + ¥ + X\®" + vIV = 0 has at least three

solutions whose norms are less than p. O

Proof of Theorem [I.5 To apply Theorem [1.2] we let X = W, I defined by (L.1]] -, U =
Jp, ® = Jg, I' = Jyg, and v = A3, A = )\1, o = Ag. Then J given by . ) satisfies
J =I+vl+ AV +0d. By definition of W, X is a reflexive real Banach space. Lemma
implies that I is sequentially weakly lower semicontinuous and coercive C! functional
whose derivative admits a continuous inverse on X*. (I,) together with Lemma3.2]implies
that T, ¥, ® are three C' functionals with compact derivative. Lemma implies that
conditions (c) and (d) of Theorem hold. Next, we prove the remaining conditions of
Theorem one by one.
(a) By (IV), for any given € > 0, there exists K. > 0 such that

(3.34) H(w,y,z) > —¢ (\y[ + ]z\b) for all x € Q, (y,2) € R x R with |(y, 2)| > K.
When N > min {ly,l2}. Since H belongs to Aj, then by and , we have

(3.35) H(z,y,z) > —¢ (]y\ll + \z\l2> — C7 forall (z,y,2) € QA x R xR,

where C7 = Cy (1 + | K| + |K(|*?). Then by (3.3F), Lemmas 2.2 and [2.5] we have

. (u,v) Jo H(z,u,v) dx
lim inf = liminf
(wo)]| =00 I(u,0)  [[(uw)ll=oo fo P1(|Vul) de + [o P2(|Vul) dx

Jo [—e (|u\ + ’U|12) - 07} dx
> liminf
()| =oo fo ®1(|Vul) dz + [ ®2(|Vv|) dx

!
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—e (Jlull + Ioli2) - ©
= liminf
()00 [q ®1(|Vul) dx + [ P2(|Vv|) dx

R —e (Il + I0l2) = €
> limin
0= min { [ Zully, , [Vullgs } +min {IVolZ, , 1Voll52 }

—emax {1, 2} (IVully, + [Volg,) - €

> liminf

o= min f Tl [ Vulg |+ min { Vol Vo5 }
= —emax {Cllll,Cllj} .
Since € is arbitrary, then (a) holds.

When N < min {l1,l2}. By (3.34)), we have

(3.36) H(z,y,z) > —¢ <|y\ + \z|12) — sup |H(z,y,2)| forall (z,u,v) € QxRxR.
[(y,2)|<K-.

Since H belongs to A;p, then by (3.36), (1.8), Lemmas and we have

liminf —2Y) — v) Jo H{w,u,v) dv
I (u0) || =00 I (u, v) H(uv)llﬁoo Jo @1(|Vul) dz + [, @o(|Vul) dx

o e (" el de = fosup e, [H @ 2)|do
11m 11
T I(u) oo Jo ®1(IVul) de + [, ®o(|V|) d
(i i) - ©
H(uv)||—>oo fQ CI)l |Vu\ d:L'—l-fQ Dy ‘VQ}‘)dl’
R —emax {Cl,c2} (IVullg, +v0)g,) - C
= )l roe bl -
min [ Vulg, , [|Vullg) f +min{[[Volg, . [ Vo3

= —emax{Ch o2
117 Yo

Since € is arbitrary, then (a) holds.
(b) By (V), there exist ¢ > 0 and K¢ > 0 such that

(3:37) H(z,y,2) < (lyl" +]2") forallz €0, (3,2) € R x R with |(3,2)] > Kc.
When N > min {ly,l2}. Since H belongs to Aj, then by and , we have

(3.38) H(z,y,z) <( (\y|l1 + |z|12) +Cs forall (z,y,2) € Q xR xR,

where Cg = Cy (1+ |K¢|* + |K¢|*). Then by (3.38), Lemmas 2.2 and [2.5| we have

. I'(u,v . Jo H (2, u,v) dx
1msup ——— = 1111 sup
) —oe L6 0) i) —oe Jo PL(IVul) dz + [ ®2(|Vul) da
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Jo [¢ (1™ + 101" + Cs] da
< limsup
) l—o0 Jo P1(Vul) dz + [o 2(|Vo]) da

) ¢ (Il + 1) + €
= limsup
()l —oo Jo P1IVUl) dz + Jo @2(|V0]) do

¢ (Il + I1o12)

< limsup I 5
l@o)ll—oo [[Vullg, + [Vollg, -
¢max{cp, ez} (IVullg, + 19l ) + €
< limsup ; ;
. m . m
l(w0)l|~00 min {||Vu\|q§1 , IIVqu>3} + mln{IIVv!\£2 : IIWII<1>§}

— Cmax {CJ1, O} < oo,
When N < min {l1,l2}. By (3.37)), we have

(3.39) H(z,y,2) <( (|y|l1 + |z]12) + sup |H(z,y,2)| forall (z,y,2) € 2 xR xR.

(y,2)|<K¢
Since H belongs to Ay, then by (3.39)), (1.8 , Lemmas and we have

lim sup Dluv) lim sup Jo H(@u,v) dv
)| o0 LW 0)  juw)—oo Jo P1(IVul) dz + [o @2(|Vul) dz

. ¢ Jo (’U‘ll + ‘U’b) dx + [ supyy ) <x, [H (2,y,2)| dz
< limsup
1 (1,) || —00 Jo @1(|Vul) dz + [, @o(|Vv]) da

i ¢ (Ihully +11el2) + €
= limsup

() |—oo Jo P1(IVul) dz + [ ®2(|Vo]) da

gmax{ql;,c*,’;} (||Vu||ll + (V)2 ) e

< limsup ;

) l-vo0 min {||Vulg, , [ Vull: b +min {[Vo)g, , |1Vol32 }

— ¢ max {0};, C};} < +oo.
(e) By Lemmal[2.2] it is easy to see that (0,0) a strict local minimum of I and (0,0) =
(e1) (VI) directly shows that I'(0,0) = ¥(0,0) = ¢(0,0) = 0.
(e2) By (VII), for any given e > 0, there exists K, > 0 such that
(3.40) H(z,y,z) > —€(|ly|™ + |2|™) forall z € Q, (y,2) € R x R with |(y, 2)| < K.

When N > min{ly,ls}. Since H belongs to Aj, then by (3.40) and (1.7, for € given

above, there exists a constant C, > 0 such that

(3.41) H(z,y,z) > —e(Jy|™ + |2|™*) — Ce(Jy|™* + |2|**) for all (z,y,2) € Q@ x R x R.
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Then by (3.41), Lemmas and the fact that m; < a; (i = 1,2), we have

.. D(u,v)
lim in
|| (w,v)||—0 I(u, ’U)

. Jo H(z,u,v) dx
n

Tl v)H—)O Jo ®1(|Vul) dx + [ ®2(|Vul) d

g ™ o) ds = C (" + o)
Il (u,0) || =0 Jo @1(|Vul) dz + [, ®o(|V]) da

o —elully F lvllne) = Ce(llullyy + llvllgs)
= liminf
Iww)l=0  [o ®1(|Vul) dm+fQ<I>2 |vv\)dx

. —e(ljullp + 1ollm2) = Ce(llulle: + 0le2)
> liminf
10250 min | Tully [Vl 1}+mln{|\wn%,uwnzj}
—emax {Cipt, Oz} (| Vullys + Vo) — Comax {Car, Caz} (| Vullg, + IVollg)

ay?

> liminf ;
) =0 min { | Vully, , [ Vully; } +min {|Vo)g, , IVol32 |

= —emax {le C’mz} .

my?

Since € is arbitrary, then (ez) holds.

When N < min {ly,l2}. It follows from Lemma [2.5|that the embeddings Wol’cbi(Q) —
L>®(Q) (i = 1,2) are continuous. Then implies that ||u|| + [|v]|,, — 0 as |[(u,v)]| =
[Vullg, + [Vvllg, = 0, which, together with (3.40), implies that

iminf L9 _ lim Jo H(@,u,v) dv
G0 T, o) ~ 1l 0 Jo @1(Vul) do + i, @5(Val) do
g —Cal™ ™)
[l (0 ||%o Jo ®1(|Vul) dz + [o P2(|Vo]) da
. (s + oliz2)
Il (uyv ||—)0 Jo ®1(|Vul) da:+ Jq ®2(|V]) da
—emax {Cp1, C2 b (|| Vullg! + [|Vol[g2)

mi?

> liminf
1120 min {| Va3, , IVulg: } + mm{uwu% , HWHZ?;}

= —emax {C’"” C’mQ} .

my?

Since € is arbitrary, then (ez) holds.
(e3) By (VIII), there exist £ > 0 and K¢ > 0 such that

(3.42)  F(z,y,z) <&(Jy[™ +12™*) forallz € Q, (y,z) € R x R with |(y, z)| < K.

When N > min {ly,l5}. Since F belongs to A, then by (3.42)) and (1.7)), for & given

above, there exists a constant C¢ > 0 such that

(843)  Fla,y,2) < E(yl™ + ™) + Cellyl™ +[2]) for all (z,y,2) € A x R x R.
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Then by (3.43)), Lemmas and the fact that m; < a; (i = 1,2), we have

: U (u,v)
limsup —
(uo)»0  L(u,v)

— Timsup fQ x,u,v) dx
) =0 Jo P1(IVul) dz + [o, @2(|Vul) do
< ey ™ +[0"%) o+ Ce ol + o) do
2,0 |1~ Jo ©1(IVul) dz + [, ®2(|V0]) d
g Sl )+ el + 1ol
Il (w,)||—0 fQ |Vu| d:l?+fQ (I)Q |V’U‘)dx

Emax {C71, O} (| Vullg, + [[Vollgy) + Cemax {C21, Caz } (IVullg, + Vollg,)

ay?

< limsup
I a0) [0 min {||vu||¢1 |V } + min {||W||¢2 Vol }

— Emax {C™ 0™} < foo,

my )

which is equivalent to (es).

When N < min{li,l2}. By the discussion above, we know that |u|| ., + [|v]|,, — 0 as
[(u, )| = [Vullg, +[[VV|lg, — 0. Then by (3.42)), we have

lim sup _Y(wv) _ hmsup Jo Fl@,u,v) do
lwo)—=0  L(Wv) =0 Jo P1(Vul) de + [, ®2(|Vul) dx
< s € Jopllul™ + o™ do
(11,0 | >0 Jo @1(|Vul) dx + [, @2(|Vv|) d
. Q™ + ol™2)
(w0 ||H0 Jo @1(|Vul) d:U+fQ Do (|Vol) do
Emax {CL, C2 ) (| Vullg) + IVollg7)

mi?

< limsup

)0 min { [ Vullg, [ Vulp -+ mm{uwn% : HWHZ?;}

= ¢{max {C)1, C2 b < +oo,

mq

which is equivalent to (es).
(e4) By (IX), a similar argument as (e3) shows that (e4) holds.
(f) By (X), we can choose a closed set Qo C Q with 93 N Qs = 0 and

1 Cy1Q
(3.44) 10\ Q] < = 11|

>~ 2Supxegly‘(u,v)|gm’H(ZE,U,U”

Take (ug,vg) € W which satisfies that (ug(x),vo(x)) = (0,0) in Q\ Q1, (uo(x),ve(x)) =
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(b1,b2) in Q9 and |lug||, + [Jvollo, < /b3 + b3. Then by (VI) and (3.44), we have

F(UO,U()):/QH(CC,’LLQ(LE),U()(CL‘)) dx

= H(x,uo(x),vo(x))dx + [ H(x,up(x),vo(x))dx
Q\Qy Q2

+/Ql\92 H(z,up(x),vo(x)) dx

= H(z,0,0)dz+ [ H(x,bi,b2) da:—i—/ H(z,up(z),vo(z)) dzx
Q\Ql QQ 91\92

—C4 |Qa] + |1\ 2 sup | H (2, u,v)]
2€Q1,|(u,0)|</b7+b3

IA

1
< —504 Q| < 0.

Moreover, it is obvious that I(ug,vg) > 0.

Thus we verify that all conditions of Theorem hold. Then Theorem shows
that for each Az > max {0, —I(ug,v0)/Jg(uo,v0)} = —I(ug,vo)/Jm(ug,vo), there exists
a constant A} > 0 with the following property: for all A\; €]0, A\]] there exists Aoy, >0
such that, for all Ay €]0, \} A [, system has at least a trivial weak solution and three

pairwise distinct nontrivial weak solutions in W. ]

Proofs of Theorems and [L.7. Our results show that the conditions (¢2), (I1) and (I2)
can be replaced by (¢3), (I3) and (I4), respectively. To prove Theorems and from
all arguments in both Theorems and it is only needed to prove that the embeddings
Wol’q)i(Q) — L%(Q) (i = 1,2) are compact when (¢2), (I;) and (I) are replaced by (¢3),
(I3) and (1), respectively. In fact, by Lemma it is sufficient to prove that functions

Ti(t) := |t|* (i = 1,2) increase essentially more slowly than ®;, (i = 1,2) near infinity,

respectively. Let af := A‘?QZ\; =a; (1 = 1,2). It follows from the fact @; € m;, e[ (i = 1,2)
aitei ny

that a; < ¢; (i = 1,2) and @; < (%F%)* = N (¢ = 1,2). Then (1.4 implies that
Tz

there exists a constant K > 0 such that

to;(t)
®;(t)

> —(a;+¢€;) forallt>K,

N |

which implies that

B;(t) > Co |t|2@ ) forall t > K

for some C9 > 0. So, by Lemma and the definition of ®;, (i = 1,2), when ¢t > ®;(K)
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we have

(I)ill(t) = @1;1(@Z(K)) + /t (I)i_l(s) ds

N+1
P;(K) 8 N
2
1\ @ta [ 2 Ni1
§ (I)l*—l(CDZ(K)) —|— <> / $<Gi+51 N >d$
9 @i(K)
2
- 1 \aitei  N(a; +€;) 2N—(ajte;) 2N—(ajte;)
=@, ! P,(K))+ | = — 7 |t Nlajte) — P (K) Nlajtey)

2N —(a;+e;)
< Clot N(a;+e;)
for some C1y > 0, which implies that

N(a;+e;) ajte;

1 \ TV—(are)  _Najhe) INTZ) et
@Z*(t) > (> t2N—(a;+e;) — <> t( ; ) for all t > (I)Ujl(q)z(K))
010 CIO

Thus, for any constant ¢ > 0, we have

Y.(ct _ aiteive [~ cajte;y«
im ict) < lim c‘”CiO =) t[az %) ] =0,
t—to0 By, (t) ~ t—too
which implies that Y;(¢) := [t/ (i = 1,2) increase essentially more slowly than &,
(i = 1,2) near infinity, respectively. Hence the embeddings I/VO1 Q) L% (Q) (i =1,2)
are compact. ]

4. Remarks

Remark 4.1. (i) Assume that (¢1) and (¢2) hold and N > max{m1,ma}. Then by the
definitions of l;, e;, m; (i = 1,2), it is easy to see that [; < e; (i = 1,2) and thus
I¥ <ef (i =1,2), which, together with (¢2), implies that (¢3) holds. Moreover,
and directly imply that A; C Az if [; < e; (i = 1,2), and A; = Ay if and only if
l; = e; (1 =1,2). Hence, Theorems and are corollaries of Theorems and
respectively, if N > max {m, mo} which shows that N can be large enough. There exist

examples satisfying (¢3) but not satisfying (¢2). For example, let

ai([t)t =plt" 2 t+q[t|% >t for t #0,
0 for t =0,

¢i(t) =

where 1 < p; < ¢; < 400 (i = 1,2). On one hand, by a simple computation, we get
Q;(t) =t/ + ¢, teR,i=1,2

and

li=pi<ei=m;=g¢q;, i=12.
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Then (¢3) holds for all N > max {m;, ma}. On the other hand, it is easy to see that
limy_,o I7 = ;. Hence, we can choose N large enough such that [ < m; which contradicts
(¢2).

(ii)) If N < max {m, ma}, then it is obvious that (¢3) does not hold and so (¢2) is not
different from (¢3).

Remark 4.2. In (II), let y = ¢t (or z = kt) if 1 # 0 (or K # 0). Then (1.10]) is equivalent to

F(x, Lz, 2)

YR

i F(z,y, %y) o
iminf ———7—7 >0 (or liminf ——a*—7=
y—rsgn(t)oo |y| + lfy‘ z—rsgn(k)oo ‘EZ’ + |Z|

> 0> , uniformly in x € Q,
which clearly implies that F(z,-,-) is only needed to satisfy the so-called super-linear
Orlicz-Sobolev growth condition at infinity on a certain half-line which passes through

origin in y-z plane for all z € Q.
Remark 4.3. We present an example to verify our results. Let N = 5, 2 is a bounded
domain in R® with smooth boundary 9. Assume that

t2
ai(t) =2+ 3t, ax(t) =3tlog(l+1t)+ 1

for t > 0,

Fz,y,2) = y* + 25 + 425, G(a,y,2) = [y|© + |2” and H(x,y,2) = ysin® y + zsin® = for
(7,y,2) € Q2 x R%. Then

2

61(1) = ar()t = (2 + 3[t])t, Pa(t) = aa([t])t = (3 1081+ 1t) + T

>t fort e R

and
D(t) =t2+ 13, Dy(t) =t3log(l+1t) fort>0.

By some simple computations, it is easy to obtain that (¢1) holds and

l1:2, m1:3, 61:3, l2:3, m2:4, 62:3,

10 15 , 15

l*f:?, m’{:?, lé—? and mj = 20,

which shows that (¢2) holds. Since N > max{mi,ms}, then Remark implies that
(¢3) holds and A; C As. Next, we show that F, G, H € A;. Choose a; =19/6 and as =7

in (1.5). Then

3, 3
IFy(2,9,2)| = [35° + 2°| <39 + |2, |Fa(w,y, 2)] = [62° + 3y2%| < Do+ S2" +6 2",

19 13 6
‘Gy(xayaz)‘ :g‘y|6 ; \Gz(rl:,y,z)\ :7|Z’ 3
|Hy(z,y,2)| = ‘sin3y+3ysin2ycosy‘ <1+3lyl,

|H,(z,y,2)| = }sin3z+3,zsin2zcosz‘ <1+3|7,
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which imply that (1.5) holds. So, F,G,H € A;. Choose a3 = 19/6, ay = 6, « = 0 and

x = 1. Then ;
i inf F(z,t, kt) ot

t—+oo [ut]" + |Kt|™ T 4o 16

which shows that (II) holds. For each A > 0, we have

19
)\G(x,y,z) - F(.I',y, Z) = )‘|y|? +)“Z|7 _y3 - ZG - yz3

2y 5%

19
> Ayle + Xz = Jy]* — 20 - 5

which shows that function AG(z,y, z) — F(x,y, z) is coercive. Then there exists a constant
C\ < 0 such that

MG (z,y,2) — F(x,y,2) > Cy =: Mz) € L}(Q).

So (III) holds. Moreover,

H(z,y,z) ysin®y + zsind 2

im m o o, 2 3
lw2)l—oo |y|" + 2|2 lw2)lmoo  |yl* + |2

Y

which shows that (IV) and (V) hold. Obviously, (VI) holds and

o H(z,y,z) o ysin3y+zsin3z
liminf ——"—7; = liminf 3 1 =0,
|(w,2)|=0 [y|™ + || (w2)l=0 Jy]” + [2]
9
F 34 26 3 LyP+ 21224+ 4
lim sup 77”(1%‘,2/, 22,12 = lim sup y e TmyE —|—3z +Zf < limsup 3 [yl i 2| . _ 4
I(w,2)—0 [y + 121 2= yl® + 2] wa-0  yl” + 2] 3
and 1o
19 7
L Gr,y,2) o lyls e
lim inf —_—

w2l=0 Y™ + 2™ wal=0 [y + |2

show (VII), (VIII) and (IX), respectively. Finally, choose (b1,bs) = (37, 37) € R% Then
H(x,b1,b2) = =371 < 0, which implies that (X) holds.
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