# DISTANCE SETS WITH DIAMETER GRAPH BEING CYCLE 

Xianglin Wei*, Guogang Li, Yue Cong and Feixing Gao


#### Abstract

A point set $X$ in the plane is called a $k$-distance set if there are exactly $k$ different distances between two distinct points in $X$. Let $D=D(X)$ be the diameter of a finite set $X$, and let $X_{D}=\{x \in X: d(x, y)=D$ for some $y \in X\}$, the diameter graph $D G\left(X_{D}\right)$ of $X_{D}$ is the graph with $X_{D}$ as its vertices and where two vertices $x, y \in X_{D}$ are adjacent if $d(x, y)=D$. We prove the set $X$ having at most five distances with $D G\left(X_{D}\right)=C_{7}$ has the unique $X_{D}=R_{7}$, and the set $X$ having at most six distances with $D G\left(X_{D}\right)=C_{9}$ has the unique $X_{D}=R_{9}$, and give a conjecture for $k$-distance set with $D G\left(X_{D}\right)=C_{2 k-3}$.


## 1. Introduction

A point set $X$ in the Euclidean plane is called a $k$-distance set if it determines exactly $k$ different distances. For two planar point sets, we say that they are isomorphic if there exists a similar transformation from one to the other. Let $d(x, y)$ denote the distance between two planar points $x$ and $y$. Let $R_{n}$ denote the vertex set of a regular convex $n$-gon, $R_{n}-i$ denote a set of $n-i$ vertices of $R_{n}$. Let $g(k)$ be the largest possible cardinality of $k$-distance set. A $k$-distance set $X$ is said to be maximum if $X$ has $g(k)$ points. Erdos-Fishburn [1] determined $g(k)$ for $k \leq 5$ and classified maximum $k$ distance sets for $k \leq 4$, and conjectured $g(6)=13$. Shinohara [4] classified 3-distance sets with at least five points. Shinohara [5] proved the uniqueness of the 12 -point 5 -distance set and classified 8 -point 4 -distance sets.

Let $D=D(X)$ be the diameter of a finite set $X$, and let $X_{D}=\{x \in X: d(x, y)=$ $D$ for some $y \in X\}$ and $m=m(X)=\left|X_{D}\right|$. The diameter graph $D G\left(X_{D}\right)$ of $X_{D}$ is the graph with $X_{D}$ as its vertices and where two vertices $x, y \in X_{D}$ are adjacent if $d(x, y)=D$. Clearly $D G\left(X_{D}\right)$ has no isolated vertex. We denote a cycle with $n$

[^0]vertices by $C_{n}$. When indexing a set of $t$ points, we identify indices modulo $t$. Let $X_{D}=\{1,2,3, \ldots, m\}$, here the points $1,2,3, \ldots, m$ are consecutive and always in counter-clockwise order, we say segment $[i, i+1]$ be an edge of $X_{D}$ for every $i \in X_{D}$.

## 2. Related Lemmas

Lemma 1. [2, 3]. Suppose $S$ is the vertex set of a convex $n$-gon, $n \geq 3$, that determines exactly $t$ different distances. Then $t \geq\lfloor n / 2\rfloor$. Moreover:
(i) if $n$ is odd and $t=(n-1) / 2, S$ is $R_{n}$;
(ii) if $n$ is even, $t=n / 2$, and $n \geq 8, S$ is $R_{n}$ or $R_{n+1}-1$;
(iii) if $(n, t)=(7,4), S$ is $R_{8}-1$ or $R_{9}-2$;
(iv) if $(n, t)=(9,5), S$ is $R_{10}-1$ or $R_{11}-2$.

Lemma 2. [1]. Let $D$ be the diameter of an $n$-point planar set $X$ with $n \geq 3$ and $m=\left|X_{D}\right|$. Then
(a) if $m \geq 3$, the points in $X_{D}$ are the vertices of a convex m-gon;
(b) $D$ can be eliminated as an interpoint distance by removing at most $\left\lceil\frac{m}{2}\right\rceil$ points from $X$, where $\left\lceil\frac{m}{2}\right\rceil$ is the smallest integer at least $m / 2$.

Lemma 3. [6]. For a planar point set $X$ with $m=\left|X_{D}\right|$, let $X_{D}=\{1,2, \ldots, m\}$, $m$ points are consecutive with counter-clockwise order. If for a subset $S \subset X_{D}$, $S=\{k, k+1, k+2, \ldots, k+l-1\}$, the segment $[k, k+l-1]$ is the max-length segment of $S$ and $d(k, k+i)<d(k, k+l-1)$ for any $i=1,2,3, \ldots, l-2$, then $d(k, k+1)<d(k, k+2)<d(k, k+3)<\ldots<d(k, k+l-1) \leq D$.

In the following some proofs are omitted because of the restriction of the length of the paper.

## 3. The Unique Set $R_{7}$ with $D G\left(X_{D}\right)=C_{7}$

In the following proof we try to conclude a contradiction if $X_{D} \neq R_{7}$. For brevity, we do not always say "a contradiction".

Theorem 4. Let $X$ be a 5-distance set. If $D G\left(X_{D}\right)=C_{7}$, then $X_{D}=R_{7}$.
Proof. Let $X$ be a 5-distance set, and 5 distances are $D=d_{1}>d_{2}>d_{3}>$ $d_{4}>d_{5}$. By lemma 2, we know $X_{D}$ is a convex set. Let $X_{D}=\{1,2,3, \ldots, 7\}$, points $1,2,3,4,5,6,7$ are consecutive and always in counter-clockwise order. Since $g(3)=7$ [1], $X_{D}$ has at least 3 distinct distances. If $X_{D}$ is a 3-distance set, then by lemma 1 (i), $X_{D}=R_{7}$. If $X_{D}$ is a 4-distance set, then by lemma 1 (iii), $X_{D}=R_{8}-1$ or $X_{D}=R_{9}-2$, but $D G\left(R_{8}-1\right) \neq C_{7}, D G\left(R_{9}-2\right) \neq C_{7}$. So in the following we need to consider the case that $X_{D}$ is 5 -distance. By Lemma 3, we can see that
$d(x, x+1) \leq d_{3}$ for any $x \in X_{D}$. If all the seven edges of $X_{D}$ have the same length, then clearly all points of $X_{D}$ lie on a circle, and hence $X_{D}=R_{7}$, which is not a 5 -distance. So we can conclude that not all edges of $X_{D}$ have the same length. Now we depart three Parts to prove.

Part I. Every edge of $X_{D}$ has $d_{4}$-length or $d_{5}$-length. If there are six edges of $X_{D}$ having the same length, then clearly all points of $X_{D}$ lie on a circle, which leads to a contradiction. So in the following we may assume that at most five edges of $X_{D}$ have the same length.

Case 1. There are two edges of $X_{D}$ which have $d_{5}$-length (If there are two edges of $X_{D}$ which have $d_{4}$-length, the proof is similar). Without loss of generality, we may assume $d(1,7)=d_{5}$, and consider three types by symmetry. At first assume $d(6,7)=d_{5}$. Then $d(2,4)>d(1,6)$ since $\angle 234=\angle 176>\frac{\pi}{2}$, which contradicts the fact $d(2,4)=d(1,6)$ since $\triangle 214 \cong \triangle 126$. Secondly assume $d(5,6)=d_{5}$. Then $d(1,3)>d(5,7)$ since $\angle 123>\angle 567>\frac{\pi}{2}$, which contradicts the fact $d(1,3)=d(5,7)$ since $\triangle 173 \cong \triangle 715$. Thirdly assume $d(4,5)=d_{5}$. Then $d_{3}=d(4,6)<d(2,7)=d_{2}$ since $\angle 217>\angle 456>\frac{\pi}{2}$. But $\angle 237<\angle 341<\frac{\pi}{2}$, that is to say $d_{2}=d(2,7)<$ $d(1,3) \leq d_{2}$.

Case 2. There are three edges of $X_{D}$ which have $d_{5}$-length (If there are three edges of $X_{D}$ which have $d_{4}$-length, the proof is similar). Without loss of generality, we may assume $d(1,7)=d_{5}$, and consider four types by symmetry. At first assume $d(6,7)=$ $d(5,6)=d_{5}$. Then $d(1,3)>d(5,7)$ since $\angle 123=\angle 567>\frac{\pi}{2}$, which contradicts the fact $d(1,3)=d(5,7)$ since $\triangle 143 \cong \triangle 745$. Secondly assume $d(6,7)=d(4,5)=d_{5}$. Then $d_{3}=d(4,6)<d(2,7)=d_{2}$ since $\angle 217>\angle 456>\frac{\pi}{2}$. But $\angle 267<\angle 715<\frac{\pi}{2}$, that is to say, $d_{2}=d(2,7)<d(5,7) \leq d_{2}$. Thirdly assume $d(6,7)=d(3,4)=d_{5}$. Then $d_{3}=d(2,7)<d(3,5)=d_{2}$ since $\angle 345>\angle 217>\frac{\pi}{2}$. But $\angle 325<\angle 547<\frac{\pi}{2}$, that is to say, $d_{2}=d(3,5)<d(5,7) \leq d_{2}$. At last assume $d(5,6)=d(3,4)=d_{5}$. Then $d_{3}=d(4,6)<d(3,5)=d_{2}$ since $\angle 345>\angle 456>\frac{\pi}{2}$. But $\angle 365<\angle 341<\frac{\pi}{2}$, that is to say, $d_{2}=d(3,5)<d(1,3) \leq d_{2}$.

Part II. There is only one edge of $X_{D}$ which has $d_{3}$-length.
Without loss of generality, we may assume $d(1,2)=d_{3}$. By Lemma 3, $d(1,3)=$ $d(2,7)=d_{2}$.

Case 1. $d(2,3)=d(1,7)=x$. Then $d(3,4)=d(6,7)$ since $\angle 314=\angle 317-$ $\angle 417=\angle 723-\angle 623=\angle 726, d(4,5)=d(5,6)$ since $\angle 526=\angle 521-\angle 621=$ $\angle 512-\angle 412=\angle 514$. In fact $d(2,4)=d(1,6), d(3,5)=d(5,7), 12\|37\| 46$, $5 \in \perp 12=\perp 37=\perp 46$, all points of $X_{D}$ is symmetry about $\perp 12$.
(1) $d(2,3)=d(4,5)=d_{4}$. If $d(3,4)=d_{4}$, clearly no segment of $X_{D}$ has $d_{5}$-length. If $d(3,4)=d_{5}$, then $\angle 341<\angle 436<\frac{\pi}{2}$, which leads to $d_{2}=d(1,3)<d(4,6) \leq d_{2}$.
(2) $d(2,3)=d_{4}, d(4,5)=d_{5}$. If $d(3,4)=d_{4}$, then $\angle 237<\angle 325<\frac{\pi}{2}$, which leads to $d_{2}=d(2,7)<d(3,5) \leq d_{2}$. If $d(3,4)=d_{5}$, then $\angle 341<\angle 436<\frac{\pi}{2}$, which
leads to $d_{2}=d(1,3)<d(4,6) \leq d_{2}$.
(3) $d(2,3)=d_{5}, d(4,5)=d_{4}$. If $d(3,4)=d_{4}$, then $d_{2} \geq d(3,5)>d(4,6) \geq$ $d_{3}$ since $\angle 345>\angle 456>\frac{\pi}{2}$, and $d_{2} \geq d(3,5)>d(2,4)=d(1,6) \geq d_{3}$ since $\angle 345>\angle 234$. Now $\angle 465=\angle 165-\angle 164=\angle 467-\angle 164=\angle 167$, which implies $d_{5}=d(1,7)=d(4,5)=d_{4}$. If $d(3,4)=d_{5}$, then points $1,2,3,4,6,7$ lie on a circle, $d(3,5)=d(5,7)=d_{3}$ since $\angle 325=\angle 517<\angle 237<\frac{\pi}{2}$, and $d(2,7)=d_{2}, d(2,4)=$ $d(1,6)=d_{4}$ by the same reason. Now $\angle 125=\angle 124-\angle 524=\angle 754-\angle 452=\angle 752$, which implies $\triangle 125 \cong \triangle 752$ and $d_{1}=d(1,5)=d(2,7)=d_{2}$.
(4) $d(2,3)=d(4,5)=d_{5}$. If $d(3,4)=d_{5}$, clearly all points of $X_{D}$ lie on the circle, which leads to $d_{3}=d(1,2)=d(4,5)=d_{5}$. If $d(3,4)=d_{4}, \angle 237<\angle 325<\frac{\pi}{2}$, which leads to $d_{2}=d(2,7)<d(3,5) \leq d_{2}$.

Case 2. $d(2,3) \neq d(1,7)$. Without loss of generality, we may suppose $d(2,3)=d_{4}$ and $d(1,7)=d_{5}$. At first assume $d(6,7)=d_{4}$. If $d(3,4)=d_{4}$, then $\angle 267<\angle 143<$ $\frac{\pi}{2}$, which leads to $d_{2}=d(2,7)<d(1,3)=d_{2}$; if $d(3,4)=d_{5}$, then $\angle 267<\angle 476<$ $\frac{\pi}{2}$, which leads to $d_{2}=d(2,7)<d(4,6) \leq d_{2}$. Secondly assume $d(6,7)=d_{5}$. Now $d(1,3)=d(4,6)=d_{2}$ since $\triangle 173 \cong \triangle 674$. Clearly $d(3,4)=d_{4}$, since otherwise $\angle 267<\angle 476<\frac{\pi}{2}$, which leads to $d_{2}=d(2,7)<d(4,6)=d_{2}$. Clearly $d(4,5)=d_{4}$, since otherwise $\angle 173<\angle 517<\frac{\pi}{2}$, which leads to $d_{2}=d(1,3)<d(5,7) \leq d_{2}$. If $d(5,6)=d_{5}$, then $\angle 321>\angle 217, d_{2}=d(1,3)>d(2,7)=d_{2}$; if $d(5,6)=d_{4}$, then $\frac{\pi}{2}<\angle 456<\angle 345$, which leads to $d_{2}=d(4,6)<d(3,5) \leq d_{2}$.

Part III. At least two edges of $X_{D}$ have $d_{3}$-length.
Without loss of generality, we may assume $d(1,2)=d_{3}$. By Lemma 3, $d(2,7)=$ $d(1,3)=d_{2}$.

Case 1. $d(1,7)=d_{3}$ (If $d(2,3)=d_{3}$, the proof is similar). By Lemma 3, $d(2,7)=d(1,3)=d(1,6)=d_{2}$. Clearly it is easy to see that $d(2,3)=d(6,7)$ and $d(3,4)=d(5,6)$. In fact $d(2,4)=d(5,7), d(3,5)=d(4,6)$, all points of $X_{D}$ is symmetry about $\perp_{45}$. Clearly $d(2,3) \neq d_{3}, d(3,4) \neq d_{3}, d(4,5) \neq d_{3}$, since otherwise all edges of $X_{D}$ must be $d_{3}$-length, which contradicts 5 -distance. Since $d(6,7) \leq d_{4}, \angle 341=\angle 347-\angle 147<\angle 437-\angle 637=\angle 436<\frac{\pi}{2}$, which implies $d_{2}=d(1,3)<d(4,6) \leq d_{2}$.

Case 2. $d(4,5)=d_{3}$ (If $d(5,6)=d_{3}$, the proof is similar). By the former case we can see that $d(3,4) \neq d_{3}$ and $d(5,6) \neq d_{3}$. If $d(6,7)=d_{3}$, then clearly all edges of $X_{D}$ must be $d_{3}$-length, which contradicts 5-distance. If $d(2,3)=d(1,7)$, then $\angle 321 \neq \angle 217$ and $d_{2}=d(2,7) \neq d(1,3)=d_{2}$. So $d(2,3) \neq d(1,7)$. We may assume $d(2,3)=d_{4}$ and $d(1,7)=d_{5}$ (If $d(2,3)=d_{5}$ and $d(1,7)=d_{4}$, the proof is similar). If $d(3,4)=d(5,6)$, clearly $d_{5}=d(1,7)=d(1,2)=d_{3}$; if $d(3,4)=d_{5}$ and $d(5,6)=d_{4}$, then $\angle 345 \neq \angle 217$, and hence $d_{2}=d(3,5) \neq d(2,7)=d_{2}$; if $d(3,4)=$ $d_{4}$ and $d(5,6)=d_{5}$, then $\angle 123>\angle 217>\frac{\pi}{2}$, and hence $d_{2}=d(1,3)>d(2,7)=d_{2}$.

Case 3. $d(3,4)=d_{3}$ (If $d(6,7)=d_{3}$, the proof is similar). Then $\angle 173=\angle 174-$
$\angle 374<\angle 714-\angle 514=\angle 715<\frac{\pi}{2}$, which implies $d_{2}=d(1,3)<d(5,7) \leq d_{2}$.
Until now we have proved $d(i, i+1) \leq d_{4}$ for $i=2,3,4,5,6,7 \in X_{D}$, that is to say, there is only one edge $[1,2]$ of $X_{D}$ whose length is $d_{3}$, which has been proved in Part II.

## 4. The Unique Set with $D G\left(X_{D}\right)=C_{9}$

In the following proof we try to conclude a contradiction if $X_{D} \neq R_{9}$. For brevity, we do not always say "a contradiction".

Theorem 5. Let $X$ be a 6-distance set. If $D G\left(X_{D}\right)=C_{9}$, then $X_{D}=R_{9}$.
Proof. Let $X$ be a 6-distance set, and 6 distances are $D=d_{1}>d_{2}>d_{3}>d_{4}>$ $d_{5}>d_{6}$. By lemma 2, we know $X_{D}$ is a convex set. Let $X_{D}=\{1,2,3, \ldots, 9\}$, points $1,2,3,4,5,6,7,8,9$ are consecutive and always in counter-clockwise order. Since $g(4)=9$ [1], $X_{D}$ has at least 4 distinct distances. If $X_{D}$ is a 4-distance set, then by lemma 1 (i), $X_{D}=R_{9}$. If $X_{D}$ is a 5-distance set, then by lemma 1 (iv), $X_{D}=R_{10}-1$ or $X_{D}=R_{11}-2$, but $D G\left(R_{10}-1\right) \neq C_{9}, D G\left(R_{11}-2\right) \neq C_{9}$. So in the following we need to consider the case that $X_{D}$ is a 6-distance set. By Lemma 3, we can see that $d(x, x+1) \leq d_{4}$ for any $x \in X_{D}$. If all the nine edges of $X_{D}$ have the same length, then clearly all points of $X_{D}$ lie on a circle, and hence $X_{D}=R_{9}$, which is not 6-distance. So not all edges of $X_{D}$ have the same length. Now we depart three Parts to prove.

Part I. Every edge of $X_{D}$ has $d_{5}$-length or $d_{6}$-length. If there exist eight edges of $X_{D}$ which have the same length, then clearly all points of $X_{D}$ lie on the circle, which implies a contradiction. So in the following we may assume at most seven edges of $X_{D}$ have the same length.

Case 1. There are two edges of $X_{D}$ which have $d_{5}$-length (If there are two edges of $X_{D}$ which have $d_{6}$-length, the proof is similar). Without loss of generality, we may assume $d(1,2)=d_{5}$, and consider four types by symmetry. At first assume $d(1,9)=d_{5}$. Then points $2,3,4,5,6,7,8,9$ lie on a circle, points $1,2,5$, 7 lie on a circle, and so deduce points $1,2,5,6$ lie on a circle, which implies $d_{6}=d(5,6)=d(1,2)=d_{5}$. Secondly assume $d(8,9)=d_{5}$. Then points $2,3,4,6,7$, 8 lie on a circle, points $1,2,3$, 9 lie on a circle, points $1,2,8,9$ lie on a circle, and so conclude points $1,2,6,7$ lie on the circle, which implies $d_{6}=d(6,7)=d(1,2)=d_{5}$. Thirdly assume $d(7,8)=d_{5}$. Then points $1,3,4,5,6,8,9$ lie on a circle, points $1,2,3,9$ lie on a circle, points $2,3,6,7$ lie on a circle, and at last we conclude all points of $X_{D}$ lie on the circle, which implies $d_{6}=d(2,3)=d(7,8)=d_{5}$. At last assume $d(6,7)=d_{5}$. Then clearly all points of $X_{D}$ lie on the circle, which implies $d_{6}=d(2,3)=d(6,7)=d_{5}$.

Case 2. There are three edges of $X_{D}$ which have $d_{5}$-length (If there are three edges of $X_{D}$ which have $d_{6}$-length, the proof is similar). Without loss of generality, we may assume $d(1,9)=d_{5}$.
(1) There are at least two $d_{5}$-length edges which are consecutive. We should consider four types by symmetry. At first assume $d(1,2)=d(8,9)=d_{5}$. Then points $2,3,6,7$ lie on a circle, points $3,4,5$, 6 lie on a circle, points $4,5,6,7$ lie on a circle, and so conclude points $2,3,4,5$ lie on the circle, which implies $d(2,4)=d(3,5)$, but in fact $\angle 234 \neq \angle 345$, that is to say, $d(2,4) \neq d(3,5)$. Secondly assume $d(1,2)=$ $d(7,8)=d_{5}$. Then points $2,4,5,7$ lie on a circle, points $4,5,6,7$ lie on a circle, points 2, 3, 6, 7 lie on a circle, and so conclude points 3, 4, 5, 6 lie on the circle, which implies $d(3,5)=d(4,6)$, but in fact $\angle 345 \neq \angle 456$, that is to say, $d(3,5) \neq d(4,6)$. Thirdly assume $d(1,2)=d(6,7)=d_{5}$, or at last assume $d(1,2)=d(5,6)=d_{5}$. Then $d_{4}=d(5,7)<d(1,8)=d_{3}$ since $\angle 198>\angle 567>\frac{\pi}{2}$, and so $d(1,7)=d_{2}$ by lemma 3. But $\angle 167<\angle 376<\frac{\pi}{2}$, which leads to $d_{2}=d(1,7)<d(3,6) \leq d_{2}$.
(2) There are not two $d_{5}$-length edges which are consecutive. We should consider three types by symmetry. At first assume $d(7,8)=d(5,6)=d_{5}$. Then $d_{4}=d(2,9)<$ $d(5,7)=d_{3}$ since $\angle 567>\angle 219>\frac{\pi}{2}$, and so $d(5,8)=d(4,7)=d_{2}$ by lemma 3. But $\angle 548 \neq \angle 437$, which leads to $d_{2}=d(5,8) \neq d(4,7)=d_{2}$. Secondly assume $d(7,8)=d(4,5)=d_{5}$. Then $d_{4}=d(4,6)<d(7,9)=d_{3}$ since $\angle 789>\angle 456>\frac{\pi}{2}$, and so $d(6,9)=d(1,7)=d_{2}$ by lemma 3. But $\angle 127 \neq \angle 659$, which leads to $d_{2}=d(6,9) \neq d(1,7)=d_{2}$. At last assume $d(6,7)=d(3,4)=d_{5}$. Clearly $d_{3} \leq d(1,7)<d(2,8) \leq d_{2}$ since $\frac{\pi}{2}>\angle 278>\angle 127$, that is to say, $d(2,8)=d_{2}$ and $d(1,7)=d_{3}$. Similarly $d(1,8)=d_{4}$ and $d(7,9)=d_{5}$ since $\angle 198>\angle 789>\frac{\pi}{2}$. Now we conclude 134679 is a regular hexagon, and $X_{D}=R_{12}-3$, but $D G\left(R_{12}-3\right) \neq C_{9}$.

Case 3. There are four edges of $X_{D}$ which have $d_{5}$-length (If there are four edges of $X_{D}$ which have $d_{6}$-length, the proof is similar). Without loss of generality, we may assume $d(1,2)=d_{5}$.
(1) There are at least three $d_{5}$-length edges which are consecutive. We should consider three types by symmetry. At first assume $d(1,9)=d(8,9)=d(7,8)=d_{5}$. Then points $2,3,4,5,6,7$ lie on a circle, points $1,2,5,7$ lie on a circle, and so conclude points 1, 2, 5, 6 lie on the circle, which implies $d_{6}=d(5,6)=d(1,2)=d_{5}$. Secondly assume $d(1,9)=d(8,9)=d(6,7)=d_{5}$. Then $d_{4}=d(5,7)<d(7,9)=d_{3}$ since $\angle 789>\angle 567>\frac{\pi}{2}$, and so $d(6,9)=d(1,7)=d_{2}$ by lemma 3. But $\angle 916 \neq \angle 127$, which leads to $d_{2}=d(6,9) \neq d(1,7)=d_{2}$. Thirdly assume $d(1,9)=d(8,9)=$ $d(5,6)=d_{5}$. Then $d_{4}=d(5,7)<d(7,9)=d(1,3)=d_{3}$ since $\angle 123=\angle 789>$ $\angle 567>\frac{\pi}{2}$, and so $d(6,9)=d(1,4)=d_{2}$ by lemma 3. But $\angle 194 \neq \angle 619$, which leads to $d_{2}=d(6,9) \neq d(1,4)=d_{2}$.
(2) There are just two $d_{5}$-length edges which are consecutive. We should consider six types by symmetry. At first assume $d(1,9)=d(6,7)=d(7,8)=d_{5}$. Then $d_{4}=d(5,7)<d(1,8)=d_{3}$ since $\angle 198>\angle 567>\frac{\pi}{2}$, and so $d(2,8)=d(1,7)=d_{2}$
by lemma 3. But $\angle 167 \neq \angle 278$, which leads to $d_{2}=d(1,7) \neq d(2,8)=d_{2}$. Secondly assume $d(1,9)=d(5,6)=d(6,7)=d_{5}$. Then $d_{4}=d(4,6)<d(1,8)=d_{3}$ since $\angle 198>\angle 456>\frac{\pi}{2}$, and so $d(1,7)=d_{2}$ by lemma 3. In this way $\angle 127<$ $\angle 376<\frac{\pi}{2}$, which leads to $d_{2}=d(1,7)<d(3,6) \leq d_{2}$. Thirdly assume $d(1,9)=$ $d(5,6)=d(7,8)=d_{5}$. Then $d_{4}=d(4,6)<d(7,9)=d_{3}$ since $\angle 789>\angle 456>\frac{\pi}{2}$, and so $d(6,9)=d(1,7)=d_{2}$ by lemma 3 . But $\angle 127 \neq \angle 619$, which leads to $d_{2}=d(1,7) \neq d(6,9)=d_{2}$. Fourth assume $d(1,9)=d(4,5)=d(7,8)=d_{5}$. Then $d_{4}=d(1,8)<d(7,9)=d(1,3)=d_{3}$ since $\angle 123=\angle 789>\angle 198>\frac{\pi}{2}$, and so $d(6,9)=d(1,4)=d_{2}$ by lemma 3. But $\angle 194 \neq \angle 619$, which leads to $d_{2}=d(1,4) \neq d(6,9)=d_{2}$. Fifth assume $d(1,9)=d(3,4)=d(7,8)=d_{5}$. Then $d_{4}=d(7,9)<d(3,5)=d_{3}$ since $\angle 345>\angle 789>\frac{\pi}{2}$, and so $d(2,5)=d(3,6)=d_{2}$ by lemma 3. But $\angle 265 \neq \angle 326$, which leads to $d_{2}=d(2,5) \neq d(3,6)=d_{2}$. At last assume $d(1,9)=d(4,5)=d(6,7)=d_{5}$. Then $d_{4}=d(5,7)<d(6,8)=d_{3}$ since $\angle 678>\angle 567>\frac{\pi}{2}$, and so $d(5,8)=d_{2}$ by lemma 3. In this way $\angle 598<\angle 389<\frac{\pi}{2}$, which leads to $d_{2}=d(5,8)<d(3,9) \leq d_{2}$.
(3) Any two $d_{5}$-length edges are not consecutive. We may assume $d(8,9)=$ $d(6,7)=d(4,5)=d_{5}$. Then $d_{4}=d(1,8)<d(7,9)=d_{3}$ since $\frac{\pi}{2}<\angle 891<\angle 789$, and so $d(1,7)=d_{2}$ by lemma 3. In this way $\angle 167<\angle 376<\frac{\pi}{2}$, which leads to $d_{2}=d(1,7)<d(3,6) \leq d_{2}$.

Part II. There exists only one edge of $X_{D}$ which has $d_{4}$-length. Without loss of generality, we may assume $d(1,2)=d_{4}$. By Lemma 3, $d(1,3)=d(2,9)=d_{3}$, $d(1,4)=d(2,8)=d(3,9)=d_{2}$.

Case 1. $d(1,9)=d(2,3)=x$. Then $d(5,6)=d(6,7)$ since $d(2,9)=d(1,3)=$ $d_{3}, d(3,4)=d(8,9)$ since $\angle 829=\angle 329-\angle 328=\angle 913-\angle 914=\angle 413$, and $d(4,5)=d(7,8)$ since $\angle 827=\angle 328-\angle 327=\angle 914-\angle 915=\angle 415$. Until now we can see $d(3,6)=d(6,9), d(4,6)=d(6,8), d(3,5)=d(7,9), d(2,4)=d(1,8)$, that is to say, all points of $X_{D}$ is symmetry about $\perp_{12}$.
(1) $d(1,9)=d_{5}$ and $d(5,6)=d_{5}$. If $d(3,4)=d_{5}$ and $d(4,5)=d_{6}$, then $\angle 349<\angle 238<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<d(2,8)=d_{2}$. If $d(3,4)=d_{6}$ and $d(4,5)=d_{5}$, then $\angle 238<\angle 487<\frac{\pi}{2}$, which leads to $d_{2}=d(2,8)<d(4,7) \leq d_{2}$. If $d(3,4)=d(4,5)=d_{6}$, then $\angle 265<\angle 326<\angle 238<\frac{\pi}{2}$, which leads to $d_{3} \leq$ $d(2,5)<d(3,6)<d(2,8)=d_{2}$. If $d(3,4)=d(4,5)=d_{5}$, then clearly no segment of $X_{D}$ has $d_{6}$-length, a contradiction.
(2) $d(1,9)=d_{5}$ and $d(5,6)=d_{6}$. If $d(3,4)=d(4,5)=d_{5}$, then $\angle 278<$ $\angle 619<\frac{\pi}{2}$, which leads to $d_{2}=d(2,8)<d(6,9) \leq d_{2}$. If $d(3,4)=d(4,5)=d_{6}$, then $\angle 451<\angle 349<\frac{\pi}{2}$, which leads to $d_{2}=d(1,4)<d(3,9)=d_{2}$. If $d(3,4)=d_{5}$ and $d(4,5)=d_{6}$, then $\angle 349<\angle 194<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<d(1,4)=$ $d_{2}$. If $d(3,4)=d_{6}$ and $d(4,5)=d_{5}$, then $\angle 278<\angle 487<\frac{\pi}{2}$, which leads to $d_{2}=d(2,8)<d(4,7) \leq d_{2}$.
(3) $d(1,9)=d_{6}$ and $d(5,6)=d_{6}$. If $d(3,4)=d_{5}$ and $d(4,5)=d_{6}$, then $\angle 349<\angle 437<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<d(4,7) \leq d_{2}$. If $d(3,4)=d_{6}$ and $d(4,5)=d_{5}$, then $\angle 238<\angle 349<\frac{\pi}{2}$, which leads to $d_{2}=d(2,8)<d(3,9)=d_{2}$. If $d(3,4)=d(4,5)=d_{5}$, then $\angle 349<\angle 278<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<$ $d(2,8)=d_{2}$. If $d(3,4)=d(4,5)=d_{6}$, then all points of $X_{D}$ lie on the circle, a contradiction.
(4) $d(1,9)=d_{6}$ and $d(5,6)=d_{5}$. If $d(3,4)=d_{5}$ and $d(4,5)=d_{6}$, then $\angle 349<\angle 437<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<d(4,7) \leq d_{2}$. If $d(3,4)=d_{6}$ and $d(4,5)=d_{5}$, then $\angle 238<\angle 349<\frac{\pi}{2}$, which leads to $d_{2}=d(2,8)<d(3,9)=d_{2}$. If $d(3,4)=d(4,5)=d_{5}$, then $\angle 389<\angle 278<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<$ $d(2,8)=d_{2}$. If $d(3,4)=d(4,5)=d_{6}$, then points $1,2,3,4,5,7,8,9$ lie on a circle, from this we can see $d(5,7)=d_{3}$. If $d(4,6)=d(6,8)=d_{3}$, then points 2,4 , 6 , 9 lie on a circle, and so conclude all points of $X_{D}$ lie on the circle, which implies $d_{5}=d(6,7)=d(2,3)=d_{6}$. So $d(4,6)=d(6,8)=d_{4}$. Since $d_{5} \leq d(3,5) \leq d_{4}$, we know points $2,4,6$, 8 lie on a circle when $d(3,5)=d_{4}$, points $3,5,6,7$ lie on a circle when $d(3,5)=d_{5}$. Hence we conclude all points of $X_{D}$ lie on the circle, which implies $d_{5}=d(6,7)=d(2,3)=d_{6}$.

Case 2. $d(2,3) \neq d(1,9)$. Without loss of generality, we may assume $d(2,3)=d_{6}$ and $d(1,9)=d_{5}$. When $d(5,6)=d(6,7)=d_{5}, \frac{\pi}{2}>\angle 376>\angle 619>\angle 167$, which implies $d_{2} \geq d(3,6)>d(6,9)>d(1,7) \geq d_{3}$. When $d(5,6)=d(6,7)=d_{6}$, $\frac{\pi}{2}>\angle 326>\angle 659>\angle 265$, which implies $d_{2} \geq d(3,6)>d(6,9)>d(2,5)=$ $d(1,7) \geq d_{3}$. When $d(5,6)=d_{6}$ and $d(6,7)=d_{5}, \angle 219>\angle 123>\frac{\pi}{2}$, which implies $d_{3} \leq d(1,3)<d(2,9) \leq d_{3}$. Now we only need to consider $d(5,6)=d_{5}$ and $d(6,7)=d_{6}$.

Clearly $d(7,8)=d_{6}$, since otherwise $\angle 238<\angle 376<\frac{\pi}{2}$, which leads to $d_{2}=$ $d(2,8)<d(3,6) \leq d_{2}$. And $d(8,9)=d_{5}$, since otherwise $\angle 154<\angle 548<\frac{\pi}{2}$, which leads to $d_{2}=d(1,4)<d(5,8) \leq d_{2}$. In this way $\angle 349<\angle 437<\frac{\pi}{2}$, which leads to $d_{2}=d(3,9)<d(4,7) \leq d_{2}$.

Part III. At least two edges of $X_{D}$ have $d_{4}$-length. Without loss of generality, we may assume $d(1,2)=d_{4}$. By Lemma 3, $d(2,9)=d(1,3)=d_{3}, d(2,8)=d(3,9)=$ $d(1,4)=d_{2}$.

Case 1. $d(5,6)=d_{4}$ (If $d(6,7)=d_{4}$, the proof is similar).
By Lemma 3, $d(4,6)=d(5,7)=d_{3}, d(3,6)=d(4,7)=d(5,8)=d_{2}$. Clearly $d(2,3)=d(4,5)$ since $\angle 564=\angle 561-\angle 461=\angle 216-\angle 316=\angle 213$, and $d(6,7)=$ $d(1,9)$ since $\angle 657=\angle 652-\angle 752=\angle 125-\angle 925=\angle 129, d(7,8)=d(8,9)$ since $\angle 748=\angle 743-\angle 843=\angle 934-\angle 834=\angle 938, d(3,4)=d(4,5)$ since $\angle 394=\angle 398-\angle 498=\angle 589-\angle 489=\angle 584, d(6,7)=d(7,8)$ since $\angle 637=$ $\angle 632-\angle 732=\angle 823-\angle 723=\angle 827$. Until now we conclude $d(2,3)=d(3,4)=$ $d(4,5)$ and $d(6,7)=d(7,8)=d(8,9)=d(1,9)$. If $d(2,3)=d_{4}$, then all points of
$X_{D}$ lie on a circle, that is to say, any edge of $X_{D}$ must be $d_{4}$-length. So $d(2,3) \leq d_{5}$. By the same reason, $d(6,7) \leq d_{5}$. If $d(2,3)=d(6,7)$, then clearly all points of $X_{D}$ lie on a circle, which implies $d_{4}=d(1,2)=d(6,7) \leq d_{5}$. So $d(2,3) \neq d(6,7)$. When $d(2,3)=d_{5}$ and $d(6,7)=d_{6}, \angle 321>\angle 567>\frac{\pi}{2}$, which implies $d_{3}=d(1,3)>$ $d(5,7)=d_{3}$. When $d(2,3)=d_{6}$ and $d(6,7)=d_{5}$, points $1,6,7,8,9$ lie on a circle, points 2, 4, 7, 8 lie on a circle,points $3,4,7$, 9 lie on a circle, points 1, 4, 5, 8 lie on a circle. If $d(6,9)=d_{2}$, then points $1,4,6,9$ lie on a circle, combining this with the former results we conclude all points of $X_{D}$ lie on the circle, which implies $d_{5}=d(1,9)=d(5,6)=d_{4}$; if $d(6,9)=d_{3}$, then $d(7,9)=d_{4}$ by Lemma 3, points 5 , $6,7,9$ lie on a circle, combining this with the former results we conclude all points of $X_{D}$ lie on the circle, which implies $d_{5}=d(1,9)=d(5,6)=d_{4}$.

Case 2. $d(4,5)=d_{4}$ (If $d(7,8)=d_{4}$, the proof is similar). Now $\angle 194=\angle 195-$ $\angle 495<\angle 915-\angle 615=\angle 916<\frac{\pi}{2}$, which implies $d_{2}=d(1,4)<d(6,9) \leq d_{2}$.

Case 3. $d(3,4)=d_{4}$ (If $d(8,9)=d_{4}$, the proof is similar). Now $\angle 389=\angle 489-$ $\angle 483<\angle 498-\angle 495=\angle 598<\frac{\pi}{2}$, which implies $d_{2}=d(3,9)<d(5,8) \leq d_{2}$.

Case 4. $d(2,3)=d_{4}$ (If $d(1,9)=d_{4}$, the proof is similar). By the former case 3 we can conclude $d(1,9) \leq d_{5}$. By Lemma 3, $d(2,4)=d_{3}, d(2,5)=d_{2}$. Now $\angle 265=\angle 165-\angle 162<\angle 156-\angle 159=\angle 659<\frac{\pi}{2}$, which implies $d_{2}=d(2,5)<$ $d(6,9) \leq d_{2}$.

That is to say, there is only one edge $[1,2]$ of $X_{D}$ whose length is $d_{4}$, which has been proved in Part II.

When $X$ is a 3 -distance set with $D G\left(X_{D}\right)=C_{3}$, clearly $X_{D}=R_{3}$. When $X$ is a 4-distance set with $D G\left(X_{D}\right)=C_{5}, X_{D}$ can be $R_{5}$ and the other two configurations, see Lemma 6 in [7].

Conjecture 6. Let $X$ be a $k$-distance set for $k \geq 7$. If $D G\left(X_{D}\right)=C_{2 k-3}$, then $X_{D}=R_{2 k-3}$.

## References

1. P. Erdbs and P. Fishburn, Maximum planar sets that determine k distances, Discrete Mathematics, 160 (1996), 115-125.
2. P. Erdös and P. Fishburn, Convex nonagons with five intervertex distance, Geometria Dedicata, 60 (1996), 317-332.
3. P. Fishburn, Convex polygons with few intervertex distance, Computational Geometry, 5 (1995), 65-93.
4. M. Shinohara, Classification of three-distance sets in two dimensional Euclidean space, European Journal of Combinatorics, 25 (2004), 1039-1058.
5. M. Shinohara, Uniqueness of maximum planar five-distance sets, Discrete Mathematics, 308 (2008), 3048-3055.
6. X. Wei, Classification of eleven-point five-distance sets in the plane, Ars Combinatoria, 102 (2011), 505-515.
7. W. Lan and X. Wei, Classification of seven-point four-distance sets in the plane, Mathematical Notes, 93 (2013), 510-522.

Xianglin Wei, Guogang Li, Yue Cong and Feixing Gao
College of Science
Hebei University of Science and Technology
Shijiazhuang 050018
P. R. China

E-mail: wxlhebtu@126.com


[^0]:    Received November 13, 2013, accepted April 14, 2014.
    Communicated by Gerard Jennhwa Chang. 2010 Mathematics Subject Classification: 52C20, 52A10, 52C15.
    Key words and phrases: $k$-Distance set, Diameter graph, Different distance, Cycle.
    This research was supported by National Natural Science Foundation of China and Natural Science Foundation of Hebei Province (No. A2014208095).
    *Corresponding author.

