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SIGN-CHANGING SOLUTIONS FOR A CLASS OF DAMPED VIBRATION
PROBLEMS WITH IMPULSIVE EFFECTS

Jianwen Zhou, Yongkun Li* and Yanning Wang

Abstract. In this paper, some sufficient conditions are obtained for the existence
and multiplicity of sign-changing solutions for the damped vibration problem with
impulsive effects⎧⎪⎨⎪⎩

−u′′(t) + g(t)u′(t) = f(t, u(t)), a.e. t ∈ [0, T ];
u(0) = u(T ) = 0,

Δu′(tj) = u′(t+j ) − u′(t−j ) = Ij(u(tj)), j = 1, 2, . . . , p,

where t0 = 0 < t1 < t2 < . . . < tp < tp+1 = T, g ∈ L1(0, T ; R), Ij : R →
R, j = 1, 2, . . . , p are continuous, f : [0, T ]× R → R is a Carathéodory function
with subcritical growth condition:
(A) |f(t, u)| ≤ C(1 + |u|s−1), ∀t ∈ [0, T ], u ∈ R, s ∈ [2, +∞).

The sign-changing solutions are sought by means of some sign-changing critical
point theorems and two examples are presented to illustrate the feasibility and
effectiveness of our results.

1. INTRODUCTION

Consider the damped vibration problem with impulse⎧⎪⎨⎪⎩
−u′′(t) + g(t)u′(t) = f(t, u(t)), a.e. t ∈ [0, T ];
u(0) = u(T ) = 0,

Δu′(tj) = u′(t+j ) − u′(t−j ) = Ij(u(tj)), j = 1, 2, . . . , p,

(1.1)

where t0 = 0 < t1 < t2 < . . . < tp < tp+1 = T, g ∈ L1(0, T ; R), Ij : R →
R, j = 1, 2, . . . , p are continuous, f : [0, T ]× R → R is a Carathéodory function with
subcritical growth condition:
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(A) |f(t, u)| ≤ C(1 + |u|s−1), ∀t ∈ [0, T ], u ∈ R, s ∈ [2, +∞).

Impulsive effects exist widely in many evolution processes in which their states
are changed abruptly at certain moments of time. The theory of impulsive differential
systems has been developed by numerous mathematicians (see [1-4]). Applications
of impulsive differential equations with or without delays occur in biology, medicine,
mechanics, engineering, chaos theory and so on (see [5-7]).

For a second order differential equation u′′ = f(t, u, u′), one usually considers
impulses in the position u and the velocity u′. However, in the motion of spacecraft
one has to consider instantaneous impulses depending on the position that result in jump
discontinuities in velocity, but with no changes in position (see [8,9]). The impulse
only on the velocity occurs also in impulsive mechanics (see [10]).

In recent years, impulsive and periodic boundary value problems have been studied
extensively in the literature. There have been many approaches to study periodic solu-
tions of differential equations, such as method of lower and upper solutions, fixed-point
theory, coincidence degree theory and so on. In [11], authors used the method of lower
and upper solutions with monotone iterative technique to study impulsive differential
equations. In [12], authors used the Krasnoselskii<¯s fixed point theorem in a cone
to impulsive differential equations and obtained the existence of positive solutions.
However, the study of solutions for impulsive differential equations using variational
methods has received considerably less attention (see, for example [9,13-15]).

Especially, when g(t) ≡ 0, authors in [13-15] used variational methods to study the
existence and multiplicity of solutions for problems (1.1). But, to the best of authors’
knowledge, when g(t) �≡ 0, the existence and multiplicity of sign-changing solutions
for problem (1.1) have not been studied yet. Our purpose of this paper is to study
the sign-changing solutions of problem (1.1) in an appropriate space of functions and
the existence and multiplicity of sign-changing solutions for problem (1.1) by some
sign-changing critical point theorems.

2. PRELIMINARIES

In this section, we recall some basic facts which will be used in the proofs of our
main results. In order to apply the critical point theory, we make a variational structure.
From this variational structure, we can reduce the problem of finding solutions of
problem (1.1) to the one of seeking the critical points of a corresponding functional.

In the Sobolev space H1
0 (0, T ), consider the inner product

〈u, v〉H1
0(0,T ) =

∫ T

0

u′(t)v′(t) dt,

inducing the norm

‖u‖H1
0(0,T ) =

( ∫ T

0
(u′(t))2 dt

) 1
2

.
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Let G(t) =
∫ t
0 g(s)ds. Since g ∈ L1(0, T ; R), G : [0, T ] → R is absolutely continuous.

Therefore,

α = min
t∈[0,T ]

eG(t) > 0,

β = max
t∈[0,T ]

eG(t) > 0.

We also consider the inner product

〈u, v〉 =
∫ T

0
eG(t)u′(t)v′(t) dt, ∀u, v ∈ H1

0 (0, T )

and the norm

∥∥u
∥∥ =

(∫ T

0

eG(t)
(
u′(t)

)2 dt

) 1
2

, ∀u ∈ H1
0 (0, T ).

Then the norm ‖ · ‖ and the norm ‖ · ‖H1
0(0,T ) are equivalent and there exists C1 > 0

such that

‖u‖∞ ≤ C1‖u‖, ∀u ∈ H1
0 (0, T ).(2.1)

Let λk(k = 1, 2, . . .) denote the eigenvalues and ϕk(k = 1, 2, . . .) the corresponding
eigenfunctions of the problem{

−u′′(t) = λu(t), t ∈ [0, T ];
u(0) = u(T ) = 0,

where each eigenvalue λk is repeated as often as multiplicity recall that 0 < λ1 <

λ2 ≤ λ3 ≤ . . . , λk −→ ∞. Then ϕ1 is positive (or negative) and the eigenfunction
associated to λi(i ≥ 2) is sign-changing. Let Xk denote the eigenspace associated to
λk, then H1

0 (0, T ) =
⊕
i∈N

Xi. We denote by ‖ · ‖p the norm in Lp(0, T ).

For u ∈ H2(0, T ), we have that u and u′ are both absolutely continuous, and
u′′ ∈ L2(0, T ). Hence, Δu′(t) = u′(t+) − u′(t−) = 0 for any t ∈ [0, T ].

If u ∈ H1
0 (0, T ), then u is absolutely continuous and u′ ∈ L2(0, T ). In this case,

Δu′(t) = u′(t+)− u′(t−) = 0 may not hold for some t ∈ (0, T ). It allows to consider
impulsive effects in the derivative.

Take v ∈ H1
0 (0, T ) and multiply two sides of the equality

u′′(t) + g(t)u′(t) + f(t, u(t)) = 0

by eG(t)v and integrate from 0 to T , we have
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(2.2)

∫ T

0
eG(t)u′′(t)v(t) dt +

∫ T

0
eG(t)g(t)u′(t)v(t) dt

+
∫ T

0

eG(t)f(t, u(t))v(t) dt = 0.

Moreover,∫ T

0

(
eG(t)u′′(t)v(t) + eG(t)g(t)u′(t)v(t)

)
dt

=
p∑

j=0

∫ tj+1

tj

(
eG(t)u′′(t)v(t) + eG(t)g(t)u′(t)v(t)

)
dt

=
p∑

j=0

∫ tj+1

tj

v(t) deG(t)u′(t)

=
p∑

j=0

(
eG(t−j+1)u′(t−j+1)v(t−j+1) − eG(t+j )u′(t+j )v(t+j ) −

∫ tj+1

tj

eG(t)u′(t)v′(t) dt

)

= −
p∑

j=1

eG(tj)Δu′(tj)v(tj)− u′(0)v(0) + eG(T )u′(T )v(T )−
∫ T

0
eG(t)u′(t)v′(t) dt

= −
p∑

j=1

eG(tj)Ij(u(tj))v(tj) −
∫ T

0
eG(t)u′(t)v′(t) dt.

Combining (2.2), we have∫ T

0
eG(t)u′(t)v′(t) dt +

p∑
j=1

eG(tj)Ij(u(tj))v(tj) −
∫ T

0
eG(t)f(t, u(t))v(t) dt = 0.

Considering the above, we introduce the following concept solution for problem (1.1).

Definition 2.1. We say that a function u ∈ H1
0 (0, T ) is a weak solution of problem

(1.1) if the identity∫ T

0
eG(t)u′(t)v′(t) dt +

p∑
j=1

eG(tj )Ij(u(tj))v(tj) =
∫ T

0
eG(t)f(t, u(t))v(t) dt

holds for any v ∈ H1
0 (0, T ).

Consider the functional ϕ : H1
0 (0, T ) → R defined by
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ϕ(u) =
1
2
‖u‖2 +

p∑
j=1

eG(tj )

∫ u(tj )

0
Ij(t) dt −

∫ T

0
eG(t)F (t, u(t)) dt

=
1
2
‖u‖2 − J1(u)− J2(u)

=
1
2
‖u‖2 − J(u),

where F (t, s) =
∫ s
0 f(t, τ)dτ and

J1(u) = −
p∑

j=1

eG(tj )

∫ u(tj )

0

Ij(t) dt, J2(u)

=
∫ T

0
eG(t)F (t, u(t)) dt, J(u) = J1(u) + J2(u).

Using the subcritical growth condition (A) and the continuity of Ij , j = 1, 2, . . . , p,
one has that ϕ ∈ C1(H1

0 (0, T ), R). For any v ∈ H1
0 (0, T ), we have

ϕ′(u)v=
∫ T

0
eG(t)u′(t)v′(t) dt +

p∑
j=1

eG(tj)Ij(u(tj))v(tj) −
∫ T

0
eG(t)f(t, u(t))v(t) dt.

Thus, the solutions of problem (1.1) are corresponding to the critical points of ϕ.

Lemma 2.1. J ′
1 is continuous on H1

0 (0, T ).

Proof. Let {uk} ⊆ H1
T and uk → u. By (2.1), ‖uk − u‖∞ → 0. Thus, we have

‖J ′
1(uk) − J ′

1(u)‖ = sup
v∈H1

0 (0,T ),‖v‖≤1

∣∣〈J ′
1(uk) − J ′

1(u), v〉∣∣
= sup

v∈H1
0 (0,T ),‖v‖≤1

∣∣∣∣ p∑
j=1

eG(tj )
[
Ij(uk(tj)) − Ij(u(tj))

]
v(tj)

∣∣∣∣
≤ sup

v∈H1
0 (0,T ),‖v‖≤1

p∑
j=1

β
∣∣Ij(uk(tj))− Ij(u(tj))

∣∣‖v‖∞
≤ C1β sup

v∈H1
0 (0,T ),‖v‖≤1

p∑
j=1

∣∣Ij(uk(tj)) − Ij(u(tj))
∣∣‖v‖

= C1β

p∑
j=1

∣∣Ij(uk(tj)) − Ij(u(tj))
∣∣.

The continuity of Ij and this imply that J ′
1(uk) → J ′

1(u) in H1
0 (0, T ). The proof is

complete.
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Lemma 2.2. J ′ is continuous on H1
0 (0, T ).

Proof. By condition (A) and [16, Lemma 2.3], J ′
2 is continuous on H1

0 (0, T ).
By Lemma 2.1 and J(u) = J1(u) + J2(u), we have J ′ is continuous on H1

0 (0, T ).
The proof is complete.

To prove our main results, we need the following definitions and theorems.

Definition 2.2. ([17], p. 81). Let X be a real Banach space and I ∈ C1(X, R). I

is said to satisfy (PS) condition on X if any sequence {xn} ⊆ X for which I(xn) is
bounded and I ′(xn) → 0 as n → ∞, possesses a convergent subsequence in X .

Definition 2.3. ([18]). Let E is Hilbert space, I ∈ C1(E, R). We say that I
satisfies (w-PS) condition on E if {un} ⊆ E and I(un) is bounded, I ′(un) → 0, we
have either {un} is bounded and has a convergent subsequence or ‖I ′(un)‖‖un‖ → ∞.

Remark 2.1. It is clear that the (PS) condition implies the (w-PS) condition.

Theorem 2.1. ([19], Theorem 3.2). Assume that H is Hilbert space, f satisfies
(PS) condition on H and f ′(u) has the expression f ′(u) = u − Au. D1 and D2 are
open convex subsets of H , D1

⋂
D2 �= ∅, A(∂D1) ⊂ D1, A(∂D2) ⊂ D2. If there

exists a path h : [0, 1] → H such that

h(0) ∈ D1\D2, h(1) ∈ D2\D1

and
inf

u∈D1
⋂

D2

f(u) > sup
t∈[0,1]

f(h(t)).

Then f has at least four critical points: u1 ∈ D1
⋂

D2, u2 ∈ D1\D2, u3 ∈ D2\D1, u4 ∈
H\(D1

⋃
D2).

Theorem 2.2. ([18], Theorem 2.1). Let E be a Hilbert space with inner product
〈, 〉 and norm ‖ · ‖. Assume that E has an orthogonal decomposition E = N

⊕
M

with dimN < ∞. Let G ∈ C1(E, R) and the gradient G′ be of the form

G′(u) = u − J ′(u),

where J ′ : E → E is a continuous operator. Let P denote a closed convex posi-
tive cone of E; D

(i)
0 be an open convex subset of E, i = 1, 2, S = E\W , W =

D
(1)
0

⋃
D

(2)
0 . Assume

(H1) J ′(D(i)
0 ) ⊂ D

(i)
0 , i = 1, 2.

(H2) If D
(1)
0

⋂
D

(2)
0 = ∅, then either D

(1)
0 = ∅ or D

(2)
0 = ∅.
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(H3) There exist a δ > 0 and z0 ∈ N with ‖z0‖ = 1 such that

B := {u ∈ M : ‖u‖ ≥ δ}
⋃

{kz0 + v : v ∈ M, k ≥ 0, ‖kz0 + v‖ = δ} ⊂ S.

Let G map bounded sets to bounded sets and satisfy (w-PS) condition and

b0 = inf
M

G �= −∞, a0 = sup
N

G �= +∞.

Then G has a critical point in S with critical value ≥ inf
B

G.

3. MAIN RESULTS

Our main results of this paper are as follows.

Theorem 3.1. Suppose that (A) and the following conditions are satisfied.
(f1) there exists η > 2 such that

0 ≤ ηF (t, u) ≤ f(t, u)u, ∀t ∈ [0, T ], ∀u ∈ R.

Moreover f(t, u) = o(|u|) as u → 0 uniformly in t ∈ [0, T ];

(f2) η
∫ u
0 Ij(τ) dτ ≥ Ij(u)u ∀u ∈ R, j = 1, 2, . . . , p;

(f3) Ij(u) ≥ 0, ∀u ∈ R, j = 1, 2, . . . , p;

(f4) there exists aj > 0 such that∣∣∣∣ ∫ u

0
Ij(τ) dτ

∣∣∣∣ ≤ aj, ∀u ∈ R, j = 1, 2, . . . , p.

Then problem (1.1) has four solutions: one zero solution, one positive solution, one
negative solution and one sign-changing solution.

Theorem 3.2. Assume that (A), (f1), (f2), (f3), (f4) and the following condition
are satisfied.

(f5) λlu
2 − W1(t) ≤ 2eG(t)F (t, u) ≤ λl+1u

2 + W2(t), a.e t ∈ [0, T ], u ∈ R,
where W1, W2 ∈ L1(0, T ), l ≥ 2.

Then problem (1.1) has at least one sign-changing solution.

4. PROOFS OF THEOREMS

For μ0>0, let

P = {u ∈ H1
0 (0, T ) : u(t) ≥ 0 a.e. t ∈ [0, T ]},

D0(μ0) = {u ∈ H1
0 (0, T ) : dist(u, P ) < μ0},

−D0(μ0) = {u ∈ H1
0 (0, T ) : dist(u,−P ) < μ0}.
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Lemma 4.1. Assume that (A), (f1) and (f2) hold, then ϕ satisfies (PS) condition.

Proof. Assume that {un} ⊆ H1
0 (0, T ) is a (PS) sequence, that is, |ϕ(un)| ≤

C2, ϕ
′(un) → 0. By (f1) and (f2), we have

ηC2 + ‖ϕ′(un)‖‖un‖
≥ ηϕ(un) − 〈ϕ′(un), un〉
=

η

2
‖un‖2 + η

p∑
j=1

eG(tj)

∫ un(tj)

0
Ij(t) dt − η

∫ T

0
eG(t)F (t, un(t)) dt

−〈un, un〉 −
p∑

j=1

eG(tj)Ij(un(tj))un(tj) +
∫ T

0
eG(t)f(t, un(t))un(t) dt

=
η − 2

2
‖un‖2 −

∫ T

0
eG(t)

(
ηF (t, un(t))− f(t, un(t))un(t)

)
dt

+
p∑

j=1

eG(tj )

(
η

∫ un(tj)

0
Ij(t) dt − Ij(un(tj))un(tj)

)
≥ η − 2

2
‖un‖2.

Thus {un} is bounded in H1
0 (0, T ). Hence there exists a subsequence of {un} (for

simplicity denoted again by {un}) such that

un ⇀ u in H1
0 (0, T ),(4.1)

un → u uniformly in C([0, T ]).(4.2)

On the other hand, we have

(4.3)

〈ϕ′(un) − ϕ′(u), un − u〉

=
∫ T

0

|u′
n(t) − u′(t)|2dt

+
p∑

j=1

eG(tj)
(
Ij(un(tj))− Ij(u(tj))

)(
un(tj) − u(tj)

)
−

∫ T

0

eG(t)
(
f(t, un(t) − f(t, u(t)))

)(
un(t) − u(t)

)
dt.

From (A), (4.1), (4.2) and (4.3), it follows that un → u in H1
0 (0, T ). Thus, ϕ satisfies

the (PS) condition. The proof is complete.

Lemma 4.2. Assume that (A), (f1) and (f3) hold, then there exists ε0 > 0 such
that
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(i) J ′(∂D0(ε0)) ⊂ D0(ε0), and if u ∈ D0(ε0) is the solution of problem (1.1), then
u ∈ P ;

(ii) J ′(∂(−D0(ε0))) ⊂ −D0(ε0), and if u ∈ −D0(ε0) is the solution of problem
(1.1), then u ∈ −P .

Proof. Let u± = max{±u, 0}. for all w ∈ −P , we have w(t) ≤ 0, so
−w(t) ≥ 0. Hence, ∀w ∈ −P, r ∈ [2, +∞),

(4.4) ‖u+‖r
r ≤

∫
u(t)≥0

|u+ − w|rdt +
∫

u(t)<0
| − u− − w|rdt =

∫ T

0
|u − w|rdt.

Therefore, (4.4) implies that ‖u+‖r ≤ inf
w∈(−P )

‖u−w‖r . Moreover, by Sobolev embed-

ding Theorem, when r ∈ [2, +∞), the embedding H1
0 (0, T ) ↪→ Lr(Ω) is continuous.

So there exists Cr > 0 such that for all u ∈ H1
0 (0, T ), if r ∈ [2, +∞),

(4.5) ‖u+‖r ≤ inf
w∈(−P )

‖u − w‖r ≤ Cr inf
w∈(−P )

‖u − w‖ = Crdist(u,−P ).

By (A) and (f1): ∀ε > 0, there exists Cε > 0 such that

f(t, u)u ≤ εu2 + Cε|u|s, ∀t ∈ [0, T ], ∀u ∈ R.(4.6)

Assume v = J ′(u). Then by (4.5), (4.6) and (f3), for ε small enough,

dist(v,−P )‖v+‖ ≤ ‖v+‖2

= 〈v, v+〉

≤ −
p∑

j=1

eG(tj)Ij(u(tj))v+(tj) +
∫ T

0
eG(t)f(x, u+)v+dt

≤
∫ T

0
eG(t)f(x, u+)v+dt

≤
∫ T

0
β(ε|u+| + Cε|u+|s−1)||v+|dt

≤
(1

2
dist(u,−P ) + C3dist(u,−P )s−1

)
‖v+‖,

where

β = max
t∈[0,T ]

eG(t) > 0.

That is,

dist(J ′(u),−P ) ≤ 1
2
dist(u,−P ) + C3(dist(u,−P )s−1).(4.7)
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So there exists ε0 > 0 such that dist(J ′(u),−P ) ≤ 3
4ε0 for every u ∈ ∂(−D0(ε0)).

Thus J ′(∂(−D0(ε0))) ⊂ −D0(ε0). If u ∈ D0(ε0) is the solution of problem (1.1),
then ϕ′(u) = u − J ′(u) = 0, that is, J ′(u) = u. By (4.7), u ∈ −P , (ii) holds. (i) can
be proved analogously. The proof is complete.

Lemma 4.3. Assume that (f1) and (f4) hold, then

inf
D0(ε0)

⋂ −D0(ε0)
ϕ(u) = d0 > −∞.

Proof. By (f1), (f4), (4.6) and Holder inequality, we have that there exists C4 > 0
such that

(4.8)

ϕ(u) ≥
p∑

j=1

eG(tj)

∫ u(tj)

0

Ij(t) dt −
∫ T

0

eG(t)F (t, u(t)) dt

≥ −βpa − β

η

∫ T

0

f(t, u(t))u(t) dt

≥ −βpa − βC4

η
(‖u‖2

2 + ‖u‖s
s),

where a = max{a1, a2, . . . , ap}. According to (4.5), for any u ∈ D0(ε0)
⋂−D0(ε0),

one has

‖u+‖s ≤ Csdist(u,−P ) ≤ Csε0, ‖u−‖s ≤ Csdist(u, P ) ≤ Csε0.(4.9)

Thus, by (4.8) and (4.9), we get

inf
D0(ε0)

⋂ −D0(ε0)
ϕ(u) = d0 > −∞.

Now, we prove Theorem 3.1. Proof. By (f1), there are two positive constants
C5 and C6 such that ∀u ∈ R, ∀t ∈ [0, T ] (see [13, p. 2863]),

F (t, u) ≥ C5|u|η − C6.

For any finitely dimensional subspace Ṽ of H1
0 (0, T ), by (f4), there exists a constant

C7 > 0 such that for all u in Ṽ it holds

(4.10)

ϕ(u) =
1
2
‖u‖2 +

p∑
j=1

eG(tj)

∫ u(tj)

0
Ij(t)dt −

∫ T

0
eG(t)F (t, u)dt

≤ 1
2
‖u‖2 + βpa − αC5‖u‖η

η + αC6T

≤ 1
2
‖u‖2 + βpa − αC7‖u‖η + αC6T.
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Since η > 2, by (4.10), there are two positive numbers C8 and C9 such that

ϕ(u) ≤ −C8‖u‖2 + C9, ∀u ∈ V0.(4.11)

ϕk(k = 1, 2, . . .) is the eigenfunctions of the problem{ −u′′(t) = λu(t), t ∈ [0, T ];

u(0) = u(T ) = 0,

corresponding the eigenvalues λk(k = 1, 2, . . .) and Xk is the eigenspace associated
to λk, H1

0 (0, T ) =
⊕
i∈N

Xi, thus ϕ1 is positive (or negative) and the eigenfunction

associated to λi(i ≥ 2) is sign-changing. Since ϕ2 ∈ H1
0 (0, T ) is sign-changing, that

is ϕ+
2 �= 0, ϕ−

2 �= 0. Let V0 = span{ϕ+
2 , ϕ−

2 }, then V0 is the finitely dimensional
subspace of H1

0 (0, T ). Define a path h : [0, 1] �→ H1
0 (0, T ),

h(t) = t

√
R0

‖ϕ+
2 ‖

ϕ+
2 + (1 − t)

√
R0

‖ϕ−
2 ‖

(−ϕ−
2 ),

where R0 = max{d0−C9−1
−C8

, 1}, then by (4.11)

(4.12)

ϕ(h(t)) = ϕ

(
t

√
R0

‖ϕ+
2 ‖

ϕ+
2 + (1 − t)

√
R0

‖ϕ−
2 ‖

(−ϕ−
2 )

)
≤ −C8R0 + C9

≤ d0 − 1.

Thus, by Lemma 4.3 and (4.12),

inf
u∈D0(ε0)

⋂ −D0(ε0)
ϕ(u) > sup

t∈[0,1]
ϕ(h(t)).

Obviously, h(0) ∈ −D0(ε0), h(1) ∈ D0(ε0), thus h(0) ∈ −D0(ε0)\D0(ε0). If
not, h(0) ∈ −D0(ε0) ∩ D0(ε0), by Lemma 4.3, G(h(0)) ≥ d0. This is a con-
tradiction. Analogously, h(1) ∈ D0(ε0)\ − D0(ε0). Moreover, 0 ∈ −D0(ε0) ∩
D0(ε0), by Lemma 4.1, Lemma 4.2 and Theorem 2.1, problem (1.1) has four solutions:
u1 ∈ D0(ε0)

⋂
(−D0(ε0)), u2 ∈ D0(ε0)\−D0(ε0), u3 ∈ (−D0(ε0))\D0(ε0), u4 ∈

H1
0 (0, T )\(D0(ε0)

⋃−D0(ε0)). That is, u1 is a zero solution, u2 is a positive so-
lution, u3 is a negative solution and u4 is a sign-changing solution. The proof is
complete.

To prove Theorem 3.2, we first let N = X1
⊕

X2
⊕ · · ·⊕Xl (l ≥ 2), M =

∞⊕
i=l+1

Xi, then H1
0 (0, T ) = N

⊕
M . We take z0 ∈ Xl, ‖z0‖ = 1 and define

B = {u ∈ M : ‖u‖ ≥ δ}
⋃

{u = kz0 + v : v ∈ M, k ≥ 0, ‖u‖ = δ}.
Then each element of B is sign-changing.
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Lemma 4.4. dist(B,−P
⋃

P ) = d1 > 0.

Proof. B and −P
⋃

P are two closed subsets of H1
0 (0, T ). Note that B

⋂
(−P⋃

P ) = ∅ and H1
0 (0, T ) is a normal space, the conclusion is readily to be shown. The

proof is complete.

Lemma 4.5. Assume that (A), (f1) and (f3) hold, then there exists μ0 ∈ (0, d1)
such that J ′(±D0(μ0)) ⊂ ±D0(μ0).

Proof. Assume v = J ′(u), by (4.7), there is μ0 < d1 (cf. Lemma 4.4) such that
dist(J ′(u),−P ) ≤ 3

4μ0 for every u ∈ −D0(μ0). In a similar way, dist(J ′(u), P ) ≤
3
4μ0 for every u ∈ D0(μ0). The conclusion follows. The proof is complete.

Now, we prove Theorem 3.2.

Proof. Assume
D

(1)
0 = D0(μ0), D

(2)
0 = −D0(μ0),

W = D
(1)
0

⋃
D

(2)
0 , S = V \W.

By Lemma 4.4, B ⊂ S, that is, the condition (H3) of Theorem 2.2 holds. Lemma 4.5
says that condition (H1) of Theorem 2.2 is also satisfied. Since 0 ∈ D

(1)
0

⋂
D

(2)
0 , then

(H2) holds automatically. By Lemma 4.1 and Remark 2.1, ϕ satisfies w-PS condition.
Moreover, note that ‖v‖2 ≤ μl‖v‖2

2 for all v ∈ N and μl+1‖w‖2
2 ≤ ‖w‖2 for all

w ∈ M . Combine (f4) and (f5), we have that for any v ∈ N, w ∈ M,

ϕ(v) =
1
2
‖v‖2 +

p∑
j=1

eG(tj)

∫ v(tj)

0
Ij(t) dt −

∫ T

0
eG(t)F (t, v) dt

≤ 1
2
‖v‖2 + βpa − μl

2
‖v‖2

2 +

∫ T
0 W1(t) dt

2

≤ βpa +

∫ T
0 W1(t) dt

2

and

ϕ(w) =
1
2
‖w‖2 +

p∑
j=1

eG(tj )

∫ w(tj)

0

Ij(t) dt −
∫ T

0

eG(t)F (t, w) dt

≥ 1
2
‖w‖2 − βpa − μl+1

2
‖w‖2

2 −
∫ T
0 W2(t) dt

2

≥ −βpa −
∫ T
0 W2(t) dt

2
.
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Therefore, we have
sup
N

G = a0 < ∞, inf
M

= b0 > −∞.

Since (A) holds, ϕ maps bounded sets to bounded sets. By Theorem 2.2, ϕ has a
critical point in S. Therefore, problem (1.1) has a sign-changing solution. The proof
is complete.

5. EXAMPLES

Example 5.1. Let T = π
2 , t1 = 1

3 , t2 = 1
2 . Consider the damped vibration problem

with impulse⎧⎪⎪⎨⎪⎪⎩
−u′′(t) + g(t)u′(t) = f(t, u(t)), a.e. t ∈ [0, π

2 ];

u(0) = u(π
2 ) = 0,

Δu′(tj) = u′(t+j )− u′(t−j ) = Ij(u(tj)), j = 1, 2,

(5.1)

where

I1(u) = I2(u) =

{ −(u − 5)2 + 25, u ∈ [0, 10];

0, u ∈ (−∞, 0)
⋃

(10, +∞)

and f(t, u) = 1
t+1u2, g(t) = −1 − t. All conditions of Theorem 3.1 hold because

of s = 3, η = 3, a1 = a2 = 250. According to Theorem 3.1, problem (5.1) has
four solutions: one zero solution, one positive solution, one negative solution and one
sign-changing solution.

Example 5.2. Let T = 1, t1 = 1
3 . Consider the damped vibration problem with

impulse ⎧⎪⎪⎨⎪⎪⎩
−u′′(t) + g(t)u′(t) = f(t, u(t)), a.e. t ∈ [0, 1];

u(0) = u(1) = 0,

Δu′(t1) = u′(t+1 ) − u′(t−1 ) = I1(u(t1)),

where

I1(u) =

⎧⎪⎪⎨⎪⎪⎩
0, u ∈ (−∞, 0)

⋃
(100, +∞),

−u + 100, u ∈ [50, 100],

u, u ∈ [0, 50),

(5.2)

λ2 = 4π2 and λ3 = 9π2 are the eigenvalue the problem{ −u′′(t) = λu(t), t ∈ [0, 1];

u(0) = u(1) = 0.
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and f(t, u) = λ2+λ3
2 u = 13π2

2 u, g(t) = sin t + cos t. All conditions of Theorem 3.2
hold because of s = 2, η = 2, a1 = 2500, W1(t) = W2(t) = 0. According to Theorem
3.2, problem (5.2) has at least one sign-changing solution.
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