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Stabilization for the Wave Equation with Variable Coefficients and

Balakrishnan-Taylor Damping

Tae Gab Ha

Abstract. In this paper, we consider the wave equation with variable coefficients and

Balakrishnan-Taylor damping and source terms. This work is devoted to prove, under

suitable conditions on the initial data, the uniform decay rates of the energy without

imposing any restrictive growth near zero assumption on the damping term.

1. Introduction

In this paper, we are concerned with the uniform energy decay rates of solutions for the

wave equation:

(1.1)


u′′ −M(t)Lu+ g(u′) = |u|ρ u in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(x, 0) = u0, u′(x, 0) = u1,

where Lu = div(A∇u) =
∑n

i,j=1
∂
∂xi

(
aij(x) ∂u∂xj

)
and M(t) = ξ1 + ξ2

∫
ΩA∇u∇u dx +

ξ3

∫
ΩA∇u∇u

′ dx. Ω is a bounded domain of Rn (n ≥ 1) with boundary Γ. ′ denotes the

derivative with respect to time t.

When A = I with Balakrishnan-Taylor damping (ξ3 6= 0), the model was initially

proposed by Balakrishnan and Taylor in [1] and Bass and Zes [2]. The original motiva-

tion for studying this model seemed to solve the spillover problem, namely, to design a

feedback control function that involves only finite many modes in order to achieve a high

performance of the closed-loop systems, such as a robust and exponential stabilization

of the system when there might be some uncertainly in values of the parameters. So

far, there are some stability results for the problem having Balakrishnan-Taylor damping

(see [11,13,16,17]). For instance, Tatar and Zaräı [13] proved an exponential decay result

of the energy provided that the kernel decays exponentially. Recently, Ha [5] studied the
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uniform decay rates of the energy without imposing any restrictive growth assumption on

the damping term and weakening the usual assumptions on the relaxation function.

When A is a general matrix without Balakrishnan-Taylor damping (ξ2 = ξ3 = 0), such

a problem is called a wave equation with variable coefficients in principle. This equations

arise in mathematical modeling of inhomogeneous media in solid mechanics, electromag-

netic, fluid flows through porous media, and other areas of physics and engineering. For

the variable coefficients problem, the main tool is Riemannian geometry method, which

was introduced by Yao [15] and has been widely used in the literature (see [4,6–9,14] and

a list of references therein). However, there were very few results considering the source

term. For example, Boukhatem and Benabderrahmane [3] studied the uniform decay rate

of the energy to the viscoelastic wave equation with variable coefficients and acoustic

boundary conditions without damping term. But there is none, to our knowledge, for the

variable coefficients problem having both damping and source terms.

Motivated by previous works, the goal of this paper is to study the uniform decay

rate of the energy to the wave equation with variable coefficients and Balakrishnan-Taylor

damping and source terms. This paper is organized as follows: In Section 2, we recall the

hypotheses to prove our main result and introduce the existence and energy decay rate

theorem. In Section 3, we prove under suitable conditions on the initial data, the uniform

decay rates of the energy without imposing any restrictive growth near zero assumption

on the damping term.

2. Preliminaries

We begin this section with introducing some notations and our main results. Let Ω ⊂
Rn be a bounded domain, n ≥ 1, with smooth boundary Γ. Throughout this paper

we define the Hilbert space H =
{
u ∈ H1(Ω) | Lu ∈ L2(Ω)

}
with the norm ‖u‖H =(

‖u‖2H1(Ω) + ‖Lu‖22
)1/2

and H1
0 (Ω) =

{
u ∈ H1(Ω) | u = 0 on Γ

}
. Moreover, Lp(Ω)-norm

is denoted by ‖ · ‖p and (u, v) =
∫

Ω u(x)v(x) dx.

(H1) Hypotheses on ξ1, ξ2, ξ3, ρ. Let ξi > 0, i = 1, 2, 3, and let ρ be a constant satisfying

the following condition:

0 < ρ <
2

n− 2
if n ≥ 3 and ρ > 0 if n = 1, 2.

(H2) Hypotheses on A. The matrix A = (aij(x)), where aij ∈ C1(Ω), is symmetric and

there exists a positive constant a0 such that for all x ∈ Ω and ω = (ω1, . . . , ωn) we

have

(2.1)

n∑
i,j=1

aij(x)ωjωi ≥ a0 |ω|2 .
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(H3) Hypotheses on g. Let g : R→ R be a nondecreasing C1 function such that g(0) = 0

and suppose that there exists a strictly increasing and odd function β of C1 class on

[−1, 1] such that

|β(s)| ≤ |g(s)| ≤
∣∣β−1(s)

∣∣ if |s| ≤ 1,

c1 |s| ≤ |g(s)| ≤ c2 |s| if |s| > 1,

where β−1 denotes the inverse function of β and c1, c2 are positive constants.

By using the hypothesis (H2), we verify that the bilinear form a(· , ·) : H1
0 (Ω)×H1

0 (Ω)→
R defined by

a(u(t), v(t)) =

n∑
i,j=1

∫
Ω
aij(x)

∂u(t)

∂xj

∂v(t)

∂xi
dx =

∫
Ω
A∇u(t)∇v(t) dx

is symmetric and continuous. On the other hand, from (2.1) for ω = ∇u, we get

(2.2) a(u(t), u(t)) ≥ a0

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx = a0 ‖∇u(t)‖22 .

Now, we state the local existence theorem which can be complete arguing as [14–16].

Theorem 2.1. Suppose that (H1)–(H3) hold. Then given (u0, u1) ∈ H1
0 (Ω)×L2(Ω), there

exist T > 0 and a unique solution u of the problem (1.1) such that

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).

In order to study the global existence and decay of a local solution for problem (1.1)

given by Theorem 2.1, we will find a stable region. First of all, we set the constant

(2.3) 0 < K0 := sup
u∈H1

0 (Ω),u6=0

( ‖u‖ρ+2

[a(u, u)]1/2

)
< +∞

and the functional

(2.4) J(u) =
ξ1

2
a(u, u)− 1

ρ+ 2
‖u‖ρ+2

ρ+2 , u ∈ H1
0 (Ω).

And we define the function

j(λ) =
ξ1

2
λ2 − 1

ρ+ 2
Kρ+2

0 λρ+2, λ > 0,

then

λ0 =

(
ξ1

Kρ+2
0

)1/ρ
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is the absolute maximum point of j and

d0 := j(λ0) =
ξ1

2
λ2

0 −
1

ρ+ 2
Kρ+2

0 λρ0λ
2
0 =

ξ1ρ

2(ρ+ 2)
λ2

0.

Moreover, since λ0 > 0, we have

ξ1 −Kρ+2
0 λρ0 = 0.

The energy associated to the problem (1.1) is given by

E(u(t)) = E(t) =
1

2

∥∥u′(t)∥∥2

2
+

1

2

(
ξ1 +

ξ2

2
a(u(t), u(t))

)
a(u(t), u(t))− 1

ρ+ 2
‖u(t)‖ρ+2

ρ+2 .

Then

E′(t) = −ξ3

4

(
d

dt
a(u(t), u(t))

)2

− (g(u′(t), u′(t)) ≤ 0,

it follows that E(t) is a nonincreasing positive function.

By (2.3) and (2.4), we have

E(t) ≥ J(u(t)) ≥ ξ1

2
a(u(t), u(t))− 1

ρ+ 2
Kρ+2

0 [a(u(t), u(t))](ρ+2)/2

= j([a(u(t), u(t))]1/2).

(2.5)

Now, if one considers

(2.6) a(u(t), u(t)) < λ2
0,

then from (2.5), we arrive at

(2.7) E(t) ≥ J(u(t)) > a(u(t), u(t))

(
ξ1

2
− 1

ρ+ 2
Kρ+2

0 λρ0

)
=

ξ1ρ

2(ρ+ 2)
a(u(t), u(t))

and, consequently,

(2.8) J(t) ≥ 0 (J(t) = 0 iff u = 0) and a(u(t), u(t)) ≤ 2(ρ+ 2)

ξ1ρ
E(t).

Moreover, if we define the functional I by

I(u(t)) = ξ1a(u(t), u(t))− ‖u‖ρ+2
ρ+2 ,

then from the relationship I(u(t)) = (ρ + 2)J(u(t)) − ξ1ρ
2 a(u(t), u(t)) and the strict in-

equality (2.7), we obtain

(2.9) I(u(t)) > 0 for all t ≥ 0.
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Lemma 2.2. Suppose that

(2.10) E(0) < d0 and a(u0, u0) < λ2
0.

Then (2.6) is satisfied, that is, a(u(t), u(t)) < λ2
0 for all t ≥ 0.

Proof. It is easy to verify that j is increasing for 0 < λ < λ0, decreasing for λ > λ0,

j(λ0) = d0, j(λ)→ −∞ as λ→ +∞. Then since d0 > E(u0) ≥ j([a(u0, u0)]1/2) ≥ j(0) =

0, there exist λ′0 < λ0 < λ̃0, which verify

(2.11) j(λ′0) = j(λ̃0) = E(u0).

Considering that E(t) is nonincreasing, we have

(2.12) E(u(t)) ≤ E(u0) for all t ≥ 0.

From (2.5) and (2.11), we deduce that

(2.13) j([a(u0, u0)]1/2) ≤ E(u0) = j(λ′0).

Since [a(u0, u0)]1/2 < λ0, λ′0 < λ0 and j is increasing in [0, λ0), from (2.13) it holds that

(2.14) [a(u0, u0)]1/2 ≤ λ′0.

Next, we will prove that

(2.15) [a(u(t), u(t))]1/2 ≤ λ′0 for all t ≥ 0.

In fact, we will argue by contradiction. Suppose that (2.15) does not hold. Then there

exists time t∗ which verifies

(2.16) [a(u(t∗), u(t∗))]1/2 > λ′0.

If [a(u(t∗), u(t∗))]1/2 < λ0, from (2.5), (2.11) and (2.16) we can write

E(u(t∗)) ≥ j([a(u(t∗), u(t∗))]1/2) > j(λ′0) = E(u(0)),

which contradicts (2.12).

If [a(u(t∗), u(t∗))]1/2 ≥ λ0, then we have, in view of (2.14), that there exists λ0 which

verifies

(2.17) [a(u0), u0)]1/2 ≤ λ′0 < λ0 < λ0 ≤ [a(u(t∗), u(t∗))]1/2.

Consequently, from the continuity of the function [a(u(·), u(·))]1/2, there exists time t

verifying

(2.18) [a(u(t), u(t))]1/2 = λ0.
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Then from (2.5), (2.11), (2.17) and (2.18), we get

E(u(t)) ≥ j([a(u(t), u(t))]1/2) = j(λ0) > j(λ′0) = E(u0),

which also contradicts (2.12). This completes the proof of Lemma 2.2.

Theorem 2.3. Let u(t) be the solution of (1.1). If (u0, u1) ∈ H1
0 (Ω) × L2(Ω) satisfies

(2.10), then the solution u(t) is global.

Proof. It suffices to show that ‖u′(t)‖22 + a(u(t), u(t)) is bounded independent of t. By

virtue of (2.7) and (2.9), we get

J(t) =
ξ1ρ

2(ρ+ 2)
a(u(t), u(t)) +

1

ρ+ 2
I(t) >

ξ1ρ

2(ρ+ 2)
a(u(t), u(t)).

Hence,

1

2

∥∥u′(t)∥∥2

2
+

ρ

2(ρ+ 2)
ξ1a(u(t), u(t)) <

1

2

∥∥u′(t)∥∥2

2
+ J(t) ≤ E(t) ≤ E(0).

Therefore, there exists a positive constant C depending only on ρ and ξ1 such that∥∥u′(t)∥∥2

2
+ a(u(t), u(t)) ≤ CE(0).

Now we are in the position to state the energy decay rates result.

Theorem 2.4. Assume that hypotheses (H1)–(H3) and (2.10) hold. If the function

G(s) := β(s)/s is nondecreasing on (0, 1) and G(0) = 0, then we have

E(t) ≤ C1

(
β−1

(
1

t

))2

,

where C1 is a positive constant that depends only on E(0).

To end this section, we recall a technical lemma which will play an essential role when

establishing the asymptotic behavior.

Lemma 2.5. [10] Let E : R+ → R+ be a nonincreasing function and φ : R+ → R+ a

strictly increasing function of class C1 such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.

Assume that there exists σ > 0, σ′ ≥ 0 and C > 0 such that∫ +∞

S
E1+σ(t)φ′(t) dt ≤ CE1+σ(S) +

C

(1 + φ(S))σ′E
σ(0)E(S), 0 ≤ S < +∞.

Then, there exists C > 0 such that

E(t) ≤ E(0)
C

(1 + φ(t))(1+σ′)/σ
for all t > 0.
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3. Asymptotic stability

In this section we prove the uniform decay rates of equation (1.1). In the following section,

the symbol C indicates positive constants, which may be different.

Let us now multiply equation (1.1) by E(t)φ′(t)u, φ : R+ → R+ is a concave nonde-

creasing function of class C2, such that φ(t) → +∞ as t → +∞, and then integrate the

obtained result over Ω× [S, T ]. Then we have

0 =

∫ T

S
E(t)φ′(t)

∫
Ω
u(t)

(
u′′(t)−M(t)Lu(t) + g(u′(t))− |u(t)|ρ u(t)

)
dxdt

=

∫ T

S
E(t)φ′(t)

∫
Ω
u(t)u′′(t) dxdt−

∫ T

S
E(t)φ′(t)M(t)

∫
Ω
u(t)Lu(t) dxdt

+

∫ T

S
E(t)φ′(t)

∫
Ω
u(t)g(u′(t)) dxdt−

∫ T

S
E(t)φ′(t)

∫
Ω
|u(t)|ρ+2 dxdt.

(3.1)

We note that∫ T

S
E(t)φ′(t)

∫
Ω
u(t)u′′(t) dxdt

=
[
E(t)φ′(t)(u(t), u′(t))

]T
S
−
∫ T

S

(
E′(t)φ′(t) + E(t)φ′′(t)

) ∫
Ω
u(t)u′(t) dxdt

−
∫ T

S
E(t)φ′(t)

∥∥u′(t)∥∥2

2
dt

and

−
∫ T

S
E(t)φ′(t)M(t)

∫
Ω
u(t)Lu(t) dxdt

= ξ1

∫ T

S
E(t)φ′(t)a(u(t), u(t)) dt+ ξ2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt

+
ξ3

4

[
E(t)φ′(t)a2(u(t), u(t))

]T
S
− ξ3

4

∫ T

S

(
E′(t)φ′(t) + E(t)φ′′(t)

)
a2(u(t), u(t)) dt.

By replacing above identities in (3.1) and having in mind the definition of the energy

associated to problem (1.1), it follows that

2

∫ T

S
E2(t)φ′(t) dt

= 2

∫ T

S
E(t)φ′(t)

∥∥u′(t)∥∥2

2
dt− ξ2

2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt

−
[
E(t)φ′(t)

(
(u(t), u′(t)) +

ξ3

4
a2(u(t), u(t))

)]T
S

+

∫ T

S

(
E′(t)φ′(t) + E(t)φ′′(t)

)(
(u(t), u′(t)) +

ξ3

4
a2(u(t), u(t))

)
dt(3.2)
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−
∫ T

S
E(t)φ′(t)

∫
Ω
u(t)g(u′(t)) dxdt+

ρ

ρ+ 2

∫ T

S
E(t)φ′(t) ‖u(t)‖ρ+2

ρ+2 dt

:= 2

∫ T

S
E(t)φ′(t)

∥∥u′(t)∥∥2

2
dt− ξ2

2

∫ T

S
E(t)φ′(t)a2(u(t), u(t)) dt

+ I1 + I2 + I3 + I4.

Now we are going to estimate terms on the right-hand side of (3.2).

Estimate for I1 := −
[
E(t)φ′(t)

(
(u(t), u′(t)) + ξ3

4 a
2(u(t), u(t))

)]T
S

.

By using Young’s and Poincaré’s inequalities, (2.2) and (2.8), we obtain

(3.3)
∣∣u(t), u′(t)

∣∣ ≤ CE(t)

and

(3.4) a2(u(t), u(t)) ≤
(

2(ρ+ 2)

ξ1ρ

)2

E(0)E(t).

Since E(t) is nonincreasing and φ(t) is nondecreasing, we have

I1 ≤ −C
[
E(t)φ′(t)E(t)

]T
S
≤ CE2(S).

Estimate for I2 :=
∫ T
S (E′(t)φ′(t) + E(t)φ′′(t))

(
(u(t), u′(t)) + ξ3

4 a
2(u(t), u(t))

)
dt.

From (3.3) and (3.4), we have

|I2| ≤ C
∫ T

S

∣∣E′(t)φ′(t) + E(t)φ′′(t)
∣∣E(t) dt

≤ C
∫ T

S
−E′(t)E(t) dt+ CE2(S)

∫ T

S
−φ′′(t) dt

≤ CE2(S).

Estimate for I3 := −
∫ T
S E(t)φ′(t)

∫
Ω u(t)g(u′(t)) dxdt.

By Young’s and Poincaré’s inequalities, (2.2) and (2.8), we have

|I3| ≤
a0ξ1ρε

2(ρ+ 2)CP

∫ T

S
E(t)φ′(t) ‖u(t)‖22 dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω

∣∣g(u′(t)
∣∣2 dxdt

≤ a0ξ1ρε

2(ρ+ 2)

∫ T

S
E(t)φ′(t) ‖∇u(t)‖22 dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω

∣∣g(u′(t)
∣∣2 dxdt

≤ ε
∫ T

S
E2(t)φ′(t)dt+ C(ε)

∫ T

S
E(t)φ′(t)

∫
Ω

∣∣g(u′(t)
∣∣2 dxdt,

where CP is a Poincaré constant.

Estimate for I4 := ρ
ρ+2

∫ T
S E(t)φ′(t) ‖u(t)‖ρ+2

ρ+2 dt.
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By (2.9), there exists a positive constant α > 1 such that ξ1a(u(t), u(t)) = α ‖u(t)‖ρ+2
ρ+2.

Hence, from (2.8) we have

I4 =
ρξ1

α(ρ+ 2)

∫ T

S
E(t)φ′(t)a(u(t), u(t)) dt ≤ 2

α

∫ T

S
E(t)2φ′(t) dt.

By replacing all estimates I1, . . . , I4 in (3.4), and taking ε sufficiently small, we get

that ∫ T

S
E2(t)φ′(t) dt ≤ CE2(S) + C

∫ T

S
E(t)φ′(t)

∥∥u′(t)∥∥2

2
dt︸ ︷︷ ︸

:=I5

+ C

∫ T

S
E(t)φ′(t)

∫
Ω

∣∣g(u′(t))
∣∣2 dxdt︸ ︷︷ ︸

:=I6

.

(3.5)

The last two terms of the right-hand side of (3.5) can be estimated by the same

arguments of [10,12] as follows:

(3.6) I5, I6 ≤ CE2(S) + CE(S)

∫ T

S
φ′(t)

(
G−1(φ′(t))

)2
dt.

Now let us set φ(t) be the concave function such that its inverse is defined by

φ−1(t) = 1 +

∫ t

1

1

G(1/s)
ds

for all t ≥ 1. Then φ(t) satisfies all the required properties and can be extended on [0, 1)

such that it remains concave nondecreasing. Moreover,∫ ∞
S

φ′(t)
(
G−1(φ′(t))

)2
dt =

∫ ∞
φ(S)

(
G−1(φ′(φ−1(s)))

)2
ds

=

∫ ∞
φ(S)

(
G−1

(
1

(φ−1)′(s)

))2

ds =

∫ ∞
φ(S)

1

s2
ds

=
1

φ(S)
≤ β−1

(
1

S

)
.

(3.7)

By replacing (3.6) in (3.5) and applying Lemma 2.5 with σ = σ′ = 1 and (3.7), we

obtain

E(t) ≤ CE(0)

(
β−1

(
1

t

))2

.
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