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TESTING IMPROVEMENTS OF A WELL-BALANCED METHOD FOR THE
MODEL OF A FLUID IN A NOZZLE WITH VARIABLE CROSS-SECTION

Mai Duc Thanh and Dietmar Kröner

Abstract. A set of improvements of a well-balanced scheme for the model of fluid
flows in a nozzle with variable cross-section is presented. Relying on the well-
balanced method introduced in our earlier work, we use the steady state solutions
to absorb the nonconservative term. The underlying numerical fluxes operating on
these steady states are obtained as convex combinations of the numerical fluxes
of a first-order and a second-order schemes. The improvements are still well-
balanced schemes. Then, we present many numerical tests, which establishes
the efficiency of these numerical schemes. These schemes can provide us with
very desirable approximations for any initial data: data in supersonic or subsonic
regions, and data in both of these two kinds of regions. All the tests also show
that the accuracy of the method by the improvements is improved.

1. INTRODUCTION

In this paper we are concerned with improvements of the accuracy and the robust-
ness of the well-balanced numerical method proposed earlier in [20] for the following
model of fluid flows in a nozzle with variable cross-section

(1.1)

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p∂xa,

∂t(aρe) + ∂x(au(ρe + p)) = 0, x ∈ RI , t > 0,

where a = a(x), x ∈ RI represents the cross-section, ρ is the density, u is the velocity,
e = ε+u2/2 is the total energy, ε is the internal energy, and p is the pressure. Usually,
one supplements the system (1.1) with the trivial equation

(1.2) ∂ta = 0,
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when investigating the properties of the system, see [22].
In [20], we have proposed a well-balanced scheme, relying on the Lax-Friedrichs

scheme and the treatment of the source term of (1.1). This scheme has been shown to
work well when data are either in supersonic or subsonic regions. Recently, in [33],
we introduced some computing correctors, which help the scheme in [20] to overpass
difficulties in approximating solutions across the sonic surface. In this work, we will
consider to improve the accuracy and the robustness of the method. Motivated by a
recent work [35] for an isentropic model of two-phase flows, we take the underlying
numerical flux to be convex combinations of the ones of the first-order Lax-Friedrichs
scheme - which can assure the convergence to the entropy solutions, but rather diffusive-
and of the second-order Richtmyer scheme. Observe that second-order schemes may not
converge to the entropy solutions. Moreover, the family is equipped with the computing
corrector proposed in our earlier work [33]. This computing corrector is aimed at
making sure that the method can work well for data across the sonic surface (the exact
solutions are located in both subsonic and supersonic regions). We then provide many
tests of these schemes for various kinds of initial data to verify the robustness and
therefore the efficiency of the schemes. These improvements are still well-balanced
schemes, i.e., that they can capture exactly steady state solutions. Furthermore, certain
choices of the parameter yield well-balanced schemes which can attain an accuracy
much faster. The accuracy of this kind of schemes at the same mesh size is much
better than the scheme using only underlying numerical flux of the Lax-Friedrichs
scheme. Finally, tests also indicate that convex combinations of a low-order scheme
and a high-order numerical scheme need not to improve the order of convergence of
the lower scheme.

Many works concerning the model (1.1) can be found in the literature. The study
of hyperbolic systems of balance laws in nonconservative form has been carried out in
[10, 26, 23, 30, 17, 14, 2, 24]. Numerical approximations for the model (1.1) were
considered in [20, 19, 28, 18]. Numerical approximations for the related model of
shallow water equations with discontinuous topography were studied in [7,18, 13, 25].
Recently, a numerical treatment for shallow water equations with variable topography
is proposed in [34]. Several well-balanced numerical schemes for a single conservation
law with source term were studied in [16, 5, 6, 15, 3]. Numerical schemes for multi-
phase flows and other models were studied in [4, 21, 29, 1, 31, 32, 35, 36]. Numerical
schemes for nonconservative hyperbolic systems were considered in [27, 8, 11, 12, 9].
See also the references therein.

The organization of this paper is as follows. In Section 2 we recall basic concepts and
properties of the model (1.1). Section 3 is devoted to the construction of the family
of the well-balanced schemes. The computing correctors are also given. In Section 4, we
present numerical tests toverify the robustness, the well-balancedproperty, and finding the
accuracy of the method. Finally, in Section 5 we provide conclusions and discussions.
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2. PRELIMINARIES

For simplicity, throughout we assume that the fluid is polytropic and ideal:

p = (γ − 1) ρε,

such that the equation of state can be given in the form

p = p(ρ, S) = (γ − 1) exp
(

S − S∗
Cv

)
ργ ,

where S is the specific entropy, γ > 1 is the adiabatic exponent, Cv > 0 is the specific
heat at constant volume, and S∗ is constant. Observe that for a polytropic and ideal
fluid, γ and Cv are constants.

The system (1.1)-(1.2) can be written in the vector form

(2.1) Ut + A(U)Ux = 0,

where U = (ρ, u, S, a), and

(2.2) A(U) =

⎛
⎜⎜⎜⎜⎝

u ρ 0 uρ
a

pρ

ρ u pS
ρ 0

0 0 u 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The matrix A(U) in (2.2) admits four real eigenvalues,

(2.3) λ0 = 0, λ1 = u − c, λ2 = u, λ3 = u + c,

where c is the local sound speed

c =
√

pρ =
√

γp(ρ, S)/ρ.

Since the characteristic field associated with λ0 may coincide with any other field, the
system (2.1) is not strictly hyperbolic. Set

(2.4)

G1 = {U : λ0(U) < λ1(U) < λ2(U) < λ3(U)},
G2 = {U : λ1(U) < λ0(U) < λ2(U) < λ3(U)},
G3 = {U : λ1(U) < λ2(U) < λ0(U) < λ3(U)},
G4 = {U : λ1(U) < λ2(U) < λ3(U) < λ0(U)}.
Σ+ = {U : λ1(U) = λ0(U)},
Σ0 = {U : λ2(U) = λ0(U)},
Σ− = {U : λ3(U) = λ0(U)},
Σ = Σ+ ∪ Σ− ∪ Σ0.
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The supersonic region is the one in which
|u| > c,

which corresponds to G1 ∪ G4. The subsonic region is the one in which
|u| < c,

which corresponds to G2 ∪ G3. The sonic surface is the one on which
|u| = c,

which corresponds to Σ±.
As shown in [30], a right-hand state U1 = (ρ1, u1, S1, a1) can be connected with

a left-hand state U0 = (ρ0, u0, S0, a0) via a stationary wave if

(2.5)

[aρu] = 0,[u2

2
+ h(ρ, S0)

]
= 0,

[S] = 0,

where [S] = S1 − S0, etc, and h is the specific enthalpy given by

(2.6) h(ρ, S) = p + ε/ρ = γexp
(S − S∗

Cv

)
ργ−1.

Set

(2.7) A(S) = (γ − 1)exp
(S − S∗

Cv

)
, κ = A(S0), μ =

2κγ

γ − 1
.

The density satisfies

(2.8) F (U0, a; ρ) := μργ −
(
u2

0 + μργ−1
0

)
ρ +

(a0u0ρ0

a

)2 1
ρ

= 0, ρ > 0,

where μ is defined by (2.7). Set

(2.9)

q1 =
a0u0ρ0

a
√

u2
0 + μργ−1

0

,

q2 =
(

u2
0

μ
+ ργ−1

0

)1/(γ−1)

.

It has been known that the nonlinear algebraic equation (2.8) may possess two real
roots, which give two possible density values. These yields two possible stationary
contacts for each given left-hand state and a level of cross-section of the right-hand
state. However, from a state in the subsonic or supersonic region, there is only one
admissible stationary contact wave, which corresponds to a sole admissible density
value. In [33], it is shown that the admissible density value will be computed by the
Newton-Raphson method for (2.8) starting at q1 if U0 is in the supersonic region, and
at q2 if U0 is in the subsonic region.
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3. IMPROVING THE ACCURACY OF WELL-BALANCED SCHEMES

3.1. Combining with high-order schemes

When a = constant, the system (1.1) can be reduced to the usual gas dynamics
equations

(3.1) ∂tV + ∂xf(V ) = 0,

where

V =

⎛
⎜⎝

ρ

ρu

ρe

⎞
⎟⎠ , f1(V ) :=

⎛
⎜⎝

ρu

ρu2 + p

u(ρe + p)

⎞
⎟⎠ .

Set
xj = jΔx, j ∈ Z, tn = nΔt, n ∈ N, λ =

Δt

Δx
.

The following C.F.L. stability condition is required

(3.2) CFL = λ · max
U

{|λi(U)|, i = 1, 2, 3} < 1.

Explicit schemes for (3.1) are given by

(3.3) Un+1
j = Un

j − λ(g(Un
j+1, U

n
j ) − g(Un

j , Un
j−1)), j ∈ Z, n ∈ N,

where g(U, V ) is the numerical flux.
The numerical flux of the Lax-Friedrichs scheme is given by

(3.4) gLF (U, V ) =
1
2
(
f(U) + f(V )

) − 1
2λ

(V − U).

The numerical flux of Richtmyer’s scheme, which is a second-order scheme, is
given by

(3.5) gR(U, V ) = f

(
U + V

2
− λ

2
(f(V ) − f(U))

)
.

Convex combinations of these two numerical fluxes

(3.6) gθ(U, V ) := (1− θ)gLF (U, V ) + θgR(U, V ), 0 ≤ θ ≤ 1,

define a one-parameter set of numerical schemes for (3.1). In the next section we will
be involved with the two special choices of θ:

θ1 =
1

1 + CFL
, θ2 = 0.9.
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Let gθ = gθ(U, V ) be an underlying numerical flux of the family (3.6). Our
well-balanced scheme for (1.1) is defined by

(3.7) Un+1
j = Un

j − λ
(
gθ(Un

j , Un
j+1,−) − gθ(Un

j−1,+, Un
j )

)
.

In the scheme (3.7), the states

Un
j+1,− = (ρ, ρu, ρe)nj+1,−, Un

j−1,+ = (ρ, ρu, ρe)nj−1,+

are defined as follows. First, observe that the entropy is constant across each stationary
jump, we compute ρn

j+1,−, un
j+1,− from the equations

(3.8)
an

j+1ρ
n
j+1u

n
j+1 = an

j ρn
j+1,−un

j+1,−,

(un
j+1)

2

2
+ h(ρn

j+1) =
(un

j+1,−)2

2
+ h(ρn

j+1,−),

and we compute ρn
j−1,+, un

j−1,+ from the equations

(3.9)
an

j−1ρ
n
j−1u

n
j−1 = an

j ρn
j−1,+un

j−1,+,

(un
j−1)

2

2
+ h(ρn

j−1) =
(un

j−1,+)2

2
+ h(ρn

j−1,+).

It is not difficult to verify that the schemes (3.7) are well-balanced. That is, they
can maintain the stationary contacts of the system (1.1). Indeed, if the initial data
U0(x) correspond to a stationary contact, then it holds that

an
j+1ρ

n
j+1u

n
j+1 = an

j ρn
j un

j ,

(un
j+1)

2

2
+ h(ρn

j+1) =
(un

j )2

2
+ h(ρn

j ),

for j ∈ Z, n = 0, 1, 2, .... The last two equations yield

ρn
j+1,− = ρn

j , un
j+1,− = un

j ,

ρn
j−1,+ = ρn

j , un
j−1,+ = un

j ,

for j ∈ Z, n = 0, 1, 2, .... Thus,

Un
j+1,− = Un

j , Un
j−1,+ = Un

j ,

and so it is derived from (3.7) that

Un+1
j = Un

j , j ∈ Z, n = 0, 1, 2, ..,

i.e., the schemes can capture exactly the stationary contact wave.
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3.2. Completing the method by equipping with computing correctors

Existing schemes often fail to approximate solutions when data belong to both sides
of the sonic surface Σ±. In particular, a scheme may not work when a rarefaction wave
is attached by a stationary wave that jumps into the other side of the sonic surface. This
has been observed in [33], where a numerical treatment to overcome this obstacle is
proposed by introducing a suitable computing corrector such that the algorithm selecting
the admissible stationary contact wave in the construction of the well-balanced scheme
works properly. The computing correctors make sure that the errors do not influence
the choice of the admissible density of the nonlinear equation (2.8) when the numerical
data are very closed to the sonic surface. In particular, when the rarefaction wave
approaches the sonic surface and the solution tends to come across the sonic boundary,
the computing corrector is designed to make the scheme take the stationary wave that
helps the solution to overcome this sonic surface. Furthermore, to be consistent, the
computing correctors are required to be as a modulus of continuity of Δx. Precisely,
the two computing correctors are defined as follows.

(I) A mesh-size dependent corrector:

(3.10) dn
j = Δx max

i=1,2,3
|λi(Un

j )| (|ρn
j+1 − ρn

j |+ |un
j+1 − un

j | + |pn
j+1 − pn

j |
)
,

(II) Corrector depends on the number of the iterations:

(3.11) dn
j =

maxi=1,2,3 |λi(Un
j )|√

k

(|ρn
j+1 − ρn

j | + |un
j+1 − un

j |+ |pn
j+1 − pn

j |
)
,

where k is the number of iterations.

The correctors work in the following way: if (un
j )2 − pρ(ρn

j , Sn
j ) < −dn

j (instead
of (un

j )2 − pρ(ρn
j , Sn

j ) ≤ 0), then starting the Newton-Raphson method at q1 defined
by (2.9) for solving the nonlinear equation (2.8) to get ρn

j,±. Otherwise, starting the
Newton-Raphson method at q2 defined by (2.9) for solving (2.8) to get ρn

j,±. This is
because when studying the Riemann problem for (1.1) (see [30]), we realize that only
rarefaction waves approach the sonic surface from the subsonic region in a Riemann
solution and the solution attains the sonic surface before continuing across this sonic
surface from the subsonic region to the supersonic region. Thus, the correctors can
help the solution come across the sonic surface. Without such a corrector, the solution
may approach the sonic surface and then come back into the subsonic domain by a
possibly large stationary wave, yielding a possibly big error.

In the next section we will investigate to see whether the family of well-balanced
schemes with the underlying numerical fluxes (3.6) equipped with one of the computing
correctors (3.11) can deal with data around the sonic surface.
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4. TEST CASES

In this section we will provide several tests with the family of numerical schemes
(3.7) with the two special choices θ1 = 1/(1+CFL) and θ2 = 0.9. The scheme (3.7)
with the underlying numerical flux given by (3.6 with θ = 1/(1+CFL) will be referred
to as the FAST1 scheme, while θ = 0.9 corresponds to the FAST2 scheme. The scheme
(3.7) with the underlying numerical flux given by (3.6) with the trial choice θ = 0 will
be referred to as the Lax-Friedrichs-type (LF-type for short) scheme. These schemes
are then equipped with the first computing corrector in (3.11) with the hope that they
will work for any initial data (robustness). The test 1 is devoted to a stationary wave,
and the other three tests are devoted to observations of the robustness, the accuracy,
and the CPU times of the schemes. Let the parameters are chosen to be

γ = 1.4, Cv = 1, S∗ = 1.

Consider the Riemann problem for (1.1)-(1.2) with the Riemann data

(4.1) U0(x) =

{
UL = (ρL, uL, pL, aL), x < 0,

UR = (ρR, uR, pR, aR), x > 0.

4.1. Test 1: Steady state solutions

This test is devoted to a steady state solution (stationary wave). We consider the
Riemann problem for (1.1)-(1.2), where the initial data (4.1) are given by Table 1.

Table 1. The initial data of the Riemann problem for (1.1)-(1.2) for Test 1

� ρ u p a

UL 3 5 5 1
UR 1.9284239 5.1855819 2.6932939 1.5

It is not difficult to check that this Riemann data correspond to the left-hand and
right-hand states of a steady state solution, which is a stationary contact wave.

The approximate solution is computed on the interval [−1, 1] with 500 mesh points
at the time t = 0.1 using the scheme (3.6) with θ = 0.9, called the FAST2 scheme.
The approximate solution is plotted in Figure 1, which shows that the scheme captures
exactly the steady state solution. This means that the scheme (3.6) is well-balanced.

4.2. Test 2: Solution in subsonic region

In this test, the Riemann solution lies entirely in the subsonic region. The Riemann
data are taken in the subsonic region, i.e., UL, UR ∈ G2. The exact Riemann solution
is taken from [30]. The solution is a 1-shock from UL to U1, followed by a stationary
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wave from U1 to U2, a 2-contact discontinuity from U2 to U3, and finally from U3 to
UR by a 3-rarefaction wave. The states UL, UR, U1, U2, U3 are given in Table 2.

Fig. 1. Test 1: Approximation of a stationary contact wave by FAST2 scheme at the time
t = 0:1 with 500 mesh points on the interval [−1; 1].

Table 2. States that separate the elementary waves of the exact Riemann solution in
Test 2, see Figure 2 (upper-left corner)

� ρ u p a

UL 1.3939394 1.9325048 6 1
U1 2 1 10 1
U2 2.048658 0.81354072 10.342255 1.2
U3 1.048658 0.81354072 10.342255 1.2
UR 1.40092 1.9214873 15.513383 1.2

The approximate solution will be computed at the time t = 0.1 on the inter-
val [−1, 1] of the x-space using the underlying numerical fluxes of the Lax-Friedrischs
scheme, FAST1 and FAST2 schemes with different mesh sizes. Figure 2 shows the plots
of the approximate solutions given by the Lax-Friedrichs-type scheme, the FAST1 and
the FAST2 scheme with the mesh-size h = 1/250. Figure 3 displays the approximate
solutions by the FAST2 scheme with different mesh sizes h = 1/125, 1/500, 1/2000.
These figures show good approximations of the exact solution. The approximate so-
lution given by the FAST2 scheme is the finest one. The errors in the L1 norm are
computed and the orders of convergence are estimated, and are reported by Table 3.
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Fig. 2. Test 2: Approximate solution by the Lax-Friedrichs-type, FAST1, and FAST2
schemes with 500 mesh points on the interval [−1; 1].

Fig. 3. Test 2: Approximate solution using the underlying FAST2 numerical ux. The
approximate solution is computed at the time t = 0.1 on the interval [−1; 1] with
250, 1000, and 4000 mesh points, and is compared with the exact solution.
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Table 3 indicates that at the same mesh-sizes, the FAST1 scheme gives a better
accuracy than the Lax-Friedrichs-type scheme, and the FAST2 scheme gives a better
than the FAST1 scheme. At the same mesh-sizes, the Lax-Friedrichs-type scheme is
the fastest. The iteration numbers are almost the same. However, the most important
observation here is that to get the same (or approximate) accuracy, the Lax-Friedrichs-
type scheme and the FAST1 scheme require much more time than the FAST2 scheme.

Table 3. Test 2: Errors, orders of convergence, numbers of iterations, and CPU
times of the well-balanced schemes

LF-type
N L1-Error Order Iterations CPU time

250 0.47301 – 147 7.1604
500 0.30887 0.61 293 17.145
1000 0.1894 0.71 586 56.644
2000 0.11395 0.73 1172 212.6
4000 0.067159 0.76 2344 1087.6

FAST1
N Error Order Iterations CPU time

250 0.40292 – 147 11.232
500 0.25933 0.64 293 33.275
1000 0.15655 0.73 586 110.75
2000 0.093914 0.74 1172 437.47
4000 0.055678 0.75 2344 2057.4

FAST2
N Error Order Iterations CPU time

250 0.19026 – 147 10.967
500 0.11667 0.71 293 32.682
1000 0.065239 0.84 586 110.01
2000 0.038942 0.74 1172 433.21
4000 0.023447 0.73 2344 2015.8

4.3. Test 3: Solution in supersonic region
In this test, the Riemann solution lies entirely in the supersonic region. The Riemann

data are taken in the subsonic region: UL, UR ∈ G1. The exact Riemann solution is
taken from [30]. The exact Riemann solution begins with a stationary contact wave
from UL to U1, followed by a 1-shock from U1 to U2, a 2-contact discontinuity from
U2 to U3, and finally from U3 to UR by a 3-shock wave. The states UL, UR, U1, U2, U3

are given in Table 4.
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Table 4. Test 3: States that separate the elementary waves of the exact Riemann
solution, see Figure 4 (upper-left corner)

� ρ u p a

UL 1 6 3 1.5
U1 1.5995235 5.6266756 5.7903943 1
U2 2.5992257 4.4467026 11.580789 1
U3 3.5992257 4.4467026 11.580789 1
UR 2.2149081 3.4439598 5.7903943 1

The approximate solution will be computed at the time t = 0.1 on the inter-
val [−1, 1] of the x-space using the underlying numerical fluxes of the Lax-Friedrischs
scheme, FAST1 and FAST2 schemes with different mesh sizes. Figure 4 shows the plots
of the approximate solutions given by the Lax-Friedrichs-type scheme, the FAST1 and
the FAST2 scheme with the mesh-size h = 1/250. Figure 5 displays the approximate
solutions by the FAST2 scheme with different mesh sizes h = 1/125, 1/500, 1/2000.
These figures show good approximations of the exact solution. The approximate so-
lution given by the FAST2 scheme is the finest one. The errors in the L1 norm are
computed and the orders of convergence are estimated, and are reported by Table 5.

Table 5 indicates that at the same mesh-sizes, the FAST1 scheme gives a better

Fig. 4. Test 3: Approximate solution by the Lax-Friedrichs-type, FAST1, and FAST2
schemes with 500 mesh points on the interval [−1; 1].
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Fig. 5. Test 3: Approximate solution using the underlying FAST2 numerical ux. The
approximate solution is computed at the time t = 0 : 1 on the interval [−1; 1]
with 250, 1000, and 4000 mesh points, and is compared with the exact solution.

accuracy than the Lax-Friedrichs-type scheme, and the FAST2 scheme gives a better
than the FAST1 scheme. The orders of convergence are almost the same. At the same
mesh-sizes, the Lax-Friedrichs-type scheme is the fastest. The iteration numbers are
almost the same. Interestingly, the FAST2 scheme is the fastest one attaining the same
(or approximate) accuracy.

4.4. Test 4: Solution in resonant regime

In this test, the Riemann data are taken on the opposite sides of the resonance
surface, where UL ∈ G2 and UR ∈ G1.

The solution begins with a 1-rarefaction wave from UL in the subsonic region
G2 to U1 on the sonic surface, followed by a stationary wave from U1 to U2 in the
supersonic region G1, then followed by a 2-contact discontinuity from U2 to U3, and
finally followed from U4 to UR by a 3-shock wave. The states UL, UR, U1, U2, U3 are
given in Table 6.

The approximate solution will be computed at the time t = 0.2 on the inter-
val [−1, 1] of the x-space using the underlying numerical fluxes of the Lax-Friedrichs
scheme, FAST1 and FAST2 schemes with different mesh sizes. Figure 6 shows the plots
of the approximate solutions given by the Lax-Friedrichs-type scheme, the FAST1 and
the FAST2 scheme with the mesh-size h = 1/250. Figure 7 displays the approximate
solutions by the FAST2 scheme with different mesh sizes h = 1/125, 1/500, 1/2000.
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These figures show good approximations of the exact solution. The approximate so-
lution given by the FAST2 scheme is the finest one. The errors in the L1 norm are
computed and the orders of convergence are estimated, and are reported by Table 7.

Table 5. Test 3: Errors, orders of convergence, numbers of iterations, and CPU
times of the well-balanced schemes

LF-type
N L1-Error Order Iterations CPU time

250 0.71061 – 202 9.9685
500 0.43966 0.69 403 25.085
1000 0.25523 0.78 805 74.366
2000 0.13907 0.88 1610 321.44
4000 0.074094 0.91 3220 1458.6

FAST1
N Error Order Iterations CPU time

250 0.57938 – 202 15.382
500 0.34797 0.74 403 45.459
1000 0.19652 0.82 805 151.93
2000 0.10534 0.9 1610 603.83
4000 0.056288 0.9 3220 2627.3

FAST2
N Error Order Iterations CPU time

250 0.24168 – 202 15.428
500 0.1378 0.81 403 44.632
1000 0.07011 0.97 806 154.99
2000 0.03904 0.84 1611 596.58
4000 0.021274 0.88 3221 2628.5

Table 6. Test 4: States that separate the elementary waves of the exact Riemann
solution, see Figure 6 (upper-left corner)

� ρ u p a

UL 5 0.5 8 1
U1 2.7766 1.3306 3.5111 1
U2 1.6697 1.8438 1.7227 1.2
U3 2.0779 1.5738 2.3427 1.2
U4 1.8047 1.5738 2.3427 1.2
UR 1 0.8 1 1.2
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Fig. 6. Test 4: Approximate solution by the Lax-Friedrichs-type, FAST1, and FAST2
schemes with 500 mesh points on the interval [−1; 1] at the time t = 0.2.

Fig. 7. Test 4: Approximate solution using the underlying FAST2 numerical ux. The
approximate solution is computed at the time t = 0.2 on the interval [−1; 1] with
250, 1000, and 4000 mesh points, and is compared with the exact solution.
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Table 7 indicates that at the same mesh-sizes, the FAST1 scheme gives a better
accuracy than the Lax-Friedrichs-type scheme, and the FAST2 scheme gives a better
than the FAST1 scheme. At the same mesh-sizes, the Lax-Friedrichs-type scheme is
the fastest. The orders of convergence are increasing from Lax-Friedrichs-type scheme
to FAST1 and FAST2 schemes. The iteration numbers are almost the same. However,
the most important observation here is that to get the same (or approximate) accuracy,
the Lax-Friedrichs-type scheme and the FAST1 scheme require much more time than
the FAST2 scheme.

Table 7. Test 4: Errors, orders of convergence, numbers of iterations, and CPU
times of the well-balanced schemes

LF-type
N L1-Error Order Iterations CPU time

250 0.4302 – 148 10.967
500 0.24649 0.8 300 25.397
1000 0.14285 0.79 605 71.386
2000 0.084304 0.76 1214 254.13
4000 0.04944 0.77 2433 1151.7

FAST1
N Error Order Iterations CPU time

250 0.38408 – 148 14.726
500 0.21337 0.85 300 40.654
1000 0.11945 0.84 605 129.89
2000 0.068624 0.8 1214 483.38
4000 0.039285 0.8 2432 2237.9

FAST2
N Error Order Iterations CPU time

250 0.28346 – 149 14.773
500 0.14749 0.94 302 44.273
1000 0.074821 0.98 606 131.56
2000 0.041751 0.84 1216 480.81
4000 0.022374 0.9 2434 2086.1

5. CONCLUSIONS AND DISCUSSIONS

This work provides many tests for several remarkable improvements of the well-
balanced schemes (3.7) for the model of a fluid in anozzle with variable cross-section
(1.1). The complete description of the improvements can be described as follows.
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First, we deal with the nonconservative term on the right-hand side of (1.1) using
stationary wave, which was done in [20]. This step could absorb the nonconservative
term. Second, we consider the improvement of the accuracy by forming the underlying
numerical fluxes of (3.7) to be convex combinations of the numerical fluxes of the
first-order Lax-Friedrichs scheme and the second-order Richtmyer scheme as in (3.6).
Finally, these schemes are equipped with the computing correctors (3.11), which were
proposed in [33], in such a way that it can work for data across the sonic surface from
the subsonic region to the supersonic region.

The schemes in this family are shown to be well-balanced, that is, they can capture
exactly steady state solutions. Tests show that after equipping the computing corrector
proposed in [33], the schemes in this family can work for any initial data in supersonic
or subsonic regions, or both even initial data in both supersonic and subsonic regions.
So, the robustness of the method can be confirmed. Moreover, this construction of
family of schemes can produce fast schemes, where the accuracy can be attained within
a much shorter time than the sole application of the Lax-Friedrichs scheme as originally
proposed in [20]. The accuracy of the scheme obtained from this family by certain
choices of the parameter θ such as θ = 0.9 can give much better accuracy than
the scheme using only the first-order Lax-Friedrichs scheme. We also observe from
the tests that convex combinations of numerical fluxes of the first-order Lax-Friedrichs
scheme and the second-order Ritchmyer’s scheme might not yield higher orders of
convergence.
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Birkhäuser, 2004.

5. R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conser-
vation laws with stiff sources, Math. Comput., 72 (2003), 131-157.

6. R. Botchorishvili and O. Pironneau, Finite volume schemes with equilibrium type dis-
cretization of source terms for scalar conservation laws, J. Comput. Phys., 187 (2003),
391-427.

7. A. Chinnayya, A.-Y. LeRoux and N. Seguin, A well-balanced numerical scheme for
the approximation of the shallow water equations with topography: the resonance phe-
nomenon, Int. J. Finite Vol., 1(4) (2004).



1756 Mai Duc Thanh and Dietmar Kröner
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13. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using
the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., 14 (2004),
663-700.

14. P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant nonlinear
systems of balance laws, Ann. Inst. H. Poincar Anal. NonLinéaire, 21 (2004), 881-902.
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33. M. D. Thanh and D. Kröner, Numerical treatment of nonconservative terms in resonant
regime for fluid flows in a nozzle with variable cross-section, Computers & Fluids, 66
(2012), 130-139.

34. M. D. Thanh and M. D. Thanh, Numerical treatment in resonant regime for shallow
water equations with discontinuous topography, Commun. Nonl. Sci. Num. Simulat.,
18 (2013), 417-433.

35. M. D. Thanh, Building fast well-balanced two-stage numerical schemes for a model of
two-phase flows, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1836-1858.

36. M. D. Thanh, Well-balanced Roe-type numerical scheme for a model of two-phase
compressible flows, Kor. J. Math., 51(1) (2014), 163-187.

Mai Duc Thanh
Department of Mathematics
International University
Quarter 6, Linh Trung Ward
Thu Duc District, Ho Chi Minh City
Vietnam
E-mail: mdthanh@hcmiu.edu.vn

Dietmar Kröner
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