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NON-NEHARI MANIFOLD METHOD
FOR SUPERLINEAR SCHRÖDINGER EQUATION

X. H. Tang

Abstract. We consider the boundary value problem

(0.1)

{ −�u + V (x)u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain, infΩ V (x) > −∞, f is a superlinear,

subcritical nonlinearity. Inspired by previous work of Szulkin and Weth (2009)
[21] and (2010) [22], we develop a more direct and simpler approach on the
basis of one used in [21], to deduce weaker conditions under which problem (0.1)
has a ground state solution of Nehari-Pankov type or infinity many nontrivial
solutions. Unlike the Nehari manifold method, the main idea of our approach lies
on finding a minimizing Cerami sequence for the energy functional outside the
Nehari-Pankov manifold by using the diagonal method.

1. INTRODUCTION

Let Ω ⊂ R
N be a bounded domain and consider the boundary value problem

(1.1)

{ −�u + V (x)u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where V : Ω → R and f : Ω × R → R.
The problem (1.1) is one of the main nonlinear elliptic problems which has been

studied extensively for many years where infΩ V > −λ1(Ω) or V ∈ LN/2(Ω), λ1(Ω)
denotes the first Dirichlet eigenvalue of −� in Ω. Since Ambrosetti and Rabinowitz
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proposed the mountain-pass theorem in 1973 (see [16]), critical point theory has become
one of the main tools for finding solutions to elliptic equations of variational type.
Clearly, weak solutions to (1.1) correspond to critical points of the energy functional

(1.2) Φ(u) =
1
2

∫
Ω

(|∇u|2 + V (x)u2
)
dx −

∫
Ω

F (x, u)dx, u ∈ H1
0 (Ω),

where F (x, t) =
∫ t
0 f(x, s)ds. For the case of infΩ V > −λ1(Ω), 0 is a local minimum

of Φ, it is very convenient to apply the mountain-pass theorem to construct non-trivial
solutions of (1.1) with a variational method by a minimax procedure on Φ, see example,
[1, 2, 13, 14, 16, 19, 25]. When infΩ V ∈ (−∞,−λ1(Ω)) , 0 is a saddle point
rather than a local minimum of Φ, problem (1.1) is indefinite and it is not easy to
obtain the boundedness of the Palais-Smale sequence for Φ. Under an additional
assumption on potential: V ∈ LN/2(Ω), applying Linking theorem (1978, Rabinowitz,
see [16]), Willem [25] obtained the existence of one nontrivial solution to (1.1). In the
aforementioned references, the following classical condition (AR) due to Ambrosetti
and Rabinowitz [3] is commonly assumed:

(AR) there exist μ > 2 and R0 > 0 such that

0 < μF (x, t) ≤ tf(x, t), ∀ x ∈ Ω, |t| ≥ R0.

(AR) is a very convenient hypothesis since it readily achieves mountain pass geometry as
well as satisfaction of Palais-Smale condition. However (AR) implies F (x, t) ≥ C|t|μ
for large |t| and some constant C > 0, one can not deal with (1.1) using the mountain-
pass theorem directly if f(x, t) is of asymptotically linear at ∞. During the past three
decades, many results have been obtained for the existence of nontrivial solutions to
(1.1) when f(x, t) does not satisfy (AR) condition, see e.g. [6, 7, 8, 9, 10, 11, 18, 24]
and the references therein.

Let A be the selfadjoint extension of the operator −� + V with domain D(A)
(C∞

0 (Ω) ⊂ D(A) ⊂ L2(Ω)) and |A| be the absolute value of A. Let E = D(|A|1/2)
be the domain of |A|1/2. Then E ⊂ H1

0 (Ω) is a Hilbert space with the orthogonal
decomposition E = E− ⊕ E0 ⊕ E+, see section 2 in detail. Let

(1.3) N−=
{
u∈E \ (E−⊕E0) : 〈Φ′(u), u〉=〈Φ′(u), v〉=0, ∀ v∈E− ⊕ E0

}
.

The set N− was first introduced by Pankov [15], which is a subset of the Nehari
manifold

(1.4) N =
{
u ∈ E \ {0} : 〈Φ′(u), u〉 = 0

}
.

Suppose that u �= 0 is a critical point of Φ, i.e. Φ′(u) = 0. Then necessarily u is
contained in set N−. Let

(1.5) m = inf
u∈N−

Φ(u).
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Under appropriate conditions on Φ one hopes that m is attained at some u0 ∈ N− and
that u0 is a critical point. Since u0 is a solution to the equation Φ′(u) = 0 at which Φ
has least “energy” in set N−, we shall call it a ground state solution of Nehari-Pankov
type.

Clearly, there are more difficulties to overcome to find ground state solutions of
Nehari-Pankov type for problem (1.1) than nontrivial weak solutions. The main dif-
ficulty is to find a Palais-Smale sequence or Cerami sequence {un} with Φ(un) →
infu∈N− Φ(u).

In recent paper [22] (see also [21]), on the basis of the Nehari manifold method,
Szukin and Weth developed a new approach to find ground state solutions of Nehari-
Pankov type for the following special form of problem (1.1):

(1.6)

{ −�u − λu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

This approach transforms, by a direct and simple reduction, the indefinite variational
problem to a definite one, in which λ ≥ λ1(Ω). To state the results obtained by Szukin
and Weth in [21, 22], we first introduce the following assumptions:

(F1) f ∈ C(Ω × R, R), and there exist constants p ∈ (2, 2∗) and C0 > 0 such that

|f(x, t)| ≤ C0

(
1 + |t|p−1

)
, ∀ (x, t) ∈ Ω× R;

(F2) f(x, t) = o(|t|), as |t| → 0, uniformly in x ∈ Ω;
(SQ) lim|t|→∞

|F (x,t)|
|t|2 = ∞ uniformly in x ∈ Ω;

(Ne) t �→ f(x,t)
|t| is strictly increasing on (−∞, 0) ∪ (0,∞).

Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the Dirichlet eigenvalues of −� in Ω and
e1, e2, e3, . . . the corresponding orthogonal eigenfunctions. Let

(1.7) Φλ(u) =
1
2

∫
Ω

(|∇u|2 − λu2
)
dx −

∫
Ω

F (x, u)dx, u ∈ H1
0 (Ω).

Now, we are able to state a main result in [21, Theorem 3.1, Theorem 3.2] or [22,
Theorem 37].

Theorem 1.1. ([21, 22]). Assume that λ < λm+1 and f satisfies (F1), (F2),
(SQ) and (Ne). Then problem (1.6) has a solution u0 ∈ H1

0 (Ω) such that Φλ(u0) =
infN−

λ
Φλ > 0, where

(1.8) N−
λ =

{
u ∈ H1

0 (Ω) \ Em : 〈Φ′
λ(u), u〉 = 〈Φ′

λ(u), v〉 = 0, ∀ v ∈ Em

}
,

Em := span{e1, e2, . . . , em}. Moreover, if f(x, t) is odd in t, then (1.6) has infinitely
many pairs of solutions.
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We point out that the Nehari type assumption (Ne) is very crucial in the argument
of Szulkin and Weth [21, 22]. In fact, the starting point of their approach is to show
that for each u ∈ H1

0 (Ω) \Em, the Nehari-Pankov manifold N−
λ intersects Em ⊕R

+u

in exactly one point m̂(u). The uniqueness of m̂(u) enables one to define a map
u �→ m̂(u), which is important in the remaining proof. If t �→ f(x, t)/|t| is not strictly
increasing, then m̂(u) may not be unique and their argument becomes invalid.

Motivated by papers [21, 22], in the present paper, we shall mainly study the
existence of ground state solutions of Nehari-Pankov type and infinitely many solutions
for problem (1.1). On the basis of the approach used in [21], we will develop a
more direct and simpler one to generalize Theorem 1.1 by relaxing assumptions (F2),
(SQ) and (Ne). Unlike the Nehari manifold method, our approach lies on finding a
minimizing Cerami sequence for functional Φ outside the Nehari-Pankov manifold N−

by using the diagonal method, see Lemma 3.8.
To state our results, we make the following assumptions:

(V) V ∈ C(Ω, R), and infΩ V (x) > −∞;

(F2′) limt→0
f(x,t)

t = ā ∈ R uniformly in x ∈ Ω;

(F2′′) lim supt→0
|f(x,t)|

|t| < ∞ uniformly in x ∈ Ω;

(F3) lim|t|→∞
|F (x,t)|
|t|2 = ∞, a.e. x ∈ Ω;

(F4) there exist constants c0 > 0, R0 > 0 and κ > max{1, N/2} such that

0 ≤ [F (x, t)]κ ≤ c0|t|2κ [tf(x, t)− 2F (x, t)] , ∀ x ∈ Ω, |t| ≥ R0;

(F5) f(x,−t) = −f(x, t), ∀ (x, t) ∈ Ω × R;

(WN) t �→ f(x,t)
|t| is non-decreasing on (−∞, 0) ∪ (0,∞).

We are now in a position to state the main results of this paper.

Theorem 1.2. Assume that V and f satisfy (V), (F1), (F2), (F3) and (WN). Then
problem (1.1) has a solution u0 ∈ E such that Φ(u0) = infN− Φ > 0.

Corollary 1.3. Assume that V and f satisfy (V), (F1), (F2′), (F3) and (WN). Then
problem (1.1) has a solution u0 ∈ E such that Φ(u0) = infN− Φ > 0.

Theorem 1.4. Assume that V and f satisfy (V), (F1), (F2′′), (F3), (F4) and (F5).
Then problem (1.1) possesses infinitely many pairs of solutions.

Corollary 1.5. In Theorem 1.4, if (F4) is replaced by the following assumption
(F4′) there exist constants c1 > 0, R0 > 0 and ν > 0 with (p − ν)/(p − 2) >

max{1, N/2} such



Non-Nehari Manifold Method for Superlinear Schrödinger Equation 1961

that

0 ≤
(

2 +
1

c1|t|ν
)

F (x, t) ≤ tf(x, t), ∀ x ∈ Ω, |t| ≥ R0,

then the conclusion still holds.

Remark 1.6. After Szulkin and Weth [21, 22], Liu [12] also obtained the existence
of “ground state solutions” for a periodic problem similar to (1.1). However, the
“ground state solutions” for the problem in [12] is in fact a nontrivial solution u0

which satisfies Φ(u0) = infM Φ, where

(1.9) M =
{
u ∈ E \ {0} : Φ′(u) = 0

}
is a very small subset of N−. On the existence of this kind “ground state solutions”, a
weaker condition was obtained in very recent paper [24]. In general, it is much more
difficult to find a solution u0 for (1.1) which satisfies Φ(u0) = infN− Φ than one
satisfying Φ(u0) = infM Φ.

Remark 1.7. It is easy to check that

(1.10) f(x, t) = ϑ(x)t ln (2 + |t|)
satisfies (F2′) and (WN), and

(1.11) F (x, t) = ϑ(x)
[
|t|μ + (μ − 2)|t|μ−ε sin2

( |t|ε
ε

)
+ 1 − cos t

]
satisfies (F2′′) and (F4), where ϑ ∈ C(Ω, R), and 0 < infΩ ϑ ≤ supΩ ϑ < ∞, and
μ > 2, 0 < ε < μ − 2 if N = 1, 2 and 0 < ε < μ + N − μN/2 if N ≥ 3. Remark
that these functions do not satisfy (F2) and (AR).

Throughout this paper, by ‖ · ‖s we denote the usual norm in Ls(Ω).
The remainder of this paper is organized as follows. In Section 2, we describe

the space structure of the Hilbert space E in detail. The proofs of Theorem 1.2 and
Corollary 1.3 are given in section3. In the last section, we show Theorem 1.4 and
Corollary 1.5.

2. VARIATIONAL SETTING

In order to establish our existence results via the critical point theory, we first
describe some properties of the space E .

In what follows V is assumed to satisfy assumption (V). Let {E(λ) : −∞ <
λ < +∞} be the spectral family of A, and |A|1/2 be the square root of |A|. Set
U = id − E(0) − E(0−). Then U commutes with A, |A| and |A|1/2, and A = U |A|
is the polar decomposition of A (see [5, Theorem 4.3.3]). Define an inner product

(u, v)0 =
(
|A|1/2u, |A|1/2v

)
L2

+ (u, v)L2, ∀ u, v ∈ E
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and the corresponding norm

‖u‖0 =
√

(u, u)0, ∀ u ∈ E,

where, as usual, (·, ·)L2 denotes the inner product of L2(Ω, R). Then E is a Hilbert
space with the above inner product. Clearly, C∞

0 (Ω, R) is dense in E .
By (V), V (x) is bounded from below and so there is an a0 > 0 such that

(2.1) V (x) + a0 ≥ 1, ∀ x ∈ Ω.

Set

E∗ =
{

u ∈ H1
0 (Ω) :

∫
Ω

[|∇u|2 + (V (x) + a0)u2
]
dx < +∞

}
,

(u, v)∗ =
∫

Ω
[∇u∇v + (V (x) + a0)uv] dx, ∀ u, v ∈ E∗

and

‖u‖∗ =
{∫

Ω

[|∇u|2 + (V (x) + a0)u2
]
dx

}1/2

, ∀ u ∈ E∗.

Then E∗ is also a Hilbert space with the above inner product (·, ·)∗.

Lemma 2.1. Suppose that V satisfies (V). Then

(2.2)
1√

2 + a0
‖u‖0 ≤ ‖u‖∗ ≤

√
1 + a0‖u‖0, ∀ u ∈ E∗ = E.

Proof. For u ∈ C∞
0 (Ω), one has

(2.3)

‖u‖2∗ = ((A + a0)u, u)L2 = (Au, u)L2 + a0‖u‖2
2

= (|A|Uu, u)L2 + a0‖u‖2
2

=
(
U |A|1/2u, |A|1/2u

)
L2

+ a0‖u‖2
2

≤
∥∥∥U |A|1/2u

∥∥∥
2

∥∥∥|A|1/2u
∥∥∥

2
+ a0‖u‖2

2

=
∥∥∥|A|1/2u

∥∥∥2

2
+ a0‖u‖2

2 ≤ (1 + a0)‖u‖2
0

and
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(2.4)

‖u‖2
0 =

(
|A|1/2u, |A|1/2u

)
L2

+ ‖u‖2
2

= (|A|u, u)L2 + ‖u‖2
2 = (AUu, u)L2 + ‖u‖2

2

= ((A + a0)Uu, u)L2 − a0(Uu, u)L2 + ‖u‖2
2

=
(
U(A + a0)1/2u, (A + a0)1/2u

)
L2

− a0(Uu, u)L2 + ‖u‖2
2

≤
∥∥∥U(A + a0)1/2u

∥∥∥
2

∥∥∥(A + a0)1/2u
∥∥∥

2
+ (1 + a0)‖u‖2

2

=
∥∥∥(A + a0)1/2u

∥∥∥2

2
+ (1 + a0)‖u‖2

2

= ((A + a0)u, u)L2 + (1 + a0)‖u‖2
2

≤ (2 + a0)((A+ a0)u, u)L2 = (2 + a0)‖u‖2
∗.

Combining (2.3) with (2.4), we have

(2.5)
1√

2 + a0
‖u‖0 ≤ ‖u‖∗ ≤

√
1 + a0‖u‖0, ∀ u ∈ C∞

0 (Ω).

Since C∞
0 (Ω) is dense in E and E∗, it follows from (2.5) that (2.2) holds.

Lemma 2.2. ([25, Theorem 1.9]). The embeddings H1
0 (Ω) ⊂ Ls(Ω) are compact

for 1 ≤ s < 2∗.

Note that (2.1) implies that ‖u‖H1(Ω) ≤ ‖u‖∗ for all u ∈ E∗, we have the following
corollary.

Corollary 2.3. The embeddings E∗ ⊂ Ls(Ω) are compact for 1 ≤ s < 2∗.

Lemma 2.4. Suppose that V satisfies (V). Let

(2.6) E− = E(0−)E, E0 = [E(0)− E(0−)]E, E+ = [E(+∞) − E(0)]E.

Then for the inner products (·, ·)0 and (·, ·)L2 on E , we have

(2.7) E−⊥E0, E−⊥E+, E0⊥E+, E = E− ⊕ E0 ⊕ E+.

Furthermore, there hold

(2.8) dim(E(M)E) < +∞, ∀ M ≥ 0,

(2.9)
E0 = Ker(A), Au = −|A|u, ∀ u ∈ E− ∩ D(A),
Au = |A|u, ∀ u ∈ E+ ∩ D(A)
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and

(2.10) u = u− + u0 + u+, ∀ u ∈ E,

where

(2.11)
u− = E(0−)u ∈ E−, u0 = [E(0)− E(0−)]u ∈ E0,

u+ = [E(+∞)− E(0)]u ∈ E+.

Proof. For u ∈ E , it follows from E(+∞) = id that

(2.12) u = E(0−)u + [E(0)− E(0−)]u + [E(+∞) − E(0)]u.

Since E(λ)E ⊂ E for λ ∈ R, the above equation shows that (2.10) holds and E =
E− + E0 + E+. On the other hand, for u ∈ E−, v ∈ E0 and w ∈ E+, there are
ũ, ṽ, w̃ ∈ L2(Ω, RN) such that

u = E(0−)ũ, v = [E(0)− E(0−)]ṽ, w = [E(+∞) − E(0)]w̃.

Hence

(2.13)
(u, v)L2 = (E(0−)ũ, [E(0)− E(0−)]ṽ)L2

= ([E(0)− E(0−)]E(0−)ũ, ṽ)L2 = 0,

(2.14)

(u, v)0 =
(
|A|1/2u, |A|1/2v

)
L2

+ (u, v)L2

=
(
E(0−)|A|1/2ũ, [E(0)− E(0−)]|A|1/2ṽ

)
L2

=
(
[E(0)− E(0−)]E(0−)|A|1/2ũ, |A|1/2ṽ

)
L2

= 0.

Similarly, one has (v, w)L2 = (u, w)L2 = 0 and (v, w)0 = (u, w)0 = 0, which, together
with (2.13), (2.14) and E = E− + E0 + E+, implies that (2.7) holds.

For u ∈ E , it follows from (2.11) that

(2.15) Uu− = [E(+∞)− E(0)− E(0−)]E(0−)u = −E(0−)u = −u−

and

(2.16) Uu+ = [E(+∞)−E(0)−E(0−)][E(+∞)−E(0)]u = [E(+∞)−E(0)]u = u+.

Both (2.15) and (2.16) imply that

(2.17) Au− = |A|Uu− = −|A|u−, Au+ = |A|Uu+ = |A|u+, ∀ u ∈ E∩D(A).
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For u ∈ E , it follows from (2.11) that

Au0 = |A|Uu0 = |A|[E(+∞) − E(0)− E(0−)][E(0)− E(0−)]u = 0.

Hence, E0 ⊂ Ker(A). Conversely, For any u ∈ Ker(A), Au = 0 and so A2u = 0, it
follows that

(2.18) 0 = (A2u, u)L2 =
∫ +∞

−∞
λ2 d(E(λ)u, u)L2.

Since (E(λ)u, u)L2 is non-decreasing on λ ∈ (−∞, +∞), then for any ε > 0, it
follows from (2.18) that

(2.19)

0 =
∫ +∞

−∞
λ2 d(E(λ)u, u)L2

≥
∫ −ε

−∞
λ2 d(E(λ)u, u)L2 ≥ ε2

∫ −ε

−∞
d(E(λ)u, u)L2

= ε2(E(−ε)u, u)L2 = ε2‖E(−ε)u‖2
2

and

(2.20)

0 =
∫ +∞

−∞
λ2 d(E(λ)u, u)L2 ≥

∫ +∞

ε
λ2 d(E(λ)u, u)L2

≥ ε2

∫ +∞

ε
d(E(λ)u, u)L2

= ε2[(u, u)L2 − (E(ε)u, u)L2] = ε2‖u − E(ε)u‖2
2.

From (2.19) and (2.20), we obtain [E(ε) − E(−ε)]u = u, ∀ ε > 0. Let ε → 0+, then
we can conclude that

[E(0+)− E(0−)]u = [E(0)− E(0−)]u = u.

This shows that u ∈ E0, and so Ker(A) ⊂ E0. Therefore, Ker(A) = E0, which,
together with (2.17), implies that (2.9) holds.

Finally, we prove that dim(E(M)E) < +∞, ∀ M ≥ 0. If dim[E(M)E] = +∞
for some M0 ≥ 0, then there exists a λ0 ∈ σe(A) ∩ (−∞, M0]. By virtue of [5,
Theorem IX 1.3] or [20, Theorem 4.5.2], there exists a sequence {un} ⊂ D(A) such
that

(2.21) un ⇀ 0, ‖un‖2 = 1, ‖(A− λ0)un‖2 → 0.

Let vn = (A− λ0)un. Then by (2.1) and (2.21), we have

(2.22)

‖un‖2∗ =
∫

RN

[|∇un|2 + (V (x) + a0)u2
n

]
dx

= ((A + a0)un, un)L2 = (vn + (a0 + λ0)un, un)L2

≤ ‖un‖2‖vn‖2 + (a0 + λ0)‖un‖2
2

= a0 + λ0 + o(1).
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(2.22) shows that {‖un‖∗} is bounded. Passing to a subsequence if necessary, it can
be assumed that un ⇀ u0 in H1

0 (Ω). Since un ⇀ 0 in L2(RN), then u0 = 0. It
follows from Lemma 2.2 that un → 0 in L2(RN). This contradiction shows that
(2.8) holds.

In view of Lemma 2.4, we introduce on E the following inner product

(u, v) =
(
|A|1/2u, |A|1/2v

)
L2

+
(
u0, v0

)
L2

and norm
‖u‖2 = (u, u) =

∥∥∥|A|1/2u
∥∥∥2

2
+
∥∥u0
∥∥2

2
,

where u = u− + u0 + u+, v = v− + v0 + v+ ∈ E− ⊕E0 ⊕E+ = E . Then it is easy
to check the following lemma.

Lemma 2.5. Suppose that V satisfies (V). Then for the inner product (·, ·) on E ,
we have

(2.23) E−⊥E0, E−⊥E+, E0⊥E+.

Lemma 2.6. Suppose that V satisfies (V). Then there exists a constant β > 0
such that

(2.24) ‖u‖2 ≤ β‖u‖, ∀ u ∈ E.

Proof. Since dim[E(1)E] < +∞, there exists a constant β1 > 0 such that

(2.25) ‖u‖2 ≤ β1‖u‖, ∀ u ∈ E(1)E.

On the other hand, we have

(2.26)
‖u‖2 =

(
|A|1/2u, |A|1/2u

)
L2

+
∥∥u0
∥∥2

2
= (|A|u, u)L2

=
∫ +∞

1
|λ|d(E(λ)u, u)L2 ≥ ‖u‖2

2, ∀ u ∈ [E(+∞) − E(1)]E.

The conclusion of Lemma 2.6 follows by the combination of (2.25) with (2.26).

The following lemma follows immediately from Lemma 2.6.

Lemma 2.7. Suppose that V satisfies (V). Then

(2.27) ‖u‖ ≤ ‖u‖0 ≤
√

1 + β2‖u‖, ∀ u ∈ E.
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Remark 2.8. Under condition (V), Lemmas 2.1 and 2.7 show that three norms
‖ · ‖0, ‖ · ‖∗ and ‖ · ‖ on E are equivalent.

Set

(2.28) b(u, v) =
∫

Ω
(∇u∇v + V (x)uv)dx, ∀ u, v ∈ E.

Then it is easy to check the following lemma.

Lemma 2.9. Suppose that V satisfies (V). Then b(u, v) is a bilinear function on
E , and

(2.29) |b(u, v)| ≤ (1 + a0 + β2 + 2a0β
2
) ‖u‖‖v‖, ∀ u, v ∈ E,

(2.30)
b(u+, u+) = ‖u+‖2, b(u−, u−) = −‖u−‖2,

b(u+, u− + u0) = 0, ∀ u ∈ E,

(2.31) b(u, u) = ‖u+‖2 − ‖u−‖2, ∀ u ∈ E.

By (2.28) and (2.31), we have

(2.32) Φ(u) =
1
2
(‖u+‖2 − ‖u−‖2

)− ∫
Ω

F (x, u)dx, ∀ u ∈ E.

Under assumptions (V) and (F1), Φ is of class C1(E, R), and

(2.33) 〈Φ′(u), v〉 =
∫

Ω

(∇u∇v + V (x)uv)dx −
∫

Ω

f(x, u)vdx, ∀ u, v ∈ E

and

(2.34) 〈Φ′(u), u〉 = ‖u+‖2 − ‖u−‖2 −
∫

Ω
f(x, u)udx, ∀ u ∈ E.

3. EXISTENCE OF GROUND STATE SOLUTIONS OF NEHARI-PANKOV TYPE

In this section, we give the proofs of Theorem 1.2 and Corollary 1.3.

Lemma 3.1. ([16, 17]). Let X = Y ⊕ Z be a Banach space with dimY < ∞.
Let r > ρ > 0, κ > 0 and e ∈ Z with ‖e‖ = 1. If ϕ ∈ C1(X, R) satisfies

inf ϕ(Sρ) ≥ κ > sup ϕ(∂Q),
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where

Sρ = {u ∈ Z : ‖u‖ = ρ} , Q = {v + se : ‖v + se‖ ≤ r, v ∈ Y, s ≥ 0} ,

then there exist c ∈ [κ, supϕ(Q)] and a sequence {un} ⊂ X satisfying

(3.1) ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0.

Lemma 3.2. Suppose that (V), (F1) and (WN) are satisfied. Then

(3.2) Φ(u) ≥ Φ(tu + w) +
1
2
‖w−‖2 +

1 − t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉,

∀ u ∈ E, t ≥ 0, w ∈ E− ⊕ E0.

Proof. For any x ∈ Ω and τ �= 0, (WN) yields

(3.3) f(x, s) ≤ f(x, τ)
|τ | |s|, s ≤ τ ; f(x, s) ≥ f(x, τ)

|τ | |s|, s ≥ τ.

It follows that

(3.4)
(

1 − t2

2
τ2 − tτσ

)
f(x, τ)

τ
≥
∫ τ

tτ+σ

f(x, s)ds, t ≥ 0, σ ∈ R.

To show (3.4), we consider four possible cases. Since sf(x, s) ≥ 0, it follows from
(3.3) that

(Case 1). 0 ≤ tτ + σ ≤ τ or tτ + σ ≤ τ < 0,∫ τ

tτ+σ
f(x, s)ds ≤ f(x, τ)

|τ |
∫ τ

tτ+σ
|s|ds ≤

(
1 − t2

2
τ2 − tτσ

)
f(x, τ)

τ
;

(Case 2). tτ + σ ≤ 0 < τ ,∫ τ

tτ+σ
f(x, s)ds ≤

∫ τ

0
f(x, s)ds ≤ f(x, τ)

|τ |
∫ τ

0
|s|ds ≤

(
1 − t2

2
τ2 − tτσ

)
f(x, τ)

τ
;

(Case 3). 0 < τ ≤ tτ + σ or τ ≤ tτ + σ ≤ 0,∫ tτ+σ

τ

f(x, s)ds ≥ f(x, τ)
|τ |

∫ tτ+σ

τ

|s|ds ≥ −
(

1 − t2

2
τ2 − tτσ

)
f(x, τ)

τ
;

(Case 4). τ < 0 < tτ + σ,∫ tτ+σ

τ
f(x, s)ds≥

∫ 0

τ
f(x, s)ds≥ f(x, τ)

|τ |
∫ 0

τ
|s|ds≥−

(
1 − t2

2
τ2−tτσ

)
f(x, τ)

τ
.
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The above four cases show that (3.4) holds. By (1.2), (2.28) and (2.33), one has

(3.5) Φ(u) =
1
2
b(u, u)−

∫
Ω

F (x, u)dx, ∀ u ∈ E

and

(3.6) 〈Φ′(u), v〉 = b(u, v)−
∫

Ω

f(x, u)vdx, ∀ u, v ∈ E.

Thus, by (2.30), (3.4), (3.5) and (3.6), one has

Φ(u) − Φ(tu + w)

=
1
2
[b(u, u)− b(tu + w, tu + w)] +

∫
Ω
[F (x, tu + w) − F (x, u)]dx

=
1 − t2

2
b(u, u)− tb(u, w)− 1

2
b(w, w) +

∫
Ω

[F (x, tu + w)− F (x, u)]dx

=
1
2
‖w−‖2 +

1 − t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉

+
∫

Ω

[
1 − t2

2
f(x, u)u− tf(x, u)w −

∫ u

tu+w
f(x, s)ds

]
dx

≥ 1
2
‖w−‖2 +

1 − t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉, ∀ t ≥ 0, w ∈ E− ⊕ E0.

This shows that (3.2) holds.

From Lemma 3.2, we have the following two corollaries.

Corollary 3.3. Suppose that (V), (F1) and (WN) are satisfied. Then for u ∈ N−

(3.7) Φ(u) ≥ Φ(tu + w), ∀ t ≥ 0, w ∈ E− ⊕ E0.

Corollary 3.4. Suppose that (V), (F1) and (WN) are satisfied. Then

(3.8)
Φ(u) ≥ t2

2
(‖u+‖2 + ‖u−‖2

)− ∫
Ω

F (x, tu+)dx +
1 − t2

2
〈Φ′(u), u〉

+t2〈Φ′(u), u0 + u−〉, ∀ u ∈ E, t ≥ 0.

Applying Corollary 3.3, we can demonstrate the following lemma in the same way
as [21, Lemma 2.4].

Lemma 3.5. Suppose that (V), (F1), (F2) and (WN) are satisfied. Then
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(i) there exists ρ > 0 such that

(3.9) m = inf
N−

Φ ≥ ζ := inf
{
Φ(u) : u ∈ E+, ‖u‖ = ρ

}
> 0.

(ii) ‖u+‖ ≥ max
{‖u−‖,√2m

}
for all u ∈ N−.

For u ∈ E \ (E− ⊕ E0), we define

(3.10) Ê(u) := E− ⊕ E0 ⊕ R
+u = E− ⊕ E0 ⊕ R

+u+,

where as usual, R
+ = [0,∞).

Lemma 3.6. Suppose that (V), (F1) and (F3) are satisfied. Let e ∈ E+ with
‖e‖ = 1. Then there is a re > ρ such that sup Φ(∂Q(r)) ≤ 0 for r ≥ re, where

(3.11) Q(r) =
{
w + se : ‖w + se‖ ≤ r, w ∈ E− ⊕ E0, s ≥ 0

}
.

The proof of Lemma 3.6 is standard, so we omit it.

Lemma 3.7. Suppose that (V), (F1), (F2), (F3) and (WN) are satisfied. Then for
r ≥ re, there exist c ∈ [ζ, supΦ(Q(r))] and a sequence {un} ⊂ E satisfying

(3.12) Φ(un) → c, ‖Φ′(un)‖(1 + ‖un‖) → 0.

Proof. Let X = E, Y = E− ⊕ E0 and Z = E+. Then Lemma 3.7 is a direct
consequence of Lemmas 2.4, 3.1, 3.5 (i) and 3.6.

The following lemma is crucial to demonstrate the existence of ground state solu-
tions for problem (1.1).

Lemma 3.8. Suppose that (V), (F1), (F2), (F3) and (WN) are satisfied. Then
there exist a constant c∗ ∈ [ζ, m] and a sequence {un} ⊂ E satisfying

(3.13) Φ(un) → c∗, ‖Φ′(un)‖(1 + ‖un‖) → 0.

Proof. Choose vk ∈ N− such that

(3.14) m ≤ Φ(vk) < m +
1
k
, k ∈ N.

By Lemma 3.5, ‖v+
k ‖ ≥ √

2m > 0. Set ek = v+
k /‖v+

k ‖. Then ek ∈ E+ and ‖ek‖ = 1.
In view of Lemma 3.7, there exists rk > max{ρ, ‖vk‖} such that sup Φ(∂Qk) ≤ 0,
where

(3.15) Qk =
{
w + sek : ‖w + sek‖ ≤ rk, w ∈ E− ⊕ E0, s ≥ 0

}
, k ∈ N.
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Hence, applying Lemma 3.7 to the above set Qk, there exist a sequence {uk,n}n∈N ⊂ E

satisfying

(3.16) Φ(uk,n) → ck, ‖Φ′(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N,

where ck ∈ [ζ, supΦ(Qk)]. By virtue Corollary 3.3, one has

(3.17) Φ(vk) ≥ Φ(tvk + w), ∀ t ≥ 0, w ∈ E− ⊕ E0.

Since vk ∈ Qk, it follows from (3.15) and (3.17) that Φ(vk) = sup Φ(Qk). Hence, by
(3.14) and (3.16), one has

(3.18) Φ(uk,n) → ck < m +
1
k
, ‖Φ′(uk,n)‖(1 + ‖uk,n‖) → 0, k ∈ N.

Now, we can choose a sequence {nk} ⊂ N such that

(3.19) Φ(uk,nk
) < m +

1
k
, ‖Φ′(uk,nk

)‖(1 + ‖uk,nk
‖) <

1
k
, k ∈ N.

Let uk = uk,nk
, k ∈ N. Then, going if necessary to a subsequence, we have

Φ(un) → c∗ ∈ [ζ, m], ‖Φ′(un)‖(1 + ‖un‖) → 0.

Lemma 3.9. Suppose that (V), (F1), (F2), (F3) and (WN) are satisfied. Then any
sequence {un} ⊂ E satisfying

(3.20) Φ(un) → c ≥ 0, 〈Φ′(un), u±
n 〉 → 0, 〈Φ′(un), u0

n〉 → 0

is bounded in E .

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖, then ‖vn‖ = 1. By Corollary 2.3 and Remark 2.8,
passing to a subsequence, we may assume that vn → v in Ls(Ω), 2 ≤ s < 2∗, vn → v
a.e. on Ω. If v+ + v0 = 0 then v+

n → 0 in Ls(Ω) for 2 ≤ s < 2∗ and v0
n → 0 in E .

Fix R > [2(1 + c)]1/2. By (F1) and (F2), there exists C1 > 0 such that

(3.21) lim sup
n→∞

∫
Ω

F (x, Rv+
n )dx ≤ R2 lim

n→∞ ‖v+
n ‖2

2 + RpC1 lim
n→∞ ‖v+

n ‖p
p = 0.

Let tn = R/‖un‖. Hence, by using (3.20), (3.21) and Corollary 3.4, one has
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c + o(1) = Φ(un)

≥ t2n
2
(‖u+

n ‖2 + ‖u−
n ‖2
)− ∫

Ω
F (x, tnu+

n )dx +
1 − t2n

2
〈Φ′(un), un〉

+t2n〈Φ′(un), u−
n + u0

n〉

=
R2

2
(‖v+

n ‖2 + ‖v−n ‖2
)− ∫

Ω
F (x, Rv+

n )dx +
(

1
2
− R2

2‖un‖2

)
〈Φ′(un), un〉

+
R2

‖un‖2
〈Φ′(un), u−

n + u0
n〉

=
R2

2
+ o(1) > c + 1 + o(1),

which is a contradiction. Thus v+ + v0 �= 0 and so v �= 0.
For x ∈ {z ∈ RN : v(z) �= 0}, we have limn→∞ |un(x)| = ∞. Hence, it follows

from (3.20), (F3), (WN) and Fatou’s lemma that

0 = lim
n→∞

c + o(1)
‖un‖2

= lim
n→∞

Φ(un)
‖un‖2

= lim
n→∞

[
1
2
(‖v+

n ‖2 − ‖v−n ‖2
)− ∫

Ω

F (x, un)
u2

n

v2
ndx

]

≤ 1
2
− lim inf

n→∞

∫
Ω

F (x, un)
u2

n

v2
ndx ≤ 1

2
−
∫

Ω
lim inf
n→∞

F (x, un)
u2

n

v2
ndx

= −∞.

This contradiction shows that {un} is bounded.

Proof of Theorem 1.2. Applying Lemmas 3.8 and 3.9. we deduce that there exists
a bounded sequence {un} ⊂ E satisfying (3.13). Going if necessary to a subsequence,
we can assume that un ⇀ u0 in E . Base on Corollary 2.3 and Remark 2.8, un → u0

in Ls(Ω) for 2 ≤ s < 2∗ and un → u0 a.e. on Ω. Employing [24, Lemma 2.3], one
can get that

(3.22)
∫

Ω
|f(x, un) − f(x, u0)||un − u0|dx → 0.

Observe that

(3.23)
b(un − u0, un − u0)

= 〈Φ′(un) − Φ′(u0), un − u0〉+
∫

Ω

[f(x, un) − f(x, u0)](un − u0)dx.

It is clear that

(3.24) 〈Φ′(un) − Φ′(u0), un − u0〉 → 0.
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From (3.22)-(3.24), we have b(un − u0, un − u0) → 0, it follows that

(3.25) ‖u+
n − u+

0 ‖2 − ‖u−
n − u−

0 ‖2 → 0.

Since un ⇀ u0 in E , it follows that

u−
n ⇀ u−

0 in E−, u0
n ⇀ u0

0 in E0, u+
n ⇀ u+

0 in E+.

Note that dim(E− ⊕ E0) < +∞, it follows that

(3.26)
∥∥u0

n − u0
0

∥∥2 +
∥∥u−

n − u−
0

∥∥2 → 0.

Combining (3.25) with (3.26), we have

(3.27) ‖un − u0‖2 =
∥∥u+

n − u+
0

∥∥2 +
∥∥u0

n − u0
0

∥∥2 +
∥∥u−

n − u−
0

∥∥2 → 0.

Hence, it follows from (3.13) and (3.27) that Φ(u0) = c∗ ≤ m and Φ′(u0) = 0. This
shows that u0 ∈ N− and so Φ(u0) ≥ m. Therefore Φ(u0) = m = infN− Φ > 0.

Proof of Corollary 1.3. Let V̄ (x) := V (x)− ā and f̄(x, t) = f(x, t)− āt. Then
problem (1.1) is equivalent to the following problem

(3.28)
{ −�u + V̄ (x)u = f̄(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

It is easy to see that V̄ satisfies (V), moreover, (F1), (F2′), (F3) and (WN) imply that
f̄ satisfies (F1), (F2), (F3) and (WN). Furthermore,

Φ(u) =
1
2

∫
Ω

(|∇u|2 + V̄ (x)u2
)
dx −

∫
Ω

F̄ (x, u)dx, ∀ u ∈ E

and

〈Φ′(u), u〉 =
∫

Ω

(|∇u|2 + V̄ (x)u2
)
dx −

∫
Ω

f̄(x, u)udx, ∀ u ∈ E,

where F̄ (x, t) =
∫ t
0 f̄ (x, s)ds. Hence, Theorem 1.2 yields Corollary 1.3.

4. EXISTENCE OF INFINITELY MANY SOLUTIONS

In this section, we are concerned with the existence of infinitely many solutions for
(1.1).

Let Ṽ (x) := V (x)+a0, f̃(x, t) = f(x, t)+a0t and F̃ (x, t) =
∫ t
0 f̃(x, s)ds. Then

(4.1)
Φ(u) =

1
2

∫
Ω

(
|∇u|2 + Ṽ (x)u2

)
dx −

∫
Ω

F̃ (x, u)dx

=
1
2
‖u‖2

∗ −
∫

Ω
F̃ (x, u)dx, ∀ u ∈ E∗
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and

(4.2)
〈Φ′(u), v〉 =

∫
Ω

(
∇u∇u + Ṽ (x)uv

)
dx −

∫
Ω

f̃(x, u)vdx

= (u, v)∗ −
∫

Ω
f̃(x, u)vdx, ∀ u, v ∈ E∗.

Lemma 4.1. Suppose that (V), (F1), (F2′′), (F3) and (F4) are satisfied. Then any
sequence {un} ⊂ E∗ satisfying

(4.3) Φ(un) → c ≥ 0, 〈Φ′(un), un〉 → 0

is bounded in E∗.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖∗ → ∞. Let vn = un/‖un‖∗. Then ‖vn‖∗ = 1 and ‖vn‖s ≤ γs‖vn‖∗ = γs for
2 ≤ s < 2∗, where γs is the embedding constant. Observe that for n large

(4.4) c + 1 ≥ Φ(un) − 1
2
〈Φ′(un), un〉 =

∫
Ω

[
1
2
f(x, un)un − F (x, un)

]
dx.

It follows from (4.1) and (4.3) that

(4.5)
1
2
≤ lim sup

n→∞

∫
Ω

|F̃ (x, un)|
‖un‖2∗

dx.

For 0 ≤ ξ < η, let

(4.6) Ωn(ξ, η) = {x ∈ Ω : ξ ≤ |un(x)| < η} .

Passing to a subsequence, we may assume that vn ⇀ v in E∗, then by Corollary 2.3,
vn → v in Ls(Ω), 2 ≤ s < 2∗, and vn → v a.e. on Ω.

If v = 0, then vn → 0 in Ls(Ω), 2 ≤ s < 2∗, vn → 0 a.e. on Ω. Hence, it follows
from (F2′′) that there exists a constant C2 > 0 such that

(4.7)
∫

Ωn(0,R0)

|F̃ (x, un)|
|un|2 |vn|2dx ≤ C2

∫
Ωn(0,R0)

|vn|2dx ≤ C2

∫
Ω
|vn|2dx → 0.

Set κ′ = κ/(κ − 1). Since κ > max{1, N/2}, one sees that 2κ′ ∈ (2, 2∗). Hence,
from (F1), (F2′′), (F4) and (4.4), one has
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(4.8)

∫
Ωn(R0,∞)

|F̃ (x, un)|
|un|2 |vn|2dx

≤
[∫

Ωn(R0,∞)

(
F̃ (x, un)
|un|2

)κ

dx

]1/κ [∫
Ωn(R0,∞)

|vn|2κ′
dx

]1/κ′

≤ 2

{∫
Ωn(R0,∞)

[
aκ

0 +
(

F (x, un)
|un|2

)κ]
dx

}1/κ(∫
Ω
|vn|2κ′

dx

)1/κ′

≤ 2

{∫
Ωn(R0,∞)

[aκ
0 +c0(f(x, un)un−2F (x, un)] dx

}1/κ(∫
Ω

|vn|2κ′
dx

)1/κ′

≤ 2

[
aκ

0 |Ω|+2c0(c+1)+c0

∫
Ωn(0,R0)

|f(x, un)un−2F (x, un)|dx

]1/κ

(∫
Ω
|vn|2κ′

dx

)1/κ′

≤ C3

(∫
Ω
|vn|2κ′

dx

)1/κ′

→ 0.

Combining (4.7) with (4.8), we have∫
Ω

|F̃ (x, un)|
‖un‖2∗

dx =
∫

Ωn(0,R0)

|F̃ (x, un)|
|un|2 |vn|2dx+

∫
Ωn(R0,∞)

|F̃ (x, un)|
|un|2 |vn|2dx → 0,

which contradicts (4.5). Hence, v �= 0.
Set A := {x ∈ Ω : v(x) �= 0}. If v �= 0, then meas(A) > 0. For a.e. x ∈ A, we

have limn→∞ |un(x)| = ∞. Hence A ⊂ Ωn(R0,∞) for large n ∈ N, it follows from
(F1), (F2′′), (F4), (4.1) and Fatou’s lemma that

(4.9)

0 = lim
n→∞

c + o(1)
‖un‖2∗

= lim
n→∞

Φ(un)
‖un‖2∗

= lim
n→∞

[
1
2
−
∫

Ω

F̃ (x, un)
u2

n

v2
ndx

]

= lim
n→∞

[
1
2
−
∫

Ωn(0,R0)

F̃ (x, un)
u2

n

v2
ndx −

∫
Ωn(R0,∞)

F̃ (x, un)
u2

n

v2
ndx

]

≤ lim sup
n→∞

[
1
2

+ C2

∫
Ω
|vn|2dx −

∫
Ωn(R0,∞)

F̃ (x, un)
u2

n

v2
ndx

]

≤ 1
2

+ C4 − lim inf
n→∞

∫
Ωn(R0,∞)

F̃ (x, un)
u2

n

v2
ndx

=
1
2

+ C4 − lim inf
n→∞

∫
Ω

|F̃ (x, un)|
u2

n

[χΩn(R0,∞)(x)]v2
ndx

≤ 1
2

+ C4 −
∫

Ω

lim inf
n→∞

F̃ (x, un)
u2

n

[χΩn(R0,∞)(x)]v2
ndx

= −∞,
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which is a contradiction. Thus {un} is bounded in E .

Lemma 4.2. Suppose that (V), (F1), (F2′′), (F3) and (F4) are satisfied. Then any
sequence {un} ⊂ E∗ satisfying (4.3) has a convergent subsequence in E∗.

The proof is similar to that of [24, Lemma 2.6], so we omit it.

Lemma 4.3. Suppose that (V), (F1), (F2′′), (F3) and (F4) are satisfied. Then for
any finite dimensional subspace Ẽ ⊂ E∗, there is R = R(Ẽ) > 0 such that

(4.10) Φ(u) ≤ 0, ∀ u ∈ Ẽ, ‖u‖ ≥ R.

The proof is similar to that of [24, Corollary 2.9], so we omit it.

Let {ej} is an orthonomormal basis of E∗ and define Xj = Rej ,

(4.11) Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=k+1Xj, k ∈ Z.

Lemma 4.4. Suppose that (V) is satisfied. Then for 2 ≤ s < 2∗,

(4.12) βk(s) := sup
u∈Zk,‖u‖∗=1

‖u‖s → 0, k → ∞.

The proof is similar to that of [25, Lemma 3.8], so we omit it.

By (F1) and (F2′′), there exists a constant C5 > 0 such that

F̃ (x, t) ≤ C5

(|t2| + |t|p) , ∀ (x, t) ∈ Ω × R.

In view of Lemma 4.4, we can choose an integer m ≥ 1 such that

(4.13) ‖u‖2
2 ≤

1
4C5

‖u‖2
∗, ‖u‖p

p ≤ 1
4C5

‖u‖p
∗, ∀ u ∈ Zm.

Lemma 4.5. Suppose that (V), (F1) and (F2′′) are satisfied. Then there exist
constants ρ, α > 0 such that Φ|∂Bρ∩Zm ≥ α.

The proof is similar to that of [24, Lemma 2.11], so we omit it.

We say that I ∈ C1(X, R) satisfies (C)c-condition if any sequence {un} such that

(4.14) I(un) → c, ‖I ′(un)‖(1 + ‖un‖) → 0

has a convergent subsequence.
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Lemma 4.6. [4, 16] Let X be an infinite dimensional Banach space, X = Y ⊕Z,
where Y is finite dimensional. If I ∈ C1(X, R) satisfies (C)c-condition for all c > 0,
and

(I1) I(0) = 0, I(−u) = I(u) for all u ∈ X ;
(I2) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;
(I3) for any finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such

that I(u) ≤ 0on X̃ \ BR;
then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.4. Let X = E∗, Y = Ym and Z = Zm. By (F1), (F2′′) and
(F5), Lemmas 4.1, 4.2, 4.3 and 4.5, all conditions of Lemma 4.6 are satisfied. Thus,
the following problem

(4.15)

{ −�u + Ṽ (x)u = f̃(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω

possesses infinitely many nontrivial solutions, and so problem (1.1) also possesses
infinitely many nontrivial solutions. Note that Φ(−u) = Φ(u) for all u ∈ E∗, then
problem (1.1) possesses infinitely many pairs of solutions.

Proof of Corollary 1.5. By (F1), there exists a constant C6 > 0 such that
|F (x, t)| ≤ C6|t|p for all (x, |t|) ∈ Ω × [R0,∞). Let κ = (p − ν)/(p − 2). Then
κ > max{1, N/2}, and

|F (x, t)|κ−1

c1C
κ−1
6 |t|2κ

≤ 1
c1|t|2κ−p(κ−1)

=
1

c1|t|ν , (x, t) ∈ Ω × R, |t| ≥ R0,

which, together with (F4′), implies that (F4) holds with c0 = c1C
κ−1
6 .
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