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PARALLEL*-RICCI TENSOR OF REAL HYPERSURFACES
IN CP 2 AND CH2

George Kaimakamis and Konstantina Panagiotidou

Abstract. In this paper the idea of studying real hypersurfaces in non-flat complex
space forms, whose *-Ricci tensor satisfies geometric conditions is presented.
More precisely, three dimensional real hypersurfaces in non-flat complex space
forms with parallel *-Ricci tensor are studied. At the end of the paper ideas for
further research on ∗-Ricci tensor are given.

1. INTRODUCTION

A complex space form is an n-dimensional Kaehler manifold of constant holomor-
phic sectional curvature c. A complete and simply connected complex space form is
complex analytically isometric to

• a complex projective space CPn if c > 0,
• a complex Euclidean space Cn if c = 0,
• or a complex hyperbolic space CHn if c < 0.

The symbol Mn(c) is used to denote the complex projective space CPn and complex
hyperbolic space CHn, when it is not necessary to distinguish them. Furthermore,
since c �= 0 in previous two cases the notion of non-flat complex space form refers to
both them.

Let M be a real hypersurface in a non-flat complex space form. An almost contact
metric structure (ϕ, ξ, η, g) is defined on M induced from the Kaehler metric G and
the complex structure J on Mn(c). The structure vector field ξ is called principal if
Aξ = αξ, where A is the shape operator of M and α = η(Aξ) is a smooth function.
A real hypersurface is called Hopf hypersurface, if ξ is principal and α is called Hopf
principal curvature.

Received December 31, 2013, accepted April 11, 2014.
Communicated by Bang-Yen Chen.
2010 Mathematics Subject Classification: Primary 53B20; Secondary 53C15, 53C25.
Key words and phrases: Real hypersurface, Parallel, *-Ricci tensor, Complex projective plane, Complex
hyperbolic plane.

1991



1992 George Kaimakamis and Konstantina Panagiotidou

The Ricci tensor S of a Riemannian manifold is a tensor field of type (1,1) and is
given by

g(SX, Y ) = trace{Z �→ R(Z, X)Y }.
If the Ricci tensor of a Riemannian manifold satisfies the relation

S = λg,

where λ is a constant, then it is called Einstein.
Real hypersurfaces in non-flat complex space forms have been studied in terms of

their Ricci tensor S, when it satisfies certain geometric conditions extensively. Different
types of parallelism or invariance of the Ricci tensor are issues of great importance in
the study of real hypersurfaces.

In [4] it was proved the non-existence of real hypersurfaces in non-flat complex
space forms Mn(c), n ≥ 3 with parallel Ricci tensor, i.e. (∇XS)Y = 0, for any X ,
Y ∈ TM . In [5] Kim extended the result of non-existence of real hypersurfaces with
parallel Ricci tensor in case of three dimensional real hypersurfaces. Another type of
parallelism which was studied is that of ξ-parallel Ricci tensor, i.e. (∇ξS)Y = 0 for
any Y ∈ TM . More precisely in [6] Hopf hypersurfaces in non-flat complex space
forms with constant mean curvature and ξ-parallel Ricci tensor were classified. More
details on the study of Ricci tensor of real hypersurfaces are included in Section 6 of
[7].

Motivated by Tachibana, who in [9] introduced the notion of *-Ricci tensor on
almost Hermitian manifolds, in [2] Hamada defined the *-Ricci tensor of real hyper-
surfaces in non-flat complex space forms by

g(S∗X, Y ) =
1
2
(trace{ϕ ◦ R(X, ϕY )}), for X , Y ∈ TM.

The ∗-Ricci tensor S∗ is a tensor field of type (1,1) defined on real hypersurfaces.
Taking into account the work that so far has been done in the area of studying real hy-
persurfaces in non-flat complex space forms in terms of their tensor fields, the following
issue raises naturally:

The study of real hypersurfaces in terms of their ∗-Ricci tensor S∗, when it satisfies
certain geometric conditions.

In this paper three dimensional real hypersurfaces in CP 2 and CH2 equipped with
parallel ∗-Ricci tensor are studied. Therefore, the following condition is satisfied

(∇XS∗)Y = 0, X , Y ∈ TM .(1.1)

More precisely the following Theorem is proved.

Main Theorem. There do not exist real hypersurfaces in CP 2, whose *-Ricci
tensor is parallel. In CH2 only the geodesic hypersphere has parallel *-Ricci tensor
with coth(r) = 2.
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The paper is organized as follows: In Section 2 preliminaries relations for real
hypersurfaces in non-flat complex space forms are presented. In Section 3 the proof
of Main Theorem is provided. Finally, in Section 4 ideas for further research on the
above issue are included.

2. PRELIMINARIES

Throughout this paper all manifolds, vector fields etc are assumed to be of class C∞

and all manifolds are assumed to be connected. Furthermore, the real hypersurfaces M

are supposed to be without boundary.
Let M be a real hypersurface immersed in a non-flat complex space form (Mn(c), G)

with complex structure J of constant holomorphic sectional curvature c. Let N be a
locally defined unit normal vector field on M and ξ = −JN the structure vector field
of M .

For a vector field X tangent to M the following relation holds

JX = ϕX + η(X)N,

where ϕX and η(X)N are the tangential and the normal component of JX respectively.
The Riemannian connections ∇ in Mn(c) and ∇ in M are related for any vector fields
X , Y on M by

∇XY = ∇XY + g(AX, Y )N,

where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in Mn(c) with respect to N is

given by
∇XN = −AX.

The real hypersurface M has an almost contact metric structure (ϕ, ξ, η, g) induced
from the complex structure J on Mn(c), where ϕ is the structure tensor and it is a
tensor field of type (1,1). Moreover, η is an 1-form on M such that

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX, N ).

Furthermore, the following relations hold

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), g(X, ϕY ) = −g(ϕX, Y ).

Since J is complex structure implies ∇J = 0. The last relation leads to

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.(2.1)
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The ambient space Mn(c) is of constant holomorphic sectional curvature c and this
results in the Gauss and Codazzi equations to be given respectively by

(2.2)

R(X, Y )Z =
c

4
[g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX

−g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ]

+g(AY, Z)AX − g(AX, Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ]

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector
fields on M .

The tangent space TP M at every point P ∈ M can be decomposed as

TP M = span{ξ} ⊕ D,

where D = ker η = {X ∈ TP M : η(X) = 0} and is called holomorphic distribution.
Due to the above decomposition the vector field Aξ can be written

Aξ = αξ + βU,(2.3)

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ ker(η) provided that β �= 0.

Since the ambient space Mn(c) is of constant holomorphic sectional curvature c

following similar calculations to those in Theorem 2 in [3] and taking into account
relation (2.2), it is proved that the *-Ricci tensor S∗ of M is given by

S∗ = −[
cn

2
ϕ2 + (ϕA)2].(2.4)

3. PROOF OF MAIN THEOREM

Let M be a non-Hopf hypersurface in CP 2 or CH2, i.e. M2(c). Then the following
relations hold on every non-Hopf three-dimensional real hypersurface in M2(c).

Lemma 3.1. Let M be a real hypersurface in M2(c). Then the following relations
hold on M

AU = γU + δϕU + βξ, AϕU = δU + μϕU,(3.1)

∇Uξ = −δU + γϕU, ∇ϕUξ = −μU + δϕU, ∇ξξ = βϕU,(3.2)

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + μξ, ∇ξU = κ3ϕU,(3.3)

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,(3.4)

where γ, δ, μ, κ1, κ2, κ3 are smooth functions on M and {U, ϕU, ξ} is an orthonormal
basis of M.
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For the proof of the above Lemma see [8]
Let M be a real hypersurface in M2(c), i.e. CP 2 or CH2, whose ∗-Ricci tensor

satisfies relation (1.1), which is more analytically written

∇X(S∗Y ) = S∗(∇XY ), X , Y ∈ TM .(3.5)

We consider the open subset N of M such that

N = {P ∈ M : β �= 0, in a neighborhood of P}.
In what follows we work on the open subset N .

On N relation (2.3) and relations (3.1)-(3.4) of Lemma 3.1 hold. So relation (2.4)
for X ∈ {U, ϕU, ξ} taking into account n = 2 and relations (2.3) and (3.1) yields

(3.6)
S∗ξ = βμU − βδϕU, S∗U = (c + γμ− δ2)U and

S∗ϕU = (c + γμ − δ2)ϕU.

The inner product of relation (3.5) for X = Y = ξ with ξ due to the first and the third
of (3.6), the first of (2.1) for X = ξ and the third of relations (3.3) and (3.4) implies

δ = 0.(3.7)

Moreover, the inner product of relation (3.5) for X = ϕU and Y = ξ with ξ because
of (3.7), the first of (2.1) for X = ϕU , the first and the second of (3.6) and the second
of (3.3) results in

μ = 0.

Finally, the inner product of relation (3.5) for X = ξ and Y = ϕU with ξ taking into
account μ = δ = 0, the first and the third of (3.6) and the last relation of (3.4) leads to

c = 0,

which is a contradiction. So the open subset N is empty and we lead to the following
Proposition.

Proposition 3.2. Every real hypersurface in M2(c) whose ∗-Ricci tensor is parallel,
is a Hopf hypersurface.

Since M is a Hopf hypersurface, the structure vector field ξ is an eigenvector of
the shape operator, i.e. Aξ = αξ. Due to Theorem 2.1 in [7] α is constant. We
consider a point P ∈ M and choose a unit principal vector field W ∈ D at P, such that
AW = λW and AϕW = νϕW . Then {W, ϕW, ξ} is a local orthonormal basis and
the following relation holds (Corollary 2.3 [7])

λν =
α

2
(λ + ν) +

c

4
.(3.8)
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The first of relation (2.1) and relation (2.4) for X ∈ {W, ϕW, ξ} because of Aξ =
αξ, AW = λW and AϕW = νϕW implies respectively

∇W ξ = λϕW and ∇ϕW ξ = −νW(3.9)

S∗ξ = 0, S∗W = (c + λν)W and S∗ϕW = (c + λν)ϕW.(3.10)

Relation (3.5) for X = W and Y = ξ because of the first of (3.9) and the first and
third relation of (3.10) yields

λ(c + λν) = 0.

Suppose that (c + λν) �= 0 then the above relation results in λ = 0. Moreover,
relation (3.5) for X = ϕW and Y = ξ because of the second of (3.9) and the first and
second relation of (3.10) yields

ν = 0.

Substitution of λ = ν = 0 in (3.8) results in c = 0, which is a contradiction. So
relation c = −λν holds. The last one implies λν �= 0 since c �= 0.

Let λ �= ν then λ = − c
ν . Substitution of the last one in (3.8) leads to

2αν2 + 5cν − 2αc = 0.(3.11)

In case of CP 2 we have that c = 4 and from equation (3.11) there is always
a solution for ν. So ν is constant and λ will be also constant. Therefore, the real
hypersurface has three distinct constant eigenvalues. The latter results in M being a
real hypersurface of type (B), i.e. a tube of radius r over complex quadric. Substitution
of the eigenvalues of type (B) in λν = −c leads to a contradiction. So no real
hypersurface in CP 2 has parallel ∗-Ricci tensor (eigenvalues can be found in [7]).

In case of CH2 we have that c = −4 and from equation (3.11) there is a solution
for ν if 0 ≤ α2 ≤ 25

4 . If α = 0 equation (3.11) implies cν = 0, which is impossible.
So there is a solution for ν if 0 < α2 ≤ 25

4 and ν will be constant. The latter results
in that λ is also constant and so the real hypersurface is of type (B), i.e. a tube of
radius r around totally geodesic RHn. Substitution of the eigenvalues of type (B) in
λν = −c leads to a contradiction and this completes the proof of our Main Theorem
(eigenvalues can be found in [1]).

In case λ = ν then c + λ2 = 0, which results in c < 0. So M is locally congruent
to a real hypersurface of type (A) in CH2. In this case only the geodesic hypersphere
satisfies the above relation and we obtain coth(r) = 2 and the *-Ricci tensor vanishes
identically.

4. DISCUSSION-OPEN PROBLEMS

In this paper three dimensional real hypersurfaces in non-flat complex space forms
with parallel ∗-Ricci tensor are studied and the non-existence of them is proved. There-
fore, a question which raises in a natural way is
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Are there real hypersurfaces in non-flat complex space forms of dimension greater
than three with parallel ∗-Ricci tensor?

Generally, the next step in the study of real hypersurfaces in non-flat complex space
forms is to study them when a tensor field P type (1,1) of them satisfies other types
of parallelism such as the D-parallelism or ξ-parallelism. The first one implies that P
is parallel in the direction of any vector field X orthogonal to ξ, i.e. (∇XP )Y = 0,
for any X ∈ D, and the second one implies that P is parallel in the direction of the
structure vector ξ, i.e. (∇ξP )Y = 0. So the questions which should be answered are
the following

Are there real hypersurfaces in non-flat complex space forms whose ∗-Ricci tensor
satisfies the condition of D-parallelism or ξ-parallelism?

Finally, other types of parallelism play important role in the study of real hyper-
surfaces is that of semi-parallelism and pseudo-parallelism. A tensor field P of type
(1, s) is said to be semi-parallel if it satsfies R · P = 0, where R is the Riemannian
curvature tensor and acts as a derivation on P . Moreover, P is said to be pseudo-
parallel if there exists a function L such that R(X, Y ) · P = L{(X ∧ Y ) · P}, where
(X ∧ Y )Z = g(Y, Z)X − g(Z, X)Y . So the questions are:

Are there real hypersurfaces in non-flat complex space forms with semi-parallel or
pseudo-parallel ∗-Ricci tensor?

The importance of answering the above question lays in the fact that the class of real
hypersurfaces with parallel ∗-Ricci tensor is included in the class of real hypersurfaces
with semi-parallel ∗-Ricci tensor. Furthermore, the last one is included in the class of
real hypersurfaces with pseudo-parallel ∗-Ricci tensor.
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