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τ-rigid Modules over Auslander Algebras

Xiaojin Zhang

Abstract. We give a characterization of τ -rigid modules over Auslander algebras in

terms of projective dimension of modules. Moreover, we show that for an Auslander

algebra Λ admitting finite number of non-isomorphic basic tilting Λ-modules and

tilting Λop-modules, if all indecomposable τ -rigid Λ-modules of projective dimension 2

are of grade 2, then Λ is τ -tilting finite.

1. Introduction

Recently Adachi, Iyama and Reiten [4] introduced τ -tilting theory to generalize the clas-

sical tilting theory in terms of mutations. τ -tilting theory is close to the silting theory

introduced by [5] and the cluster tilting theory in the sense of [10,18,21].

Note that τ -tilting theory depends on τ -rigid modules. So it is very interesting to

find all τ -rigid modules for a given algebra. There are some works on this topic (see

[1–3, 6, 16, 17, 20, 22, 24–26] and so on). In particular, Iyama and Zhang [19] classified

all the support τ -tilting modules and indecomposable τ -rigid modules for the Auslander

algebra Γ of K[x]/(xn). They showed that the number of non-isomorphic basic support

τ -tilting Γ-modules is exactly (n + 1)!. For an arbitrary Auslander algebra Λ, little is

known on τ -rigid Λ-modules. So a natural question is:

Question 1.1. How to judge τ -rigid modules over an arbitrary Auslander algebra?

Our first goal in this paper is to give a partial answer to this question. Throughout

this paper all algebras are finite-dimensional algebras over a field K and all modules are

finitely generated right modules.

For an algebra Λ, denote by (−)∗ the functor HomΛ(−,Λ). For a Λ-module M , denote

by pdΛM (resp. idΛM) the projective dimension (resp. injective dimension) of M . Denote

by gradeM the grade of M . Then we have the following theorem.

Theorem 1.2. (Theorems 3.3 and 3.10, Corollary 3.7) Let Λ be an Auslander algebra and

M a Λ-module. Then we have the following:
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(1) Every simple module S is τ -rigid.

(2) If pdΛM = 1, then M is (τ -)rigid if and only if Ext2
Λ(N,M) = 0, where N =

M∗∗/M .

(3) If gradeM = 2, then M is τ -rigid if and only if TrM is τ -rigid with pdΛ TrM = 1.

(4) If Λ admits a unique simple module S with pdΛ S = 2, then

(a) every indecomposable module M with pdΛM = 1 is (τ -)rigid.

(b) all indecomposable τ -rigid Λ-modules N with pdΛN = 2 are of grade 2.

On the other hand, Demonet, Iyama and Jasso gave a general description of algebras

with finite number of support τ -tilting modules in [11] where they call the algebras τ -

tilting finite algebras. It is clear that an algebra Λ is τ -tilting finite if and only if so is

its opposite algebra Λop. We should remark that an algebra is τ -tilting finite implies that

there are finite number of non-isomorphic basic tilting Λ-modules and tilting Λop-modules.

It is natural to consider the following question.

Question 1.3. When is an algebra admitting finite number of basic tilting Λ-modules

and tilting Λop-modules τ -tilting finite?

It is obvious that algebras of finite representation type are both tilting-finite and τ -

tilting finite. However, we need a non-trivial case. Our second goal of this paper is to give

a more general answer to this question whenever Λ is an Auslander algebra. We prove the

following theorem in which the algebra is not necessary to be an Auslander algebra.

Theorem 1.4. (Theorem 3.8) Let Λ be an algebra of global dimension 2 admitting finite

number of basic tilting Λ-modules and tilting Λop-modules. If all indecomposable τ -rigid

modules with projective dimension 2 are of grade 2, then Λ is τ -tilting finite.

The paper is organized as follows: In Section 2, we recall some preliminaries. In

Section 3, we prove the main results and give some examples to show the main results.

Throughout this paper, all algebras Λ are basic connected finite dimensional algebras

over an algebraic closed field K and all Λ-modules are finitely generated right modules.

Denote by mod Λ the category of finitely generated right Λ-modules. For M ∈ mod Λ,

denote by addM the subcategory of direct summands of finite direct sum of M . We

use TrM to denote the Auslander transpose of M . Denote by τ the AR-translation and

denote by |M | the number of non-isomorphic indecomposable direct summands of M .
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2. Preliminaries

In this section we recall some basic preliminaries for later use. For an algebra Λ, denote by

gl.dim Λ the global dimension of Λ. We begin with the definition of Auslander algebras.

Definition 2.1. An algebra R is called an Auslander algebra if gl.dimR ≤ 2 and Ii(R) is

projective for i = 0, 1, where Ii(R) is the (i+ 1)-th term in a minimal injective resolution

of R.

Let R be a representation-finite algebra and A an additive generator of modR. Aus-

lander proved that there is a one to one correspondence between representation-finite

algebras and Auslander algebras via R 7→ EndR(A). In this case, we call EndR(A) the

Auslander algebra of R. Furthermore, for X ∈ modR we denote by PX = HomR(A,X)

and SX = PX/ radPX . The following statement [9] is essential in the proof of the main

result.

Proposition 2.2. Let X be an indecomposable R-module. Then

(1) pdΛ SX ≤ 1 if and only if X is projective, and 0 → PradX → PX → SX → 0 is a

minimal projective resolution of SX .

(2) pdΛ SX = 2 if and only if X is not projective, and the almost split sequence 0 →
τX → E → X → 0 gives a minimal projective resolution 0 → PτX → PE → PX →
SX → 0 of SX .

For a positive integer k, an algebra Λ is called Auslander’s k-Gorenstein if pdΛ Ij(Λ) ≤
j for 0 ≤ j ≤ k − 1. For a Λ-module M and a positive integer i, we call gradeM ≥ i if

ExtjΛ(M,Λ) = 0 for 0 ≤ j ≤ i− 1. We need the following result.

Lemma 2.3. Let Λ be an Auslander algebra and T ∈ mod Λ. For j = 1, 2,

(1) the subcategory {M | gradeM ≥ j} is closed under submodules and factor modules.

(2) every simple Λ-module S is either of grade 0 or of grade 2.

(3) grade ExtjΛ(T,Λ) ≥ 2.

(4) the projective dimension of any composition factor of Ext2
Λ(T,Λ) is 2.

Proof. (1) is a straight result of [15, Proposition 2.4].

(2) follows from the fact ExtiΛ(S,Λ) ' HomΛ(S, Ii(Λ)) and Λ is an Auslander algebra.

(3) By the definition of Auslander algebra, Λ is Auslander’s 2-Gorenstein. Then by [12]

Λ is Auslander’s k-Gorenstein if and only if for each submodule X of ExtiΛ(T,Λ) with T in

mod Λ and i ≤ k, we have gradeX ≥ i. Then we have grade ExtjΛ(T,Λ) ≥ j for j = 1, 2.
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By (1) every composition factor S of Ext1
Λ(T,Λ) has grade at least 1, and hence 2 by (2).

Then by an induction on the length of Ext1
Λ(T,Λ), we get grade Ext1

Λ(T,Λ) ≥ 2.

(4) is a direct result of (1) and (3).

In the following we recall some basic properties of τ -rigid modules. We start with the

following definition [4].

Definition 2.4. We call M ∈ mod Λ τ -rigid if HomΛ(M, τM) = 0. In addition, M is

called τ -tilting if M is τ -rigid and |M | = |Λ|. Moreover, M is called support τ -tilting if

there exists an idempotent e of Λ such that M is a τ -tilting Λ/(e)-module.

It is clear that any τ -rigid Λ-module M is rigid, that is, Ext1
Λ(M,M) = 0. In general

the converse is not true. But if pdΛM = 1, then M is τ -rigid if and only if M is rigid.

Recall that a Λ-module T is called a (classical) tilting module if T satisfies (1) pdΛ T ≤ 1,

(2) Ext1
Λ(T, T ) = 0 and (3) |T | = |Λ|. It is showed in [4] that a tilting Λ-module is exactly

a faithful support τ -tilting Λ-module.

To judge τ -rigid modules of projective dimension 2 over Auslander algebras, we also

need the following lemma in [4].

Lemma 2.5. Let Λ be an algebra and M a Λ-module without projective direct summands.

Then M is τ -rigid in mod Λ if and only if TrM is τ -rigid in mod Λop.

Recall that a morphism f : M → N is called right minimal (resp. left minimal) if

fg = f (resp. gf = f) implies that g is an isomorphism, where g is a homomorphism of

the form M → M (resp. N → N). The following properties of right minimal (resp. left

minimal) morphisms in [13] are useful for the proof of the main results.

Lemma 2.6. Let 0 → A
g→ B

f→ C → 0 be a non-split exact sequence in mod Λ with B

projective-injective. Then the following are equivalent:

(1) A is indecomposable and g is left minimal.

(2) C is indecomposable and f is right minimal.

3. Main results

In this section we give the main results of this paper and some examples to show the main

results. Throughout this section, Λ = EndRA is the Auslander algebra of a representation-

finite algebra R with an additive generator A.

It is showed by Igusa [14] that S is rigid for any simple module S over an algebra Γ

of finite global dimension. However, we give a new direct proof for the rigidness of simple

modules whenever Γ is an Auslander algebra.
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Proposition 3.1. Let Λ be an Auslander algebra and S a simple Λ-module. Then

Ext1
Λ(S, S) = 0.

Proof. For a simple Λ-module S, we show the assertion by using the projective dimension

of S.

If pdΛ S = 0, there is nothing to show.

If pdΛ S = 1, then we can get a minimal projective resolution 0→ P1(S)→ P0(S)→
S → 0. Then the length of P1(S) is smaller than that of P0(S), and hence HomΛ(P1(S), S)

= 0. So one gets Ext1
Λ(S, S) ' HomΛ(P1(S), S) = 0.

If pdΛ S = 2, then by Proposition 2.2, there is an AR-sequence 0→ τX → E → X → 0

in modR such that 0 → HomR(A, τX) → HomR(A,E) → HomR(A,X) → S → 0 is

a minimal projective resolution of S. On the contrary, suppose that Ext1
Λ(S, S) 6= 0,

then we get that HomΛ(P1(S), S) ' Ext1
Λ(S, S) 6= 0. So P0(S) = HomR(A,X) is a

direct summand of P1(S) = HomΛ(A,E). Note that the functor HomΛ(A,−) induces an

equivalence from addA to add Λ, then X is a direct summand of E. Since E → X is right

almost split, then we get an irreducible morphism f : X → X by [7, IV, Theorem 1.10(b)],

a contradiction.

Denote by (−)∗ the functor HomΛ(−,Λ), then we have the following lemma [19] with

a different shorter proof.

Lemma 3.2. Let Λ be an Auslander algebra, and let M be a Λ-module with pdΛM ≤ 1.

Then the canonical map M
ϕM→ M∗∗ is injective, and the projective dimension of any

composition factor of M∗∗/M is 2.

Proof. By [8], we get an exact sequence

0→ Ext1
Λop(TrM,Λ)→M →M∗∗ → Ext2

Λop(TrM,Λ)→ 0.

To show the former assertion, it suffices to show that Ext1
Λop(TrM,Λ) = 0. In the following

we show grade TrM = 2. Since pdΛM ≤ 1, then one gets TrM ' Ext1
Λ(M,Λ) and hence

by Lemma 2.3(3), grade TrM ≥ 2 holds, and hence Ext1
Λop(TrM,Λ) = 0. We get the

desired injection. Then by Lemma 2.3(2), the later assertion holds.

Now we are in a position to state the following main result on the (τ -)rigidness of

modules with projective dimension 1.

Theorem 3.3. Let Λ be an Auslander algebra and M a Λ-module with pdΛM = 1. Then

Ext1
Λ(M,M) = 0 if and only if Ext2

Λ(N,M) = 0 holds for N = M∗∗/M .

Proof. We show the assertion step by step.



732 Xiaojin Zhang

(1) For any M ∈ mod Λ, M∗ is projective. Here we only need the condition gl. dim Λ =

2.

Let P1(M)→ P0(M)→M → 0 be a projective resolution of M . Applying the functor

(−)∗, we get an exact sequence 0 → M∗ → P0(M)∗ → P1(M)∗. Since gl.dim Λ ≤ 2, one

gets that M∗ is a projective Λop-module. Thus M∗∗ is a projective Λ-module.

(2) Ext1
Λ(M,M) ' Ext2

Λ(M∗∗/M,M) holds.

By Lemma 3.2, we get the exact sequence 0 → M → M∗∗ → Ext2
Λop(TrM,Λ) (=

M∗∗/M) → 0. Applying the functor HomΛ(−,M) to the exact sequence, we get the

desired isomorphism since M∗∗ is projective by (1).

Immediately, we have the following corollary.

Corollary 3.4. Let Λ be an Auslander algebra and M a Λ-module with pdΛM = 1.

(1) If idΛM = 1, then Ext1
Λ(M,M) = 0 holds.

(2) If Ext2
Λ(S′,M) = 0 holds for any composition factor S′ of M∗∗/M , then Ext1

Λ(M,M)

= 0 holds.

Proof. (1) follows from Theorem 3.3 directly. By induction on the length of M∗∗/M , one

can get the assertion (2).

Remark 3.5. We should remark that the converse of Corollary 3.4 are not true in general

(see Example 3.11(5)).

Denote by iτ -rig Λ the set of isomorphism classes of indecomposable τ -rigid Λ-modules.

Similarly, one can define iτ -rig Λop. Denote by G the subset of iτ -rig Λ consisting of

isomorphism classes of τ -rigid modules of grade 2 and denote by S the subset of iτ -rig Λop

consisting of isomorphism classes of non-projective τ -rigid submodules of add Λop. To

judge τ -rigid modules of projective dimension 2 over Auslander algebras, we need the

following proposition.

Proposition 3.6. Let Λ be an algebra of global dimension 2. There is a bijection between

G and S via Tr: M 7→ TrM .

Proof. By Lemma 2.5 M is τ -rigid if and only if TrM is τ -rigid. Now it suffices to show

that (a) M ∈ G implies that TrM ∈ S and (b) M ∈ S implies that TrM ∈ G.

(a) Since M ∈ G, take the following minimal projective resolution of M : · · · →
P1(M)→ P0(M)→M → 0. Applying the functor (−)∗, we get an exact sequence

(3.1) 0 = M∗ → P0(M)∗ → P1(M)∗ → TrM → 0,
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which is a minimal projective resolution of TrM . Then pdΛ TrM = 1. On the other

hand, since gradeM = 2, one gets the following sequences

(3.2) 0 = M∗ → P0(M)∗ → Ω1M∗ → Ext1
Λ(M,Λ) = 0

and

(3.3) 0→ Ω1M∗ → P1(M)∗ → P2(M)∗.

Comparing exact sequences (3.1) with (3.2) and (3.3), one gets that TrM is a sub-

module of P2(M)∗.

(b) Since M ∈ S is non-projective and gl.dim Λ = 2, then pdΛM = 1. Take a minimal

projective resolution of M : 0 → P1(M) → P0(M) → M → 0. Applying (−)∗, we get the

following exact sequence 0 → M∗ → P0(M)∗ → P1(M)∗ → TrM → 0. Note that Tr is a

duality and pdΛM = 1, one gets that HomΛop(TrM,Λ) = 0. Since M can be embedded

into a projective module, then M is torsionless, that is, M → M∗∗ is injective. By [8]

there is an exact sequence 0 → Ext1
Λop(TrM,Λ) → M → M∗∗ → Ext2

Λop(TrM,Λ) → 0

which implies that Ext1
Λop(TrM,Λ) = 0. Then grade TrM = 2.

As a corollary, we get the following

Corollary 3.7. Let Λ be an Auslander algebra and M ∈ mod Λ. If M is of grade 2, then

M is τ -rigid if and only if TrM is τ -rigid with pdΛ TrM = 1 in mod Λop.

Proof. By Proposition 3.6, it is enough to show that pdΛM = 1 if and only if M can

be embedded into a projective module. Since gl.dim Λ = 2, one gets that M can be

embedded into a projective module implies that pdΛM = 1. The converse follows from

Lemma 3.2.

Recall that from [11] that an algebra Λ is called τ -tilting finite if there are finite number

of non-isomorphic indecomposable τ -rigid modules in mod Λ. It is clear that a τ -tilting

finite algebra admits finite number of tilting Λ-modules and tilting Λop-modules. To find

a way from two-sided tilting finite to τ -tilting finite, we have the following

Theorem 3.8. Let Λ be an algebra of global dimension 2 admitting finite number of basic

tilting Λ-modules and tilting Λop-modules. If all indecomposable τ -rigid modules M with

pdΛM = 2 are of grade 2, then Λ is τ -tilting finite.

Proof. By the assumption, there are finite number of tilting modules which implies that

there are finite number of indecomposable τ -rigid Λ-modules and Λop-modules of projective

dimension less than or equal to 1. Then by Proposition 3.6, the number of indecomposable
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τ -rigid Λ-module of grade 2 is equal to the number of indecomposable non-projective τ -

rigid submodules N of Λop. Since gl.dim Λ = 2, we get that pdΛN = 1, and hence the

number of this class of modules is finite. Note that all indecomposable τ -rigid Λ-modules

with projective dimension 2 are of grade 2, then the number of indecomposable τ -rigid

modules with projective dimension 2 is finite by Proposition 3.6.

Immediately, we have the following corollary which confirms the τ -tilting finiteness of

the Auslander algebra of K[x]/(xn) showed in [19].

Corollary 3.9. Let Λ be an Auslander algebra admitting finite number of basic tilting Λ-

modules and tilting Λop-modules. If all indecomposable τ -rigid modules M with pdΛM = 2

are of grade 2, then Λ is τ -tilting finite.

For a module M , denote by radM and socM the radical and the socle of M , re-

spectively. Now we give the following classification of Auslander algebras admitting a

unique simple module of projective dimension 2 which gives a support to Theorem 3.3

and Corollary 3.9.

Theorem 3.10. Let Λ be an Auslander algebra. If Λ admits a unique simple Λ-module S

with pdΛ S = 2, then

(1) Λ is either the Auslander algebra of the path algebra R = KQ with Q : 1→ 2 or the

Auslander algebra of the Nakayama local algebra R of radical square zero.

(2) every indecomposable Λ-module M with pdΛM ≤ 1 is rigid, and hence τ -rigid.

(3) all indecomposable τ -rigid Λ-modules N with pdΛN = 2 are of grade 2.

Proof. Since (2) and (3) follow from (1) easily, we only show (1). By Proposition 2.2,

there is a unique non-projective indecomposable R-module X such that the AR-sequence

0 → τX → E → X → 0 in modR induces a minimal projective resolution of S: 0 →
HomR(A, τX) → HomR(A,E) → HomR(A,X) → S → 0. Then all indecomposable

modules are projective except X. We claim that X should be simple. Otherwise, there

would be a simple factor module Y of X such that Y 6' X. By the proof above Y would

be projective and hence X ' Y is projective, a contradiction. Now we divide the proof in

two parts.

(a) If X is not injective, then all indecomposable injective R-modules are projective,

and hence R is self-injective. So we get that R is local with a unique simple module X.

Otherwise, there would be a simple projective-injective R-module. One gets a contradic-

tion since R is basic and connected. Taking a minimal projective resolution of X, we get

the following exact sequence 0→ Ω1X → P0(X) (= R)→ X → 0. By Lemma 2.6, Ω1X is
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indecomposable non-projective, and hence Ω1X ' X. Then rad2R = 0 holds. By [9, IV,

Proposition 2.16], R is a Nakayama algebra.

(b) If X is injective, then X 6' socP for any indecomposable projective R-module.

Hence the injective envelope I0(R) is projective, that is, R is Auslander’s 1-Gorenstein [12].

Then P0(X) is projective-injective since X is injective. Taking a part of minimal projective

resolution of X: 0→ Ω1X → P0(X)→ X → 0, one gets that Ω1X is indecomposable and

projective by Lemma 2.6. Then we conclude that R is a hereditary algebra.

In the following we show R is a Nakayama algebra. One can show that P0(X) is the

unique projective-injective module in modR since R is a basic connected hereditary alge-

bra. Then every indecomposable projective R-module is contained in P0(X) and admits

a unique composition series. By [12], Rop is also Auslander’s 1-Gorenstein. Similarly,

every indecomposable projective Rop-module admits a unique composition series. So R is

a Nakayama algebra. By [7, V, Theorem 3.2] and the fact all indecomposable R-modules

are projective except one, we get that R = KQ with Q : 1→ 2.

At the end of this paper we give another two examples to show our main results.

Example 3.11. Let Λ be the Auslander algebra ofK[x]/(xn). Then we have the following:

(1) Λ is given by

1
a1 // 2

a2 //
b2
oo 3

a3 //
b3
oo · · ·

an−2//
b4
oo n− 1

an−1 //
bn−1

oo n
bn
oo

with relations a1b2 = 0 and aibi+1 = biai−1 for any 2 ≤ i ≤ n − 1. Λ is of infinite

representation type if n ≥ 5.

(2) All indecomposable module M with pdΛM = 1 = idΛM are direct summands of

tilting modules, and hence τ -rigid.

(3) All indecomposable τ -rigid modules of projective dimension 2 are of grade 2 (see [19]

for details).

(4) The number of tilting Λ-modules (resp. Λop-modules) is n! [19,23]. By Theorem 3.8,

Λ is τ -tilting finite.

(5) If n = 4, then the indecomposable module M =
2 4

3
4

is (τ -)rigid with pdΛM = 1

and idΛM = 2 and M∗∗ =
2

1 3
2 4

3
4

. But Ext2
Λ(S(2),M) 6= 0.

We should remark that there does exist an Auslander algebra Λ such that an indecom-

posable τ -rigid Λ-module with projective dimension 2 does not necessarily have grade 2.

Example 3.12. Let Λ be the Auslander algebra of KQ with Q : 1
a1→ 2

a2→ 3. Then
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(1) Λ is given by the following quiver Q′:

4
a5

��
2

a3

@@

a2

��

5
a6

��
1

a1

@@

3

a4

@@

6

with relations a2a1 = 0, a5a3 = a4a2 and a6a4 = 0.

(2) All indecomposable modules are τ -rigid.

(3) The indecomposable module M = 2
3 4 is of projective dimension 2, but it is not of

grade 2 since pdΛ S(4) = 1.
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