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Multiplicity of Solutions for a Class of Quasilinear Elliptic Systems in

Orlicz-Sobolev Spaces

Liben Wang, Xingyong Zhang* and Hui Fang

Abstract. In this paper, we investigate the following nonlinear and non-homogeneous

elliptic system
− div(a1(|∇u|)∇u) = λ1Fu(x, u, v)− λ2Gu(x, u, v)− λ3Hu(x, u, v) in Ω,

−div(a2(|∇v|)∇v) = λ1Fv(x, u, v)− λ2Gv(x, u, v)− λ3Hv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, λ1, λ2, λ3 are

three parameters, φi(t) = ai(|t|)t (i = 1, 2) are two increasing homeomorphisms from R
onto R, and functions F , G, H are of class C1(Ω×R2,R) and satisfy some reasonable

growth conditions. By using a three critical points theorem due to B. Ricceri, we

obtain that system has at least three solutions. With some additional conditions, by

using a four critical points theorem due to G. Anello, we obtain that system has at

least four solutions.

1. Introduction and main results

Consider the following nonlinear and non-homogeneous elliptic system in Orlicz-Sobolev

spaces:

(1.1)


−div(a1(|∇u|)∇u) = λ1Fu(x, u, v)− λ2Gu(x, u, v)− λ3Hu(x, u, v) in Ω,

−div(a2(|∇v|)∇v) = λ1Fv(x, u, v)− λ2Gv(x, u, v)− λ3Hv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, λ1, λ2, λ3 ∈ R,

F,G,H : Ω × R × R → R are three C1 functions which satisfy some reasonable growth

conditions, ai : ]0,+∞[→ R (i = 1, 2) are two functions satisfying

(φ1) φi : R→ R (i = 1, 2) defined by

(1.2) φi(t) =

ai(|t|)t for t 6= 0,

0 for t = 0,
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are two increasing homeomorphisms from R onto R. Therefore, functions Φi : [0,+∞[→
[0,+∞[ (i = 1, 2) defined by Φi(t) :=

∫ t
0 φi(s) ds are strictly convex in [0,+∞[.

Set a2 = a1, v = u, F (x, u, v) = F (x, v, u), G(x, u, v) = F (x, v, u) and H(x, u, v) =

F (x, v, u). Then system (1.1) reduces to the following quasilinear elliptic type equation:

(1.3)

−div(a1(|∇u|)∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.

When a1(|t|)t = p |t|p−2 t (p > 1), equation (1.3) becomes the well-known p-Laplacian

equation which has been studied extensively (see [3,15–17,23,24] and references therein).

In fact, under the assumption (φ1), equations like (1.3) may be allowed to possess com-

plicated non-homogeneous operator Φ1 which can be used for modeling many phenomena

(see [2, 19]):

(1) (p, q)-Laplacian: Φ1(t) = tp + tq, q > p > 1;

(2) nonlinear elasticity: Φ1(t) = (1 + t2)γ − 1, γ > 1/2;

(3) plasticity: Φ1(t) = tα(log(1 + t))β, α ≥ 1, β > 0;

(4) generalized Newtonian fluids: Φ1(t) =
∫ t

0 s
1−α(sinh−1 s)β ds, 0 ≤ α ≤ 1, β > 0.

Based on these interesting facts, equations like (1.3) have aroused keen interest among

scholars in recent years. In Clément et al. [14], the authors firstly proved that equa-

tion (1.3) has a nontrivial solution by variational method. From then on, variational

method has been used widely to study the existence and multiplicity of solutions for this

type of nonlinear or non-homogeneous elliptic equations (see [9,13,18,25,26] and references

therein).

To study the existence or multiplicity of solutions for equations like (1.3), some ap-

propriate Orlicz-Sobolev spaces might be defined. For this purpose, in most of references,

the authors assumed at least one of the following conditions holds:

(E1) m1 < min {N, l∗1};

(E2) N < l1;

(E3) m1 < l∗1;

(E4) the function t→ Φ1(
√
t) is convex for all t ∈ [0,+∞[,

where N denotes the dimension of the space RN and

l1 := inf
t>0

tφ1(t)

Φ1(t)
, m1 := sup

t>0

tφ1(t)

Φ1(t)
and l∗1 :=

 l1N
N−l1 if l1 < N,

+∞ if l1 ≥ N,
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where φ1 and Φ1 are defined by (1.2). To be precise, (E1) is assumed in [13, 18, 25, 26],

(E2) is assumed in [8, 9], (E3) is assumed in [11], and (E4) is assumed in [8, 11–13,26].

To the best of our knowledge, there are few papers to consider the systems like (1.1)

except for [22,31,32,34]. In [22], for systems (1.1) with λ2 = λ3 = 0 and F has the form

F (x, u, v) = A1(x, u) + b(x)Γ1(u)Γ2(v) +A2(x, v),

Huentutripay-Manásevich translated the existence of solution into a suitable minimizing

problem and proved the existence of nontrivial solution under some reasonable restriction.

In [32], for systems (1.1) with λ1 = 1, λ2 = λ3 = 0 and F satisfies the so-called subcritical

and super-linear Orlicz-Sobolev growth conditions at infinity, by using the mountain pass

theorem, Xia-Wang proved the existence of nontrivial solution. In [34], for system
div(a1(|∇u|)∇u) = a(|x|)f(v) in RN ,

div(a2(|∇v|)∇v) = b(|x|)g(u) in RN ,

(u, v) ∈ C1(RN )× C1(RN ),

by using a monotone iterative method and Arzela-Ascoli theorem, Zhang proved the ex-

istence of positive radial solution. In [31], we investigated the following system in Orlicz-

Sobolev spaces:
−div(φ1(|∇u|)∇u) + V1(x)φ1(|u|)u = Fu(x, u, v) in RN ,

−div(φ2(|∇v|)∇v) + V2(x)φ2(|v|)v = Fv(x, u, v) in RN ,

(u, v) ∈W 1,Φ1(RN )×W 1,Φ2(RN ) with N ≥ 2,

where the functions Vi(x) (i = 1, 2) are bounded and positive in RN , the functions φi(t)t

(i = 1, 2) satisfy (φ1) and

(φ2)′ 1 < li := inft>0
t2φi(t)
Φi(t)

≤ supt>0
t2φi(t)
Φi(t)

=: mi < min {N, l∗i }, where l∗i := liN
N−li .

By using the least action principle, we proved that system possesses at least one nontrivial

solution if F : RN × R× R→ R is a C1 function, F (x, 0, 0) = 0 and satisfies

(F1) there exist constants pi ∈ [mi, l
∗
i ) (i = 1, 2), max {1/p1, 1/p2} ≤ q1 < q2 < · · · <

qk < min {l1/p1, l2/p2}, and functions a1j , a2j , a3j , a4j ∈ L1/(1−qj)(RN , [0,+∞)) (j =

1, 2, . . . , k) such that

|Fu(x, u, v)| ≤
k∑
j=1

a1j(x) |u|p1qj−1 +

k∑
j=1

a2j(x) |v|
p2(p1qj−1)

p1 ,

|Fv(x, u, v)| ≤
k∑
j=1

a3j(x) |u|
p1(p2qj−1)

p2 +
k∑
j=1

a4j(x) |v|p2qj−1

for all (x, u, v) ∈ RN × R× R;
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(F2) there exist an open set Ω ⊂ RN with |Ω| > 0, and constants α0 ∈ [1, l1), β0 ∈ [1, l2),

δ > 0, c > 0 and ι, κ ∈ R with ι2 + κ2 6= 0 such that

F (x, ιt, κt) ≥ c
(
|ιt|α0 + |κt|β0

)
for all (x, t) ∈ Ω× [0, δ].

Moreover, suppose that F also satisfies the symmetric condition

F (x,−u,−v) = F (x, u, v) for all (x, u, v) ∈ RN × R× R.

Then, by using the genus theory, we proved that system possesses infinitely many solutions.

In recent years, Ricceri, Anello and Bonanno have turned their interests to the multi-

plicity of critical points for a class of functional on a reflexive real Banach space. With the

aid of variational method, they have worked out a series of abstract multiplicity theorems

(see [4–7, 28–30]). Then, by using those theorems, some scholars studied the multiplicity

of nontrivial solutions for equations like (1.3) even if the nonlinear term f is without sym-

metry (see [8, 11, 12]). Next, for readers’ convenience, we recall the two abstract critical

theorems in [30] and [5], which will be used to prove our results.

Theorem 1.1. [30, Theorem 3] Let X be a reflexive real Banach space; I : X → R a

sequentially weakly lower semicontinuous, coercive, bounded on each bounded subset of X,

C1 functional whose derivative admits a continuous inverse on X∗; Ψ,Φ: X → R two C1

functionals with compact derivative. Suppose also that the functional Ψ + λΦ is bounded

below for all λ > 0 and that

lim inf
‖x‖→+∞

Ψ(x)

I(x)
= −∞.

Then, for each r > supM Φ, where M is the set of all global minima of I, each µ >

max {0, µ∗(I,Ψ,Φ, r)}, and each compact interval [a, b] ⊂ ]0, β(µI + Ψ,Φ, r)[, there exists

a constant ρ > 0 with the following property: for every λ ∈ [a, b] and every C1 functional

Γ: X → R with compact derivative, there exists a constant δ > 0 such that, for each

ν ∈ [0, δ], the equation

µI ′(x) + Ψ′(x) + λΦ′(x) + νΓ′(x) = 0

has at least three solutions in X whose norms are less than ρ, where

β(µI + Ψ,Φ, r) = sup
x∈Φ−1(]r,+∞[)

µI(x) + Ψ(x)− infΦ−1(]−∞,r])(µI + Ψ)

r − Φ(x)

and

µ∗(I,Ψ,Φ, r) = inf

{
Ψ(x)− γ + r

ηr − I(x)
: x ∈ X,Φ(x) < r, I(x) < ηr

}
,

where γ = infX(Ψ(x) + Φ(x)) and ηr = infx∈Φ−1(r) I(x).



Multiplicity of Solutions for a Class of Elliptic Systems 885

Theorem 1.2. [5, Theorem 1] Let X be a reflexive real Banach space and I : X → R be

a sequentially weakly lower semicontinuous and coercive C1 functional whose derivative

admits a continuous inverse on X∗. Assume also that Γ,Ψ,Φ: X → R are three C1

functionals with compact derivative satisfying the following conditions:

(a) lim inf‖x‖→∞
Γ(x)
I(x) ≥ 0;

(b) lim sup‖x‖→∞
Γ(x)
I(x) < +∞;

(c) lim inf‖x‖→∞
Ψ(x)
I(x) = −∞;

(d) infx∈X(Ψ(x) + λΦ(x)) > −∞ for all λ > 0;

(e) there exists a strict local minimum x0 ∈ X of I such that

(e1) I(x0) = Γ(x0) = Ψ(x0) = Φ(x0) = 0;

(e2) lim infx→x0
Γ(x)
I(x) ≥ 0;

(e3) lim infx→x0
Ψ(x)
I(x) > −∞;

(e4) lim infx→x0
Φ(x)
I(x) > −∞;

(f) there exists y0 ∈ X such that Γ(y0) < 0.

Then, for each ν ∈ ]0,∞[ with ν > −I(y0)/Γ(y0), there exists a constant λ0 > 0 with

the following property: for all λ ∈ ]0, λ0], there exists a constant σλ > 0 such that, for all

σ ∈ ]0, σλ[, there exist four pairwise distinct critical points including x0 of I+νΓ+λΨ+σΦ.

In this paper, we also consider system (1.1) in Orlicz-Sobolev spaces, and by using

Theorem 1.1, we obtain that system (1.1) has at least three solutions, and by using

Theorem 1.2, we obtain that system (1.1) has at least four solutions which include the

trivial solution.

Next, we prepare to present our results. For this purpose, we need to make the following

two assumptions:

(φ2) functions φi,Φi : [0,+∞[→ [0,+∞[ (i = 1, 2) defined by (φ1) satisfy

1 < li := inf
t>0

tφi(t)

Φi(t)
≤ sup

t>0

tφi(t)

Φi(t)
=: mi < l∗i :=

 liN
N−li if li < N,

+∞ if li ≥ N ;

(φ3) functions φi,Φi : [0,+∞[→ [0,+∞[ (i = 1, 2) defined by (φ1) satisfy

1 < li := inf
t>0

tφi(t)

Φi(t)
≤ sup

t>0

tφi(t)

Φi(t)
=: mi < min {N, e∗i } ,

where

(1.4) ei := lim inf
t→+∞

tφi(t)

Φi(t)
and e∗i :=

eiN

N − ei
.
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Remark 1.3. (E1) and (E3) imply that N can not be large enough when l1 6= m1, and (E2)

implies N is less than l1. However, our assumption (φ2) implies that N can be arbitrary

positive integer even if system (1.1) reduces to the equation case.

Next, we fix two notations. Assume that functions φi (i = 1, 2) defined by (1.2) satisfy

(φ1) and (φ2). We denote by A1 the class of C1 functions A : Ω×R×R→ R which possess

the following properties:

(i) if N ≥ min {l1, l2}, then A(x, 0, 0) ∈ L∞(Ω) and there exist constants C1 > 0,

ai ∈ ]mi, l
∗
i [ such that

(1.5)


|Ay(x, y, z)| ≤ C1

(
1 + |y|a1−1 + |z|

a2(a1−1)
a1

)
,

|Az(x, y, z)| ≤ C1

(
1 + |y|

a1(a2−1)
a2 + |z|a2−1

)
for all (x, y, z) ∈ Ω× R× R;

(ii) if N < min {l1, l2}, then A(x, 0, 0) ∈ L1(Ω) and for each K > 0, the functions

(1.6) x→ sup
|(y,z)|≤K

|Ay(x, y, z)| and x→ sup
|(y,z)|≤K

|Az(x, y, z)| belong to L1(Ω).

When A ∈ A1, by a simple computation, it is easy to obtain that

(i) if N ≥ min {l1, l2}, then there exists C2 > 0 such that

(1.7) |A(x, y, z)| ≤ C2(1 + |y|a1 + |z|a2)

for all (x, y, z) ∈ Ω× R× R;

(ii) if N < min {l1, l2}, then for each K ≥ 0, the function

(1.8) x→ sup
|(y,z)|≤K

|A(x, y, z)| belongs to L1(Ω).

Assume that functions φi (i = 1, 2) defined by (1.2) satisfy (φ1) and (φ3). We denote

by A2 the class of C1 functions A : Ω×R×R→ R which possess the following properties:

if A(x, 0, 0) ∈ L∞(Ω) and there exist constants C3 > 0 and ai ∈ ]mi, e
∗
i [, (i = 1, 2) such

that

(1.9)


|Ay(x, y, z)| ≤ C3

(
1 + |y|a1−1 + |z|

a2(a1−1)
a1

)
,

|Az(x, y, z)| ≤ C3

(
1 + |y|

a1(a2−1)
a2 + |z|a2−1

)
for all (x, y, z) ∈ Ω× R× R.

Now, it is time to present all assumptions on potential functions F , G and H.
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(I1) functions F and G belong to A1;

(I2) functions F , G and H belong to A1;

(I3) functions F and G belong to A2;

(I4) functions F , G and H belong to A2;

(II) there exist an open set Ω0 ⊂ Ω with |Ω0| > 0, a3 > m1, a4 > m2 and ι, κ ∈ R with

ι2 + κ2 = 1 such that

(1.10) lim inf
t→+∞

F (x, ιt, κt)

|ιt|a3 + |κt|a4
> 0 uniformly in x ∈ Ω0;

(III) for each λ > 0, there exists a function λ(x) ∈ L1(Ω) such that

λG(x, y, z)− F (x, y, z) ≥ λ(x)

for all (x, y, z) ∈ Ω× R× R;

(IV) lim inf |(y,z)|→∞
H(x,y,z)

|y|l1+|z|l2
≥ 0 uniformly in x ∈ Ω;

(V) lim sup|(y,z)|→∞
H(x,y,z)

|y|l1+|z|l2
< +∞ uniformly in x ∈ Ω;

(VI) H(x, 0, 0) = 0 for x ∈ Ω and
∫

Ω F (x, 0, 0) dx =
∫

ΩG(x, 0, 0) dx = 0;

(VII) lim inf |(y,z)|→0
H(x,y,z)
|y|m1+|z|m2 ≥ 0 uniformly in x ∈ Ω;

(VIII) lim sup|(y,z)|→0
F (x,y,z)
|y|m1+|z|m2 < +∞ uniformly in x ∈ Ω;

(IX) lim inf |(y,z)|→0
G(x,y,z)
|y|m1+|z|m2 > −∞ uniformly in x ∈ Ω;

(X) there exist a closed set Ω1 ⊂ Ω with |Ω1| > 0, a point (b1, b2) ∈ R2 and a constant

C4 > 0 such that

H(x, b1, b2) ≤ −C4

for all x ∈ Ω1.

Define

I(u, v) =

∫
Ω

Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇v|) dx, JF (u, v) = −
∫

Ω
F (x, u, v) dx,

JG(u, v) =

∫
Ω
G(x, u, v) dx, JH(u, v) =

∫
Ω
H(x, u, v) dx, u ∈W,(1.11)
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where the definition of W is given in Section 3 below. We also fix some notations that

will be used in our results. For each λ1 > 0 and r > infW JG, we put

β̃(λ1, I, JF , JG, r) =
1

λ1
sup

(u,v)∈JG−1(]r,+∞[)

I(u, v) + λ1JF (u, v)− infJG−1(]−∞,r])(I + λ1JF )

r − JG(u, v)

and

µ̃(I, JF , JG, r) = inf

{
JF (u, v)− γ̃ + r

η̃r − I(u, v)
: (u, v) ∈W,JG(u, v) < r, I(u, v) < η̃r

}
,

where γ̃ = infW (JF (u, v) + JG(u, v)) and η̃r = inf(u,v)∈J−1
G (r) I(u, v).

Theorem 1.4. Assume that functions φi, F and G (i = 1, 2) satisfy (φ1), (φ2), (I1),

(II) and (III). Then, for each r >
∫

ΩG(x, 0, 0) dx, each λ1 ∈ ]0, 1
max{0,µ̃(I,JF ,JG,r)} [ and

each compact interval [a, b] ⊂ ]0, β̃(λ1, I, JF , JG, r)[, there exists a constant ρ > 0 with

the following property: for every λ2/λ1 ∈ [a, b] and every function H ∈ A1, there exists a

constant δ > 0 such that, for each λ3 ∈ [0, δ], system (1.1) has at least three weak solutions

in W whose norms are less than ρ.

Theorem 1.5. Assume that functions φi, F , G and H (i = 1, 2) satisfy (φ1), (φ2), (I2)

and (II)–(X). Then, there exists a point (u0, v0) ∈W such that JH(u0, v0) < 0 and for each

λ3 > −I(u0, v0)/JH(u0, v0), there exists a constant λ∗1 > 0 with the following property: for

all λ1 ∈ ]0, λ∗1], there exists a constant λ∗2λ1 > 0 such that, for all λ2 ∈ ]0, λ∗2λ1 [, system (1.1)

has at least a trivial weak solution and three nontrivial weak solutions in W .

Theorem 1.6. Assume that functions φi, F and G (i = 1, 2) satisfy (φ1), (φ3), (I3), (II)

and (III). Then the same conclusion of Theorem 1.4 holds.

Theorem 1.7. Assume that functions φi, F , G and H (i = 1, 2) satisfy (φ1), (φ3), (I4)

and (II)–(X). Then the same conclusion of Theorem 1.5 holds.

2. Preliminaries

In this section, we recall Orlicz and Orlicz-Sobolev spaces and some important properties

about them. For more details, we refer the reader to the books [1, 27] and references

therein.

First, we recall the notion and some properties of N -function which will be used to

define Orlicz space. Let φ : [0,+∞[→ [0,+∞[ be a right continuous, monotone increasing

function satisfying

(1) φ(0) = 0;

(2) limt→+∞ φ(t) = +∞;
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(3) φ(t) > 0 whenever t > 0.

Then the function defined by Φ(t) =
∫ t

0 φ(s) ds, t ∈ [0,+∞[ is called an N -function.

N -function Φ satisfies a global ∆2-condition if it holds that supt>0
Φ(2t)
Φ(t) < +∞. For

N -function Φ, the complement of Φ is defined by

Φ̃(t) = max
s≥0
{ts− Φ(s)} for t ≥ 0.

Then, Φ̃ is also an N -function and
˜̃
Φ = Φ. Moreover, the following Young’s inequality

holds:

st ≤ Φ(s) + Φ̃(t) for all s, t ≥ 0.

Now, we recall the Orlicz space LΦ(Ω) correlated with the N -function Φ. When Φ

satisfies a global ∆2-condition, the Orlicz space LΦ(Ω) is the vector space of the measurable

functions u : Ω→ R with ∫
Ω

Φ(|u|) dx < +∞,

where Ω is a domain in RN . Moreover, LΦ(Ω) is a Banach space equipped with the

Luxemburg norm

‖u‖Φ := inf

{
λ > 0 :

∫
Ω

Φ

(
|u|
λ

)
dx ≤ 1

}
for u ∈ LΦ(Ω).

In particular, when Φ(t) = |t|p (1 < p < +∞), the corresponding Orlicz space LΦ(Ω) and

the Luxemburg norm ‖u‖Φ reduce to the classical Lebesgue space Lp(Ω) and the norm

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|p dx

)1/p

for u ∈ Lp(Ω),

respectively. In this paper, we denote ‖u‖Lp(Ω) by ‖u‖p.
Moreover, the Orlicz-Sobolev space defined by

W 1,Φ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, . . . , N

}
is a Banach space equipped with the norm

‖u‖1,Φ := ‖u‖Φ + ‖∇u‖Φ .

When Ω is bounded, W 1,Φ
0 (Ω) as the closure of C∞0 (Ω) in W 1,Φ(Ω) has an equivalent norm

‖u‖0,Φ := ‖∇u‖Φ ,

which can be obtained by using the Poincaré inequality in [21] given as

(2.1) ‖u‖Φ ≤ 2d ‖∇u‖Φ for all u ∈W 1,Φ
0 (Ω),
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where d = diam(Ω).

Next, we summarize some important properties about N -function, Orlicz and Orlicz-

Sobolev spaces.

Lemma 2.1. [1,18] Assume that Φ is an N -function. Then, the following three conditions

are equivalent:

(1)

(2.2) 1 ≤ l = inf
t>0

tφ(t)

Φ(t)
≤ sup

t>0

tφ(t)

Φ(t)
= m < +∞;

(2) let ζ0(t) = min
{
tl, tm

}
, ζ1(t) = max

{
tl, tm

}
for t ≥ 0. Φ satisfies

ζ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ1(t)Φ(ρ) for all ρ, t ≥ 0;

(3) Φ satisfies a global ∆2-condition.

Lemma 2.2. [18] Assume that Φ is an N -function and (2.2) holds. Then

ζ0(‖u‖Φ) ≤
∫

Ω
Φ(|u|) dx ≤ ζ1(‖u‖Φ) for all u ∈ LΦ(Ω).

Lemma 2.3. [18] Assume that Φ is an N -function and (2.2) holds with l > 1. Let Φ̃

be the complement of Φ and ζ2(t) = min
{
tl̃, tm̃

}
, ζ3(t) = max

{
tl̃, tm̃

}
for t ≥ 0, where

l̃ := l/(l − 1), m̃ := m/(m− 1). Then

(1) m̃ = inft>0
tΦ̃′(t)

Φ̃(t)
≤ supt>0

tΦ̃′(t)

Φ̃(t)
= l̃;

(2) ζ2(t)Φ̃(ρ) ≤ Φ̃(ρt) ≤ ζ3(t)Φ̃(ρ) for all ρ, t ≥ 0;

(3) ζ2(‖u‖
Φ̃

) ≤
∫

Ω Φ̃(|u|) dx ≤ ζ3(‖u‖
Φ̃

) for all u ∈ LΦ̃(Ω).

If

(2.3)

∫ 1

0

Φ−1(s)

s
N+1
N

ds < +∞ and

∫ +∞

1

Φ−1(s)

s
N+1
N

ds = +∞,

then the Sobolev conjugate N -function function Φ∗ of Φ is given in [1] by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s
N+1
N

ds for t ≥ 0.

Lemma 2.4. [18] Assume that Φ is an N -function and (2.2) holds with l,m ∈ ]1, N [.

Then (2.3) holds. Let ζ4(t) = min
{
tl
∗
, tm

∗}
, ζ5(t) = max

{
tl
∗
, tm

∗}
for t ≥ 0, where

l∗ := lN/(N − l), m∗ := mN/(N −m). Then
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(1) l∗ = inft>0
tΦ′∗(t)
Φ∗(t)

≤ supt>0
tΦ′∗(t)
Φ∗(t)

= m∗;

(2) ζ4(t)Φ∗(ρ) ≤ Φ∗(ρt) ≤ ζ5(t)Φ∗(ρ) for all ρ, t ≥ 0;

(3) ζ4(‖u‖Φ∗) ≤
∫

Ω Φ∗(|u|) dx ≤ ζ5(‖u‖Φ∗) for all u ∈ LΦ∗(Ω).

Lemma 2.5. [1, 27] Assume that Φ is an N -function and (2.2) holds with l > 1. Then

the embedding W 1,Φ
0 (Ω) ↪→ W 1,l

0 (Ω) is continuous, where W 1,l
0 (Ω) is the classical Sobolev

space. So the embedding from W 1,Φ
0 (Ω) into Lp(Ω) is continuous for 1 ≤ p ≤ l∗ and into

Lq(Ω) is compact for 1 ≤ q < l∗, where

l∗ =

 lN
N−l if l < N,

+∞ if l ≥ N.

Therefore, when 1 ≤ p ≤ l∗, there exists a constant Cp > 0 such that

(2.4) ‖u‖p ≤ Cp ‖∇u‖Φ for all u ∈W 1,Φ
0 (Ω).

Lemma 2.6. [1, 27] Assume that Φ is an N -function and (2.2) holds with l,m ∈ ]1, N [.

Then the embedding from W 1,Φ
0 (Ω) into LΦ∗(Ω) is continuous and into LΥ(Ω) is compact

for any N -function Υ increasing essentially more slowly than Φ∗ near infinity, that is

lim
t→+∞

Υ(ct)

Φ∗(t)
= 0

for any constant c > 0.

Remark 2.7. Assume that Φ is an N -function and (2.2) holds with l > 1. Then Lemmas 2.1

and 2.3 imply that both Φ and Φ̃ satisfy a global ∆2-condition. Thus the Banach spaces

LΦ(Ω), W 1,Φ(Ω) and W 1,Φ
0 (Ω) are separable and reflexive (see [1, 27]).

3. Proofs

By (φ1) and (φ2) or (φ1) and (φ3), we define space W := W 1,Φ1
0 (Ω)×W 1,Φ2

0 (Ω) with norm

‖(u, v)‖ := ‖u‖0,Φ1
+ ‖v‖0,Φ2

= ‖∇u‖Φ1
+ ‖∇v‖Φ2

.

Then W is a separable and reflexive Banach space by Remark 2.7.

On W , define functional J by

J(u, v) :=

∫
Ω

Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇v|) dx− λ1

∫
Ω
F (x, u, v) dx

+ λ2

∫
Ω
G(x, u, v) dx+ λ3

∫
Ω
H(x, u, v) dx, (u, v) ∈W.

(3.1)
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By (1.11), we have

J(u, v) = I(u, v) + λ1JF (u, v) + λ2JG(u, v) + λ3JH(u, v), (u, v) ∈W.

Moreover, the critical points of J on W are weak solutions of system (1.1). With a similar

argument as [20], (φ1) and (φ2) assure that I : W → R is of class C1(W,R) and

(3.2)
〈
I ′(u, v), (ũ, ṽ)

〉
=

∫
Ω
a1(|∇u|)∇u · ∇ũ dx+

∫
Ω
a2(|∇v|)∇v · ∇ṽ dx

for all (ũ, ṽ) ∈W .

We point out that C is used for denoting a positive constant that may be variable in

different places.

Lemma 3.1. Assume that (φ1) and (φ2) hold. Then C1 functional I : W → R is sequen-

tially weakly lower semicontinuous, coercive, bounded on each bounded subset of X, and

whose derivative I ′ admits a continuous inverse I ′−1 on the dual space W ∗ of W .

Proof. First, we prove that I is weakly lower semicontinuous. It is sufficient to prove that

I is convex and (strongly) continuous by Remark 6 in Chapter 3 of [10]. In fact, it is easy

to check that I is strictly convex by (φ1). This, together with the continuity of I, implies

that I is weakly lower semicontinuous. So I is sequentially weakly lower semicontinuous

(see [10]). Now, we prove that I is coercive. By Lemma 2.2, we have

I(u, v) ≥ min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
≥ ‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2
− 2,

which implies that I(u, v) → +∞ as ‖(u, v)‖ = ‖∇u‖Φ1
+ ‖∇v‖Φ2

→ +∞. Moreover, by

Lemma 2.2, we also have

I(u, v) ≤ max
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ max

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
≤ ‖∇u‖m1

Φ1
+ ‖∇v‖m2

Φ2
+ 2,

which implies that I is bounded on each bounded subset of X. Next, we prove that

I ′ : W → W ∗ admits an inverse I ′−1 : W ∗ → W and I ′−1 is continuous on W ∗. By (3.2),

(φ2) and Lemma 2.2, we have

〈I ′(u, v), (u, v)〉
‖(u, v)‖

=

∫
Ω a1(|∇u|) |∇u|2 dx+

∫
Ω a2(|∇v|) |∇v|2 dx

‖∇u‖Φ1
+ ‖∇v‖Φ2

≥
l1
∫

Ω Φ1(|∇u|) dx+ l2
∫

Ω Φ2(|∇v|) dx
‖∇u‖Φ1

+ ‖∇v‖Φ2

≥
l1 min

{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ l2 min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
‖∇u‖Φ1

+ ‖∇v‖Φ2

≥
l1 ‖∇u‖l1Φ1

+ l2 ‖∇v‖l2Φ2
− l1 − l2

‖∇u‖Φ1
+ ‖∇v‖Φ2
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for all (u, v) ∈W . Then lim‖(u,v)‖→∞
〈I′(u,v),(u,v)〉
‖(u,v)‖ = +∞, that is, I ′ is coercive in W . Fur-

thermore, the continuity of I ′ implies that I ′ is hemicontinuous and the strictly convexity

of I implies that I ′ is strictly monotone in W . Thus by Theorem 26.A(d) in [33], we know

that the inverse I ′−1 of I ′ exists and is bounded in W ∗. We now prove that I ′−1 is contin-

uous by showing that it is sequentially continuous. Let {wn} ⊂W ∗ be any given sequence

such that wn → w ∈ W ∗. Set (un, vn) = I ′−1(wn), n = 1, 2, . . ., and (u, v) = I ′−1(w).

We claim that (un, vn) → (u, v) in W . Since I ′−1 is bounded and wn → w in W ∗, then

{(un, vn)} is bounded in W . Without loss of generality, we assume that (un, vn) ⇀ (u0, v0)

in W , which implies that un ⇀ u0 in W 1,Φ1
0 (Ω) and vn ⇀ v0 in W 1,Φ2

0 (Ω), respectively.

Since wn → w in W ∗ and {(un, vn)} is bounded in W , then

〈wn − w, (un, vn)− (u0, v0)〉 → 0 as n→∞,

which, together with the fact that

〈w, (un, vn)− (u0, v0)〉 → 0 and
〈
I ′(u0, v0), (un, vn)− (u0, v0)

〉
→ 0 as n→∞,

implies that

0 = lim
n→∞

〈wn, (un, vn)− (u0, v0)〉 −
〈
I ′(u0, v0), (un, vn)− (u0, v0)

〉
= lim

n→∞

〈
I ′(un, vn)− I ′(u0, v0), (un − u0, vn − v0)

〉
= lim

n→∞

∫
Ω

(a1(|∇un|)∇un − a1(|∇u0|)∇u0) · (∇un −∇u0) dx

+ lim
n→∞

∫
Ω

(a2(|∇vn|)∇vn − a2(|∇v0|)∇v0) · (∇vn −∇v0) dx.

(3.3)

Define operators Ti : W 1,Φi
0 (Ω)→W 1,Φi

0 (Ω)∗ (i = 1, 2) by

〈T1(u), ũ〉 :=

∫
Ω
a1(|∇u|)∇u∇ũ dx, u, ũ ∈W 1,Φ1

0 (Ω)

and

〈T2(v), ṽ〉 :=

∫
Ω
a2(|∇v|)∇v∇ṽ dx, v, ṽ ∈W 1,Φ2

0 (Ω).

(φ1) implies that Ti (i = 1, 2) are strictly monotone in W 1,Φi
0 (Ω) (i = 1, 2), respectively.

Then it follows from (3.3) that

lim
n→∞

∫
Ω

(a1(|∇un|)∇un − a1(|∇u0|)∇u0) · (∇un −∇u0) dx = 0

and

lim
n→∞

∫
Ω

(a2(|∇vn|)∇vn − a2(|∇v0|)∇v0) · (∇vn −∇v0) dx = 0,
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which imply that

lim
n→∞

∫
Ω
a1(|∇un|)∇un · (∇un −∇u0) dx = 0

and

lim
n→∞

∫
Ω
a2(|∇vn|)∇vn · (∇vn −∇v0) dx = 0

because un ⇀ u0 in W 1,Φ1
0 (Ω) and vn ⇀ v0 in W 1,Φ2

0 (Ω), respectively. Now we can

conclude that un → u0 in W 1,Φ1
0 (Ω) and vn → v0 in W 1,Φ2

0 (Ω), respectively, from Lemma 5

in [26]. Thus, (un, vn) → (u0, v0) in W , which implies that I ′(un, vn) → I ′(u0, v0) =

I ′(u, v) in W ∗. The injectivity of I ′ implies that (u0, v0) = (u, v). Therefore, the claim is

valid and I ′−1 is continuous.

Lemma 3.2. Assume that A ∈ A1. Then JA : W → R defined by

JA(u, v) =

∫
Ω
A(x, u, v) dx

is a C1 functional with compact derivative. Moreover,

(3.4)
〈
J ′A(u, v), (ũ, ṽ)

〉
=

∫
Ω
Ay(x, u, v)ũ dx+

∫
Ω
Az(x, u, v)ṽ dx

for all (ũ, ṽ) ∈W .

Proof. First, suppose N ≥ min {l1, l2}. By (1.7) and Lemma 2.5, we have

JA(u, v) ≤
∫

Ω
|A(x, u, v)| dx ≤ C2

(
|Ω|+ ‖u‖a1a1 + ‖v‖a2a2

)
≤ C

(
1 + ‖∇u‖a1Φ1

+ ‖∇v‖a2Φ2

)
.

Thus JA is well defined in W . We now prove that (3.4) holds. For any given (u, v), (ũ, ṽ) ∈
W , we have〈

J ′A(u, v), (ũ, ṽ)
〉

= lim
h→0

1

h
(JA(u+ hũ, v + hṽ)− JA(u, v))

= lim
h→0

∫
Ω

A(x, u+ hũ, v + hṽ)−A(x, u, v + hṽ)

h
dx

+ lim
h→0

∫
Ω

A(x, u, v + hṽ)−A(x, u, v)

h
dx

= lim
h→0

∫
Ω
Ay(x, u+ θ1(x)hũ, v + hṽ)ũ dx

+ lim
h→0

∫
Ω
Az(x, u, v + θ2(x)hṽ)ṽ dx,

(3.5)

where θ1, θ2 : Ω→ ]0, 1[. By the continuity of Ay and Az, we obtain that

(3.6) Ay(x, u+ θ1(x)hũ, v + hṽ)ũ→ Ay(x, u, v)ũ
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and

(3.7) Az(x, u, v + θ2(x)hṽ)ṽ → Az(x, u, v)ṽ

as h→ 0 for a.e. x ∈ Ω. Moreover, for all h ∈ ]−1, 1[, by (1.5) and the Young’s inequality,

we have

|Ay(x, u+ θ1(x)hũ, v + hṽ)ũ|

≤ C1

(
1 + |u+ θ1(x)hũ|a1−1 + |v + hṽ|

a2(a1−1)
a1

)
|ũ|

≤ C
(

1 + |u|a1−1 + |ũ|a1−1 + |v|
a2(a1−1)

a1 + |ṽ|
a2(a1−1)

a1

)
|ũ|

≤ C (|ũ|+ |u|a1 + |ũ|a1 + |v|a2 + |ṽ|a2) =: g1(x).

(3.8)

By Lemma 2.5, we have

(3.9)

∫
Ω
g1(x) dx = C

(
‖ũ‖1 + ‖u‖a1a1 + ‖ũ‖a1a1 + ‖v‖a2a2 + ‖ṽ‖a2a2

)
< +∞.

Then it follows from (3.6), (3.8), (3.9) and Lebesgue’s dominated convergence theorem

that

(3.10) lim
h→0

∫
Ω
Ay(x, u+ θ1(x)hũ, v + hṽ)ũ dx =

∫
Ω
Ay(x, u, v)ũ dx.

Similarly, by (3.7), we can also obtain that

(3.11) lim
h→0

∫
Ω
Az(x, u, v + θ2(x)hṽ)ṽ dx =

∫
Ω
Az(x, u, v)ṽ dx.

Combining (3.10) and (3.11) with (3.5), we can conclude that (3.4) holds. Next, we prove

the continuity of J ′A. Let (un, vn)→ (u0, v0) in W . For all (ũ, ṽ) ∈ W , by (3.4), Hölder’s
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inequality and Lemma 2.5, we have∣∣〈J ′A(un, vn)− J ′A(u0, v0), (ũ, ṽ)
〉∣∣

=

∣∣∣∣∫
Ω
Ay(x, un, vn)ũ dx+

∫
Ω
Az(x, un, vn)ṽ dx−

∫
Ω
Ay(x, u0, v0)ũ dx

−
∫

Ω
Az(x, u0, v0)ṽ dx

∣∣∣∣
≤
∫

Ω
|Ay(x, un, vn)−Ay(x, u0, v0)| |ũ| dx

+

∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)| |ṽ| dx

≤
(∫

Ω
|Ay(x, un, vn)−Ay(x, u0, v0)|a1/(a1−1) dx

)(a1−1)/a1

‖ũ‖a1

+

(∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)|a2/(a2−1) dx

)(a2−1)/a2

‖ṽ‖a2

≤ C

[(∫
Ω
|Ay(x, un, vn)−Ay(x, u0, v0)|a1/(a1−1) dx

)(a1−1)/a1

+

(∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)|a2/(a2−1) dx

)(a2−1)/a2
]
‖(ũ, ṽ)‖ .

(3.12)

We claim that

(3.13)

∫
Ω
|Ay(x, un, vn)−Ay(x, u0, v0)|a1/(a1−1) dx→ 0 as n→∞.

Otherwise, there exist a constant ε0 > 0 and a subsequence of {(un, vn)} denoted by

{(uni , vni)} such that

(3.14)

∫
Ω
|Ay(x, uni , vni)−Ay(x, u0, v0)|a1/(a1−1) dx ≥ ε0 for all ni ∈ N.

Since (uni , vni) → (u0, v0) in W , then uni → u0 in W 1,Φ1
0 (Ω) and vni → v0 in W 1,Φ2

0 (Ω),

respectively. It follows from Lemma 2.5 that uni → u0 in La1(Ω) and vni → v0 in La2(Ω),

respectively. By [10, Theorem 4.9], there exist subsequences of {uni} and {vni}, still

denoted by {uni} and {vni}, respectively, and functions h1 ∈ La1(Ω) and h2 ∈ La2(Ω)

such that

(3.15) uni(x)→ u0(x), vni(x)→ v0(x) a.e. x ∈ Ω

and

|uni(x)| ≤ h1(x), |vni(x)| ≤ h2(x) for all ni ∈ N, a.e. x ∈ Ω.

By (3.15) and the continuity of Ay, we have

(3.16) |Ay(x, uni(x), vni(x))−Ay(x, u0(x), v0(x))|a1/(a1−1) → 0 a.e. x ∈ Ω.
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By (1.5) and (3.15), for all ni ∈ N, a.e. x ∈ Ω, we have

|Ay(x, uni , vni)−Ay(x, u0, v0)|a1/(a1−1)

≤ C
(
|Ay(x, uni , vni)|

a1/(a1−1) + |Ay(x, u0, v0)|a1/(a1−1)
)

≤ C
[
C
a1/(a1−1)
1

(
1 + |uni |

a1−1 + |vni |
a2(a1−1)/a1

)a1/(a1−1)

+C
a1/(a1−1)
1

(
1 + |u0|a1−1 + |v0|a2(a1−1)/a1

)a1/(a1−1)
]

≤ C (1 + |uni |
a1 + |vni |

a2 + |u0|a1 + |v0|a2)

≤ C (1 + ha11 + ha22 + |u0|a1 + |v0|a2) =: g2(x).

(3.17)

By Lemma 2.5, we have

(3.18)

∫
Ω
g2(x) dx < +∞.

Then it follows from (3.16)–(3.18) and Lebesgue’s dominated convergence theorem that∫
Ω
|Ay(x, uni , vni)−Ay(x, u0, v0)|a1/(a1−1) dx→ 0 as ni →∞,

which contradicts (3.14). Then (3.13) holds. Similarly, we can also obtain that

(3.19)

∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)|a2/(a2−1) dx→ 0 as n→∞.

Combining (3.13) and (3.19) with (3.12), we can conclude that J ′A is continuous. To prove

the compactness of J ′A, we take any sequence {(un, vn)} ⊂ W which is bounded. By the

reflexivity of W and Lemma 2.5, we obtain that there exists a subsequence {(uni , vni)}
of {(un, vn)} such that (uni , vni) ⇀ (u0, v0) ∈ W , and uni → u0 in La1(Ω) and vni → v0

in La2(Ω), respectively. Then, with the same discussion as above, we can prove that

J ′A(uni , vni)→ J ′A(u0, v0) in W ∗. So J ′A is compact.

Secondly, suppose N < min {l1, l2}. Lemma 2.5 implies that the embeddings W 1,Φi
0 (Ω)

↪→ L∞(Ω) (i = 1, 2) are continuous. Then for any given (u, v) ∈ W , we have ‖u‖∞ +

‖v‖∞ < +∞, which, together with (1.8), implies that

JA(u, v) =

∫
Ω
A(x, u, v) dx ≤

∫
Ω
|A(x, u, v)| dx

≤
∫

Ω
sup

|(y,z)|≤‖u‖∞+‖v‖∞
|A(x, y, z)| dx < +∞.

So JA is well defined in W . Now, we prove that (3.4) holds. It is easy to see that (3.5)–

(3.7) are still hold for this case. Moreover, for all h ∈ ] − 1, 1[, by (1.6) and Lemma 2.5,

we have

(3.20)

|Ay(x, u+ θ1(x)hũ, v + hṽ)ũ| ≤ ‖ũ‖∞ sup
|(y,z)|≤‖u‖∞+‖ũ‖∞+‖v‖∞+‖ṽ‖∞

|Ay(x, y, z)| ∈ L1(Ω)



898 Liben Wang, Xingyong Zhang and Hui Fang

and

(3.21) |Az(x, u, v + θ2(x)hṽ)ṽ| ≤ ‖ṽ‖∞ sup
|(y,z)|≤‖u‖∞+‖v‖∞+‖ṽ‖∞

|Az(x, y, z)| ∈ L1(Ω).

Combining (3.5)–(3.7), (3.20) and (3.21) with Lebesgue’s dominated convergence theorem,

we can conclude that (3.4) holds. Next, we prove the continuity of J ′A. Let (un, vn) →
(u0, v0) in W . For all (ũ, ṽ) ∈W , by (3.4) and Lemma 2.5, we have

∣∣〈J ′A(un, vn)− J ′A(u0, v0), (ũ, ṽ)
〉∣∣

=

∣∣∣∣∫
Ω
Ay(x, un, vn)ũ dx+

∫
Ω
Az(x, un, vn)ṽ dx−

∫
Ω
Ay(x, u0, v0)ũ dx

−
∫

Ω
Az(x, u0, v0)ṽ dx

∣∣∣∣
≤ ‖ũ‖∞

∫
Ω
|Ay(x, un, vn)−Ay(x, u0, v0)| dx+ ‖ṽ‖∞

∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)| dx

≤ C
(∫

Ω
|Ay(x, un, vn)−Ay(x, u0, v0)| dx+

∫
Ω
|Az(x, un, vn)−Az(x, u0, v0)| dx

)
× ‖(ũ, ṽ)‖ .

(3.22)

Moreover, because the embeddings W 1,Φi
0 (Ω) ↪→ L∞(Ω) (i = 1, 2) are continuous, (un, vn)

→ (u0, v0) in W implies that un → u0 and vn → v0 in L∞(Ω). Then

(3.23) un(x)→ u0(x), vn(x)→ v0(x) a.e. x ∈ Ω

and there exists a K1 > 0 such that

(3.24) ‖un‖∞ + ‖vn‖∞ ≤ K1 for all n = 0, 1, 2, . . ..

By (3.23) and the continuity of Ay and Az, we have

(3.25) |Ay(x, un(x), vn(x))−Ay(x, u0(x), v0(x))| → 0 a.e. x ∈ Ω

and

(3.26) |Az(x, un(x), vn(x))−Az(x, u0(x), v0(x))| → 0 a.e. x ∈ Ω.

By (3.24) and (1.6), we have

|Ay(x, un, vn)−Ay(x, u0, v0)| ≤ |Ay(x, un, vn)|+ |Ay(x, u0, v0)|

≤ 2 sup
|(y,z)|≤K1

|Ay(x, y, z)| ∈ L1(Ω)
(3.27)
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and

|Az(x, un, vn)−Az(x, u0, v0)| ≤ |Az(x, un, vn)|+ |Az(x, u0, v0)|

≤ 2 sup
|(y,z)|≤K1

|Az(x, y, z)| ∈ L1(Ω).
(3.28)

Combining (3.25)–(3.28) with (3.22), by Lebesgue’s dominated convergence theorem, we

can conclude that J ′A is continuous. To prove the compactness of J ′A, we take any sequence

{(un, vn)} ⊂ W which is bounded. By the reflexivity of W , there exists a subsequence of

{(un, vn)}, still denoted by {(un, vn)} such that (un, vn) ⇀ (u0, v0) ∈ W . By Lemma 2.5,

we can assume that (3.23) and (3.24) hold. Then, with a similar discussion as above, we

can prove that J ′A(un, vn)→ J ′A(u0, v0) in W ∗. Then J ′A is compact.

Lemma 3.3. Assume that (φ1), (φ2), (I1), (II) and (III) hold. Then functionals I, JF , JG :

W → R satisfy

(1) lim inf‖(u,v)‖→∞ JF (u, v)/I(u, v) = −∞;

(2) functional JF + λJG : W → R is bounded below for all λ > 0.

Proof. (1) By the definitions of I and JF , it is sufficient to prove

(3.29) lim sup
‖(u,v)‖→∞

∫
Ω F (x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx
= +∞.

Now, we take u0 ∈ C∞0 (Ω0) \ {0} with u0(x) ≥ 0, which, together with the Poincaré

inequality (2.1), implies that

‖∇u0‖Φ1
6= 0, ‖∇u0‖Φ2

6= 0, ‖u0‖a3 6= 0 and ‖u0‖a4 6= 0.

Let (u1, v1) = (ιu0, κu0). Then (u1, v1) ∈ W satisfying ‖(tu1, tv1)‖ → ∞ as t → +∞.

Moreover, by Lemma 2.2, we have

lim
t→+∞

[∫
Ω

Φ1(|ιt∇u0|) dx+

∫
Ω

Φ2(|κt∇u0|) dx
]

≥ lim
t→+∞

(
ιl1tl1 ‖∇u0‖l1Φ1

+ κl2tl2 ‖∇u0‖l2Φ2
− 2
)

= +∞.
(3.30)

By (II), there exist ε > 0 and t0 > 0 such that

(3.31) F (x, ιt, κt) ≥ ε (|ιt|a3 + |κt|a4) for all x ∈ Ω0, t > t0.

First, suppose N ≥ min {l1, l2}. Since F belongs to A1, then by (3.31) and (1.7), we

have

(3.32) F (x, ιt, κt) ≥ ε (|ιt|a3 + |κt|a4)− C5 for all x ∈ Ω0, t ≥ 0,
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where C5 = C2(1+ |ιt0|a1 + |κt0|a2)+ε(|ιt0|a3 + |κt0|a4). Then by (3.32), (3.30), Lemma 2.2

and the fact that a3 > m1, a4 > m2 and u0 ∈ C∞0 (Ω0) \ {0}, we have

lim
t→+∞

∫
Ω F (x, tu1, tv1) dx∫

Ω Φ1(|∇tu1|) dx+
∫

Ω Φ2(|∇tv1|) dx

= lim
t→+∞

∫
Ω F (x, ιtu0, κtu0) dx∫

Ω Φ1(|ιt∇u0|) dx+
∫

Ω Φ2(|κt∇u0|) dx

= lim
t→+∞

∫
Ω0
F (x, ιtu0, κtu0) dx+

∫
Ω\Ω0

F (x, ιtu0, κtu0) dx∫
Ω Φ1(|ιt∇u0|) dx+

∫
Ω Φ2(|κt∇u0|) dx

≥ lim
t→+∞

∫
Ω0

[ε (|ιtu0|a3 + |κtu0|a4)− C5] dx+
∫

Ω\Ω0
F (x, 0, 0) dx∫

Ω Φ1(|ιt∇u0|) dx+
∫

Ω Φ2(|κt∇u0|) dx

≥ lim
t→+∞

∫
Ω [ε (|ιtu0|a3 + |κtu0|a4)− C5] dx−

∫
Ω |F (x, 0, 0)| dx∫

Ω Φ1(|ιt∇u0|) dx+
∫

Ω Φ2(|κt∇u0|) dx

= lim
t→+∞

ειa3ta3 ‖u0‖a3a3 + εκa4ta4 ‖u0‖a4a4 − C∫
Ω Φ1(|ιt∇u0|) dx+

∫
Ω Φ2(|κt∇u0|) dx

≥ lim
t→+∞

ειa3ta3 ‖u0‖a3a3 + εκa4ta4 ‖u0‖a4a4
ιm1tm1 ‖∇u0‖m1

Φ1
+ κm2tm2 ‖∇u0‖m2

Φ2
+ 2

= +∞,

which implies that (3.29) holds.

Secondly, suppose N < min {l1, l2}. By (3.31), we have

(3.33) F (x, ιt, κt) ≥ ε (|ιt|a3 + |κt|a4)− C6 − sup
|(y,z)|≤t0

|F (x, y, z)| for all x ∈ Ω0, t ≥ 0,

where C6 = ε (|ιt0|a3 + |κt0|a4). Note that F belongs to A1, a3 > m1, a4 > m2 and

u0 ∈ C∞0 (Ω0) \ {0}. Then by (3.33), (1.8), (3.30) and Lemma 2.2, we have

lim
t→+∞

∫
Ω
F (x, tu1, tv1) dx∫

Ω
Φ1(|∇tu1|) dx+

∫
Ω

Φ2(|∇tv1|) dx

= lim
t→+∞

∫
Ω0
F (x, ιtu0, κtu0) dx+

∫
Ω\Ω0

F (x, ιtu0, κtu0) dx∫
Ω

Φ1(|ιt∇u0|) dx+
∫

Ω
Φ2(|κt∇u0|) dx

≥ lim
t→+∞

∫
Ω0

[ε (|ιtu0|a3 + |κtu0|a4)− C6] dx−
∫

Ω0
sup|(y,z)|≤t0 |F (x, y, z)| dx+

∫
Ω\Ω0

F (x, 0, 0) dx∫
Ω

Φ1(|ιt∇u0|) dx+
∫

Ω
Φ2(|κt∇u0|) dx

≥ lim
t→+∞

∫
Ω

[ε (|ιtu0|a3 + |κtu0|a4)− C6] dx−
∫

Ω
sup|(y,z)|≤t0 |F (x, y, z)| dx−

∫
Ω
|F (x, 0, 0)| dx∫

Ω
Φ1(|ιt∇u0|) dx+

∫
Ω

Φ2(|κt∇u0|) dx

= lim
t→+∞

ειa3ta3 ‖u0‖a3a3 + εκa4ta4 ‖u0‖a4a4 − C∫
Ω

Φ1(|ιt∇u0|) dx+
∫

Ω
Φ2(|κt∇u0|) dx

≥ lim
t→+∞

ειa3ta3 ‖u0‖a3a3 + εκa4ta4 ‖u0‖a4a4
ιm1tm1 ‖∇u0‖m1

Φ1
+ κm2tm2 ‖∇u0‖m2

Φ2
+ 2

= +∞,

which implies that (3.29) holds.
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(2) For any given λ > 0, by (III), we have

inf
(u,v)∈W

(JF + λJG) = inf
(u,v)∈W

∫
Ω

(λG(x, u, v)− F (x, u, v)) dx ≥
∫

Ω
λ(x) dx

≥ −
∫

Ω
|λ(x)| dx > −∞.

Then functional JF + λJG is bounded below.

Proof of Theorem 1.4. To apply Theorem 1.1, let X = W , I defined by (1.11), Ψ = JF ,

Φ = JG, Γ = JH , µ = 1/λ1, λ = λ2/λ1 and ν = λ3/λ1. Then β = β̃, µ∗ = µ̃, γ = γ̃,

ηr = η̃r and J given by (3.1) satisfies µJ = µI + Ψ + λΦ + νΓ. By (I1), Lemmas 3.1, 3.2

and 3.3, all conditions of Theorem 1.1 hold. Moreover, it is easy to see that M = {(0, 0)},
and H ∈ A1 implies that JH is C1 functional with compact derivative. Then Theorem 1.1

shows that for each r >
∫

ΩG(x, 0, 0) dx, each λ1 ∈ ]0, 1
max{0,µ̃(I,JF ,JG,r)} [ and each compact

interval [a, b] ⊂ ]0, β̃(λ1, I, JF , JG, r)[, there exists a constant ρ > 0 with the following

property: for every λ2/λ1 ∈ [a, b] and every function H ∈ A1, there exists a constant

δ > 0 such that, for each λ3 ∈ [0, δ], 1
λ1
J ′ = µI ′ + Ψ′ + λΦ′ + νΓ′ = 0 has at least three

solutions whose norms are less than ρ.

Proof of Theorem 1.5. To apply Theorem 1.2, we let X = W , I defined by (1.11), Ψ =

JF , Φ = JG, Γ = JH , and ν = λ3, λ = λ1, σ = λ2. Then J given by (3.1) satisfies

J = I+νΓ+λΨ+σΦ. By definition of W , X is a reflexive real Banach space. Lemma 3.1

implies that I is sequentially weakly lower semicontinuous and coercive C1 functional

whose derivative admits a continuous inverse on X∗. (I2) together with Lemma 3.2 implies

that Γ, Ψ, Φ are three C1 functionals with compact derivative. Lemma 3.3 implies that

conditions (c) and (d) of Theorem 1.2 hold. Next, we prove the remaining conditions of

Theorem 1.2 one by one.

(a) By (IV), for any given ε > 0, there exists Kε > 0 such that

(3.34) H(x, y, z) ≥ −ε
(
|y|l1 + |z|l2

)
for all x ∈ Ω, (y, z) ∈ R× R with |(y, z)| > Kε.

When N ≥ min {l1, l2}. Since H belongs to A1, then by (3.34) and (1.7), we have

(3.35) H(x, y, z) ≥ −ε
(
|y|l1 + |z|l2

)
− C7 for all (x, y, z) ∈ Ω× R× R,

where C7 = C2 (1 + |Kε|a1 + |Kε|a2). Then by (3.35), Lemmas 2.2 and 2.5, we have

lim inf
‖(u,v)‖→∞

Γ(u, v)

I(u, v)
= lim inf
‖(u,v)‖→∞

∫
ΩH(x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx

≥ lim inf
‖(u,v)‖→∞

∫
Ω

[
−ε
(
|u|l1 + |v|l2

)
− C7

]
dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx
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= lim inf
‖(u,v)‖→∞

−ε
(
‖u‖l1l1 + ‖v‖l2l2

)
− C∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

≥ lim inf
‖(u,v)‖→∞

−ε
(
‖u‖l1l1 + ‖v‖l2l2

)
− C

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
≥ lim inf
‖(u,v)‖→∞

−εmax
{
C l1l1 , C

l2
l2

}(
‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2

)
− C

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= −εmax

{
C l1l1 , C

l2
l2

}
.

Since ε is arbitrary, then (a) holds.

When N < min {l1, l2}. By (3.34), we have

(3.36) H(x, y, z) ≥ −ε
(
|y|l1 + |z|l2

)
− sup
|(y,z)|≤Kε

|H(x, y, z)| for all (x, u, v) ∈ Ω× R× R.

Since H belongs to A1, then by (3.36), (1.8), Lemmas 2.2 and 2.5, we have

lim inf
‖(u,v)‖→∞

Γ(u, v)

I(u, v)
= lim inf
‖(u,v)‖→∞

∫
ΩH(x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx

≥ lim inf
‖(u,v)‖→∞

−ε
∫

Ω

(
|u|l1 + |v|l2

)
dx−

∫
Ω sup|(y,z)|≤Kε |H(x, y, z)| dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

= lim inf
‖(u,v)‖→∞

−ε
(
‖u‖l1l1 + ‖v‖l2l2

)
− C∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

≥ lim inf
‖(u,v)‖→∞

−εmax
{
C l1l1 , C

l2
l2

}(
‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2

)
− C

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= −εmax

{
C l1l1 , C

l2
l2

}
.

Since ε is arbitrary, then (a) holds.

(b) By (V), there exist ζ > 0 and Kζ > 0 such that

(3.37) H(x, y, z) ≤ ζ
(
|y|l1 + |z|l2

)
for all x ∈ Ω, (y, z) ∈ R× R with |(y, z)| > Kζ .

When N ≥ min {l1, l2}. Since H belongs to A1, then by (3.37) and (1.7), we have

(3.38) H(x, y, z) ≤ ζ
(
|y|l1 + |z|l2

)
+ C8 for all (x, y, z) ∈ Ω× R× R,

where C8 = C2 (1 + |Kζ |a1 + |Kζ |a2). Then by (3.38), Lemmas 2.2 and 2.5, we have

lim sup
‖(u,v)‖→∞

Γ(u, v)

I(u, v)
= lim sup
‖(u,v)‖→∞

∫
ΩH(x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx
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≤ lim sup
‖(u,v)‖→∞

∫
Ω

[
ζ
(
|u|l1 + |v|l2

)
+ C8

]
dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

= lim sup
‖(u,v)‖→∞

ζ
(
‖u‖l1l1 + ‖v‖l2l2

)
+ C∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

≤ lim sup
‖(u,v)‖→∞

ζ
(
‖u‖l1l1 + ‖v‖l2l2

)
‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2
− 2

≤ lim sup
‖(u,v)‖→∞

ζ max
{
C l1l1 , C

l2
l2

}(
‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2

)
+ C

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= ζ max

{
C l1l1 , C

l2
l2

}
< +∞.

When N < min {l1, l2}. By (3.37), we have

(3.39) H(x, y, z) ≤ ζ
(
|y|l1 + |z|l2

)
+ sup
|(y,z)|≤Kζ

|H(x, y, z)| for all (x, y, z) ∈ Ω× R× R.

Since H belongs to A1, then by (3.39), (1.8), Lemmas 2.2 and 2.5, we have

lim sup
‖(u,v)‖→∞

Γ(u, v)

I(u, v)
= lim sup
‖(u,v)‖→∞

∫
ΩH(x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx

≤ lim sup
‖(u,v)‖→∞

ζ
∫

Ω

(
|u|l1 + |v|l2

)
dx+

∫
Ω sup|(y,z)|≤Kζ |H(x, y, z)| dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

= lim sup
‖(u,v)‖→∞

ζ
(
‖u‖l1l1 + ‖v‖l2l2

)
+ C∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇v|) dx

≤ lim sup
‖(u,v)‖→∞

ζ max
{
C l1l1 , C

l2
l2

}(
‖∇u‖l1Φ1

+ ‖∇v‖l2Φ2

)
+ C

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= ζ max

{
C l1l1 , C

l2
l2

}
< +∞.

(e) By Lemma 2.2, it is easy to see that (0, 0) a strict local minimum of I and I(0, 0) =

0.

(e1) (VI) directly shows that Γ(0, 0) = Ψ(0, 0) = Φ(0, 0) = 0.

(e2) By (VII), for any given ε > 0, there exists Kε > 0 such that

(3.40) H(x, y, z) ≥ −ε(|y|m1 + |z|m2) for all x ∈ Ω, (y, z) ∈ R× R with |(y, z)| ≤ Kε.

When N ≥ min {l1, l2}. Since H belongs to A1, then by (3.40) and (1.7), for ε given

above, there exists a constant Cε > 0 such that

(3.41) H(x, y, z) ≥ −ε(|y|m1 + |z|m2)− Cε(|y|a1 + |z|a2) for all (x, y, z) ∈ Ω× R× R.
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Then by (3.41), Lemmas 2.2, 2.5 and the fact that mi < ai (i = 1, 2), we have

lim inf
‖(u,v)‖→0

Γ(u, v)

I(u, v)

= lim inf
‖(u,v)‖→0

∫
Ω
H(x, u, v) dx∫

Ω
Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇u|) dx

≥ lim inf
‖(u,v)‖→0

−ε
∫

Ω
(|u|m1 + |v|m2) dx− Cε

∫
Ω

(|u|a1 + |v|a2) dx∫
Ω

Φ1(|∇u|) dx+
∫

Ω
Φ2(|∇v|) dx

= lim inf
‖(u,v)‖→0

−ε(‖u‖m1

m1
+ ‖v‖m2

m2
)− Cε(‖u‖a1a1 + ‖v‖a2a2)∫

Ω
Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇v|) dx

≥ lim inf
‖(u,v)‖→0

−ε(‖u‖m1

m1
+ ‖v‖m2

m2
)− Cε(‖u‖a1a1 + ‖v‖a2a2)

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1

Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2

Φ2

}
≥ lim inf
‖(u,v)‖→0

−εmax
{
Cm1
m1
, Cm2

m2

}
(‖∇u‖m1

Φ1
+ ‖∇v‖m2

Φ2
)− Cε max

{
Ca1a1 , C

a2
a2

}
(‖∇u‖a1Φ1

+ ‖∇v‖a2Φ2
)

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1

Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2

Φ2

}
= −εmax

{
Cm1
m1
, Cm2

m2

}
.

Since ε is arbitrary, then (e2) holds.

When N < min {l1, l2}. It follows from Lemma 2.5 that the embeddings W 1,Φi
0 (Ω) ↪→

L∞(Ω) (i = 1, 2) are continuous. Then (2.4) implies that ‖u‖∞ + ‖v‖∞ → 0 as ‖(u, v)‖ =

‖∇u‖Φ1
+ ‖∇v‖Φ2

→ 0, which, together with (3.40), implies that

lim inf
‖(u,v)‖→0

Γ(u, v)

I(u, v)
= lim inf
‖(u,v)‖→0

∫
ΩH(x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx

≥ lim inf
‖(u,v)‖→0

−ε
∫

Ω(|u|m1 + |v|m2)dx∫
Ω Φ1(|∇u|) dx+

∫
Ω Φ2(|∇v|) dx

= lim inf
‖(u,v)‖→0

−ε(‖u‖m1
m1

+ ‖v‖m2
m2

)∫
Ω Φ1(|∇u|) dx+

∫
Ω Φ2(|∇v|) dx

≥ lim inf
‖(u,v)‖→0

−εmax
{
Cm1
m1
, Cm2

m2

}
(‖∇u‖m1

Φ1
+ ‖∇v‖m2

Φ2
)

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= −εmax

{
Cm1
m1
, Cm2

m2

}
.

Since ε is arbitrary, then (e2) holds.

(e3) By (VIII), there exist ξ > 0 and Kξ > 0 such that

(3.42) F (x, y, z) ≤ ξ(|y|m1 + |z|m2) for all x ∈ Ω, (y, z) ∈ R× R with |(y, z)| ≤ Kξ.

When N ≥ min {l1, l2}. Since F belongs to A1, then by (3.42) and (1.7), for ξ given

above, there exists a constant Cξ > 0 such that

(3.43) F (x, y, z) ≤ ξ(|y|m1 + |z|m2) + Cξ(|y|a1 + |z|a2) for all (x, y, z) ∈ Ω× R× R.
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Then by (3.43), Lemmas 2.2, 2.5 and the fact that mi < ai (i = 1, 2), we have

lim sup
‖(u,v)‖→0

−Ψ(u, v)

I(u, v)

= lim sup
‖(u,v)‖→0

∫
Ω
F (x, u, v) dx∫

Ω
Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇u|) dx

≤ lim sup
‖(u,v)‖→0

ξ
∫

Ω
(|u|m1 + |v|m2) dx+ Cξ

∫
Ω

(|u|a1 + |v|a2) dx∫
Ω

Φ1(|∇u|) dx+
∫

Ω
Φ2(|∇v|) dx

= lim sup
‖(u,v)‖→0

ξ(‖u‖m1

m1
+ ‖v‖m2

m2
) + Cξ(‖u‖a1a1 + ‖v‖a2a2)∫

Ω
Φ1(|∇u|) dx+

∫
Ω

Φ2(|∇v|) dx

≤ lim sup
‖(u,v)‖→0

ξmax
{
Cm1
m1
, Cm2

m2

}
(‖∇u‖m1

Φ1
+ ‖∇v‖m2

Φ2
) + Cξ max

{
Ca1a1 , C

a2
a2

}
(‖∇u‖a1Φ1

+ ‖∇v‖a2Φ2
)

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1

Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2

Φ2

}
= ξmax

{
Cm1
m1
, Cm2

m2

}
< +∞,

which is equivalent to (e3).

When N < min {l1, l2}. By the discussion above, we know that ‖u‖∞ + ‖v‖∞ → 0 as

‖(u, v)‖ = ‖∇u‖Φ1
+ ‖∇v‖Φ2

→ 0. Then by (3.42), we have

lim sup
‖(u,v)‖→0

−Ψ(u, v)

I(u, v)
= lim sup
‖(u,v)‖→0

∫
Ω F (x, u, v) dx∫

Ω Φ1(|∇u|) dx+
∫

Ω Φ2(|∇u|) dx

≤ lim sup
‖(u,v)‖→0

ξ
∫

Ω(|u|m1 + |v|m2) dx∫
Ω Φ1(|∇u|) dx+

∫
Ω Φ2(|∇v|) dx

= lim sup
‖(u,v)‖→0

ξ(‖u‖m1
m1

+ ‖v‖m2
m2

)∫
Ω Φ1(|∇u|) dx+

∫
Ω Φ2(|∇v|) dx

≤ lim sup
‖(u,v)‖→0

ξmax
{
Cm1
m1
, Cm2

m2

}
(‖∇u‖m1

Φ1
+ ‖∇v‖m2

Φ2
)

min
{
‖∇u‖l1Φ1

, ‖∇u‖m1
Φ1

}
+ min

{
‖∇v‖l2Φ2

, ‖∇v‖m2
Φ2

}
= ξmax

{
Cm1
m1
, Cm2

m2

}
< +∞,

which is equivalent to (e3).

(e4) By (IX), a similar argument as (e3) shows that (e4) holds.

(f) By (X), we can choose a closed set Ω2 ⊂ Ω1 with ∂Ω1 ∩ Ω2 = ∅ and

(3.44) |Ω1 \ Ω2| ≤
1

2

C4 |Ω2|
sup

x∈Ω1,|(u,v)|≤
√
b21+b22

|H(x, u, v)|
.

Take (u0, v0) ∈ W which satisfies that (u0(x), v0(x)) = (0, 0) in Ω \ Ω1, (u0(x), v0(x)) =
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(b1, b2) in Ω2 and ‖u0‖∞ + ‖v0‖∞ ≤
√
b21 + b22. Then by (VI) and (3.44), we have

Γ(u0, v0) =

∫
Ω
H(x, u0(x), v0(x)) dx

=

∫
Ω\Ω1

H(x, u0(x), v0(x)) dx+

∫
Ω2

H(x, u0(x), v0(x)) dx

+

∫
Ω1\Ω2

H(x, u0(x), v0(x)) dx

=

∫
Ω\Ω1

H(x, 0, 0) dx+

∫
Ω2

H(x, b1, b2) dx+

∫
Ω1\Ω2

H(x, u0(x), v0(x)) dx

≤ −C4 |Ω2|+ |Ω1 \ Ω2| sup
x∈Ω1,|(u,v)|≤

√
b21+b22

|H(x, u, v)|

≤ −1

2
C4 |Ω2| < 0.

Moreover, it is obvious that I(u0, v0) > 0.

Thus we verify that all conditions of Theorem 1.2 hold. Then Theorem 1.2 shows

that for each λ3 > max {0,−I(u0, v0)/JH(u0, v0)} = −I(u0, v0)/JH(u0, v0), there exists

a constant λ∗1 > 0 with the following property: for all λ1 ∈ ]0, λ∗1] there exists λ∗2λ1 > 0

such that, for all λ2 ∈ ]0, λ∗2λ1 [, system (1.1) has at least a trivial weak solution and three

pairwise distinct nontrivial weak solutions in W .

Proofs of Theorems 1.6 and 1.7. Our results show that the conditions (φ2), (I1) and (I2)

can be replaced by (φ3), (I3) and (I4), respectively. To prove Theorems 1.6 and 1.7, from

all arguments in both Theorems 1.4 and 1.5, it is only needed to prove that the embeddings

W 1,Φi
0 (Ω) ↪→ Lai(Ω) (i = 1, 2) are compact when (φ2), (I1) and (I2) are replaced by (φ3),

(I3) and (I4), respectively. In fact, by Lemma 2.6, it is sufficient to prove that functions

Υi(t) := |t|ai (i = 1, 2) increase essentially more slowly than Φi∗ (i = 1, 2) near infinity,

respectively. Let a∗i := aiN
N−ai = ai (i = 1, 2). It follows from the fact ai ∈ ]mi, e

∗
i [ (i = 1, 2)

that ai < ei (i = 1, 2) and ai < (ai+ei2 )∗ :=
ai+ei

2
N

N−ai+ei
2

(i = 1, 2). Then (1.4) implies that

there exists a constant K > 0 such that

tφi(t)

Φi(t)
≥ 1

2
(ai + ei) for all t ≥ K,

which implies that

Φi(t) ≥ C9 |t|
1
2

(ai+ei) for all t ≥ K

for some C9 > 0. So, by Lemma 2.4 and the definition of Φi∗ (i = 1, 2), when t ≥ Φi(K)
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we have

Φi
−1
∗ (t) = Φi

−1
∗ (Φi(K)) +

∫ t

Φi(K)

Φ−1
i (s)

s
N+1
N

ds

≤ Φi
−1
∗ (Φi(K)) +

(
1

C9

) 2
ai+ei

∫ t

Φi(K)
s

(
2

ai+ei
−N+1

N

)
ds

= Φi
−1
∗ (Φi(K)) +

(
1

C9

) 2
ai+ei N(ai + ei)

2N − (ai + ei)

(
t
2N−(ai+ei)

N(ai+ei) − Φi(K)
2N−(ai+ei)

N(ai+ei)

)
≤ C10t

2N−(ai+ei)

N(ai+ei)

for some C10 > 0, which implies that

Φi∗(t) ≥
(

1

C10

) N(ai+ei)

2N−(ai+ei)

t
N(ai+ei)

2N−(ai+ei) =

(
1

C10

)(
ai+ei

2
)∗

t(
ai+ei

2
)∗ for all t ≥ Φi

−1
∗ (Φi(K)).

Thus, for any constant c > 0, we have

lim
t→+∞

Υi(ct)

Φi∗(t)
≤ lim

t→+∞
caiC

(
ai+ei

2
)∗

10 t

[
āi−(

ai+ei
2

)∗
]

= 0,

which implies that Υi(t) := |t|ai (i = 1, 2) increase essentially more slowly than Φi∗

(i = 1, 2) near infinity, respectively. Hence the embeddings W 1,Φi
0 (Ω) ↪→ Lai(Ω) (i = 1, 2)

are compact.

4. Remarks

Remark 4.1. (i) Assume that (φ1) and (φ2) hold and N > max {m1,m2}. Then by the

definitions of li, ei, mi (i = 1, 2), it is easy to see that li ≤ ei (i = 1, 2) and thus

l∗i ≤ e∗i (i = 1, 2), which, together with (φ2), implies that (φ3) holds. Moreover, (1.5)

and (1.9) directly imply that A1 ⊆ A2 if li ≤ ei (i = 1, 2), and A1 = A2 if and only if

li = ei (i = 1, 2). Hence, Theorems 1.4 and 1.5 are corollaries of Theorems 1.6 and 1.7,

respectively, if N > max {m1,m2} which shows that N can be large enough. There exist

examples satisfying (φ3) but not satisfying (φ2). For example, let

φi(t) =

ai(|t|)t = p |t|pi−2 t+ q |t|qi−2 t for t 6= 0,

0 for t = 0,

where 1 < pi < qi < +∞ (i = 1, 2). On one hand, by a simple computation, we get

Φi(t) = |t|pi + |t|qi , t ∈ R, i = 1, 2

and

li = pi < ei = mi = qi, i = 1, 2.
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Then (φ3) holds for all N > max {m1,m2}. On the other hand, it is easy to see that

limN→∞ l
∗
i = li. Hence, we can choose N large enough such that l∗i ≤ mi which contradicts

(φ2).

(ii) If N < max {m1,m2}, then it is obvious that (φ3) does not hold and so (φ2) is not

different from (φ3).

Remark 4.2. In (II), let y = ιt (or z = κt) if ι 6= 0 (or κ 6= 0). Then (1.10) is equivalent to

lim inf
y→sgn(ι)∞

F (x, y, κι y)

|y|a3 +
∣∣κ
ι y
∣∣a4 > 0

(
or lim inf

z→sgn(κ)∞

F (x, ικz, z)∣∣ ι
κz
∣∣a3 + |z|a4

> 0

)
,uniformly in x ∈ Ω0,

which clearly implies that F (x, · , ·) is only needed to satisfy the so-called super-linear

Orlicz-Sobolev growth condition at infinity on a certain half-line which passes through

origin in y-z plane for all x ∈ Ω0.

Remark 4.3. We present an example to verify our results. Let N = 5, Ω is a bounded

domain in R5 with smooth boundary ∂Ω. Assume that

a1(t) = 2 + 3t, a2(t) = 3t log(1 + t) +
t2

1 + t
for t > 0,

F (x, y, z) = y3 + z6 + yz3, G(x, y, z) = |y|
19
6 + |z|7 and H(x, y, z) = y sin3 y + z sin3 z for

(x, y, z) ∈ Ω× R2. Then

φ1(t) = a1(|t|)t = (2 + 3 |t|)t, φ2(t) = a2(|t|)t =

(
3 |t| log(1 + |t|) +

t2

1 + |t|

)
t for t ∈ R

and

Φ1(t) = t2 + t3, Φ2(t) = t3 log(1 + t) for t ≥ 0.

By some simple computations, it is easy to obtain that (φ1) holds and

l1 = 2, m1 = 3, e1 = 3, l2 = 3, m2 = 4, e2 = 3,

l∗1 =
10

3
, m∗1 =

15

2
, l∗2 =

15

2
and m∗2 = 20,

which shows that (φ2) holds. Since N > max {m1,m2}, then Remark 4.1 implies that

(φ3) holds and A1 ⊂ A2. Next, we show that F,G,H ∈ A1. Choose a1 = 19/6 and a2 = 7

in (1.5). Then

|Fy(x, y, z)| =
∣∣3y2 + z3

∣∣ ≤ 3y2 + |z|3 , |Fz(x, y, z)| =
∣∣6z5 + 3yz2

∣∣ ≤ 3

2
y2 +

3

2
z4 + 6 |z|6 ,

|Gy(x, y, z)| =
19

6
|y|

13
6 , |Gz(x, y, z)| = 7 |z|6 ,

|Hy(x, y, z)| =
∣∣sin3 y + 3y sin2 y cos y

∣∣ ≤ 1 + 3 |y| ,

|Hz(x, y, z)| =
∣∣sin3 z + 3z sin2 z cos z

∣∣ ≤ 1 + 3 |z| ,
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which imply that (1.5) holds. So, F,G,H ∈ A1. Choose a3 = 19/6, a4 = 6, ι = 0 and

κ = 1. Then

lim inf
t→+∞

F (x, ιt, κt)

|ιt|a3 + |κt|a4
= lim inf

t→+∞

t6

t6
= 1 > 0,

which shows that (II) holds. For each λ > 0, we have

λG(x, y, z)− F (x, y, z) = λ |y|
19
6 + λ |z|7 − y3 − z6 − yz3

≥ λ |y|
19
6 + λ |z|7 − |y|3 − z6 − 1

2
y2 − 1

2
z6,

which shows that function λG(x, y, z)−F (x, y, z) is coercive. Then there exists a constant

Cλ < 0 such that

λG(x, y, z)− F (x, y, z) ≥ Cλ =: λ(x) ∈ L1(Ω).

So (III) holds. Moreover,

lim
|(y,z)|→∞

H(x, y, z)

|y|l1 + |z|l2
= lim
|(y,z)|→∞

y sin3 y + z sin3 z

|y|2 + |z|3
= 0,

which shows that (IV) and (V) hold. Obviously, (VI) holds and

lim inf
|(y,z)|→0

H(x, y, z)

|y|m1 + |z|m2
= lim inf
|(y,z)|→0

y sin3 y + z sin3 z

|y|3 + |z|4
= 0,

lim sup
|(y,z)|→0

F (x, y, z)

|y|m1 + |z|m2
= lim sup
|(y,z)|→0

y3 + z6 + yz3

|y|3 + |z|4
≤ lim sup
|(y,z)|→0

4
3 |y|

3 + 2
3 |z|

9
2 + z6

|y|3 + |z|4
=

4

3

and

lim inf
|(y,z)|→0

G(x, y, z)

|y|m1 + |z|m2
= lim inf
|(y,z)|→0

|y|
19
6 + |z|7

|y|3 + |z|4
= 0

show (VII), (VIII) and (IX), respectively. Finally, choose (b1, b2) = (3
2π,

3
2π) ∈ R2. Then

H(x, b1, b2) = −3π < 0, which implies that (X) holds.
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