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APPROXIMATE CONTROLLABILITY OF FRACTIONAL ORDER
STOCHASTIC VARIATIONAL INEQUALITIES DRIVEN BY POISSON

JUMPS

P. Muthukumar* and C. Rajivganthi

Abstract. This paper proposes the sufficient conditions of approximate control-
lability for a class of fractional order stochastic variational inequalities driven
by Poisson jumps. The possibilities of finding the approximate controllability
of a given problem of this type introduce the smoothing system corresponding
to the fractional order stochastic variational inequalities driven by Poisson jumps.
The results are achieved upon the Moreau-Yosida approximation of subdifferential
operator. Sufficient conditions for the approximate controllability of smoothing
system are discussed under the boundedness condition on control operator. The
results are formulated and proved by using the fractional calculus, semigroup
theory, stochastic analysis techniques. An example is provided to illustrate the
obtained theory.

1. INTRODUCTION

The theory of nonlinear fractional differential or integro-differential equations has
become an active area of investigation due to their applications in nonlinear oscilla-
tions of earthquakes, viscoelasticity, electrochemistry, electromagnetic theory, and in
fluid dynamic traffic models (see [11] and references therein). The qualitative proper-
ties of fractional differential equations have been done in [14]. It is well known that
the issue of controllability plays an important role in control theory and engineering
(see [6]) because they have close connections to pole assignment, structural decompo-
sition, quadratic optimal control and observer design etc. Recently, the controllability
for different kinds of fractional differential systems in abstract spaces have been gener-
ated with considerable interest among researchers. Ahmed [1] studied controllability of
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fractional stochastic delay equations. If the semigroup is compact, then the assumption
(iv) in section 2 of [1] is valid only if the state space is finite dimensional [26]. On
the other hand, in infinite dimensional spaces, the concept of exact controllability is
usually too strong and the approximate controllability is more appropriate for these
control systems. Therefore, approximate controllability problems for deterministic and
stochastic dynamical systems in infinite dimensional spaces is well developed using
different kind of approaches [8, 19]. Kumar et al. [13] discussed the sufficient con-
ditions of approximate controllability of deterministic fractional order neutral control
systems with delay. Sakthivel et al. [23] studied the approximate controllability re-
sults of fractional stochastic evolution equations by using Banach contraction mapping
principle. Wang et al. [28] proved the adaptive neural tracking control for a class of
stochastic nonlinear systems with unknown dead-zone.

The earlier reports are on the qualitative properties of stochastic differential equa-
tions and their applications on systems driven by a Brownian motion (or Wiener pro-
cess) (see [19, 23]). However, the stochastic differential equations driven by a Pois-
son process can be widely found in applications from various fields such as storage
systems, queueing systems, economic systems and neurophysiology systems, etc, (see
[4, 24, 27]). Thus, it is very important to study the qualitative properties of stochastic
differential equations driven by a Poisson process in both theoretic and application
aspects (see [29]). Knoche [12] discussed the existence and uniqueness of the mild
solutions to stochastic evolution equations driven by Poisson jump processes. Cui et al.
[5] proved the existence and uniqueness of mild solutions of neutral stochastic evolution
equations with infinite delay and Poisson jumps by using successive approximation. Li
et al. [15] studied the robust quantized H∞ control for network control systems with
markovian jumps and time delays. Ren et al. [21] discussed the existence, uniqueness
and stability of mild solutions for time dependent stochastic evolution equations with
Poisson jumps and infinite delay under non-Lipschitz condition with Lipschitz condi-
tion being considered as a special case. Sakthivel et al. [22] studied the complete
controllability of stochastic evolution equations with jumps without assuming the com-
pactness of the semigroup property. Long et al. [16] proved the sufficient condition for
the approximate controllability of SPDE with infinite delays driven by Poisson jumps
by using the Krasnoselski-Schaefer fixed point theorem. Luo et al. [17] discussed suf-
ficient conditions for the existence and uniqueness for non-Lipschitz stochastic neutral
delay evolution equations driven by Poisson jumps.

The study of evolution problems where the state of the system is subject to some
set of constraints has a long history and its beginnings are nearly simultaneous to
the early studies of variational inequalities. An elementary example of variational in-
equality problems are the simple deformation of a beam constrained by an obstacle,
nonlinear obstacle problem and describing diffusion in a domain with a semiperme-
able boundary (see [2]). Huyen Dam [7] discussed the variable fractional delay filter
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with sub-expression coefficients. Bensoussan et al. [3] investigated the existence of
solutions for stochastic variational inequalities in infinite dimensional spaces. Rascanu
[20] studied the existence for a class of stochastic parabolic variational inequalities.
Recently, Jeong et al. [9, 10] studied the approximate controllability for the nonlin-
ear functional differential control problem governed by variational inequality. To the
best of our knowledge, the approximate controllability for a class of fractional order
stochastic variational inequalities driven by Poisson jumps is an untreated topic in the
literature and this fact is the motivation of the present work.

2. PRELIMINARIES

The purpose of this paper is to investigate the approximate controllability of frac-
tional order stochastic variational inequalities driven by Poisson jumps of the form

(1)

cDα
t x(t) + Ax(t) + ∂φ(x(t)) � Bu(t) + f(t, x(t))

+
∫

Z
g(t, x(t), η)Ñ(dt, dη), t ∈ J = [0, b], x(0) = x0,

where cDα
t denotes the Caputo fractional derivative operator of order 0 < α < 1. Let

H and V be two real separable Hilbert spaces such that V is a dense subspace in H

and the injection of V into H is continuous. The norms on V and H will be denoted by
‖·‖V and ‖·‖H. Identifying the antidual of H with H , we may consider V ⊂ H ⊂ V ∗.
Let A be the operator associated with a sequilinear form defined on V × V satisfying
Gardings inequality. −A generates an analytic semigroup T (t) in both of H and V ∗

as is seen in [25]. The realization for the operator A in H which is the restriction
of A to D(A) = {x ∈ V ; Ax ∈ H} be also denoted by A. Let φ : V → (−∞,∞]
be a lower semicontinuous, proper convex function. Then the subdifferential operator
∂φ of φ is denoted by ∂φ(x) = {x∗ ∈ V ∗; φ(x) ≤ φ(y) + (x∗, x − y), y ∈ V }.
The control function u(·) is given in L2([0, b], U) of admissible control functions,
U is a Hilbert space. B be a bounded linear operator from U to H . Let K be
an another separable Hilbert space. Let (Ω, F, {Ft}t≥0, P ) be a complete probability
space with the filtration {Ft}t≥0 satisfying the usual conditions, that is the filtration
{Ft}t≥0 is increasing and right continuous, and F0 contains all P− null sets of F. Let
q = (q(t)), t ∈ Dq be a stationary Ft− Poisson point process with a characteristic
measure λ. Let N (dt, dη) be the Poisson counting measure associated with q. Thus,
we have N (t, Z) =

∑
s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B(K −{0}), which

denotes the Borel σ− field of K − {0}. Let Ñ(dt, dη) = N (dt, dη) − dtλ(dη)
be the compensated Poisson measure that is independent of Brownian motion. Let
p2([0, b] × Z; H) be the space of all predictable mappings χ : [0, b] × Z → H for
which

∫ b
0

∫
Z E‖χ(t, η)‖2

Hdtλ(dη) < ∞. Then, we can define the H− valued stochastic
integral

∫ b
0

∫
Z χ(t, η)Ñ(dt, dη), which is a centred square-integrable martingale. f :

J × V → H and g : J × V × Z → H are Borel measurable functions.
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Definition 2.1. The fractional integral of order α with the lower limit 0 for a
function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t − s)1−α

ds, t > 0, α > 0,

provided the right hand side is point wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Caputo derivative of order α with the lower limit 0 for a
function f can be written as

cDαf(t)=
1

Γ(n − α)

∫ t

0

fn(s)
(t − s)α+1−n

ds=In−αfn(t), t>0, 0≤n − 1<α<n.

The Caputo derivative of a constant equals to zero. If f is an abstract function
with values in H , then the integrals which appear in the above definitions are taken in
Bochner’s sense (see [18]).

For every ε > 0, define the Moreau-Yosida approximation of φ as

φε(x) = inf{‖x − y‖2
∗/2ε + φ(y); y ∈ H}.

Then the function φε is Frechet differentiable on H and its Frechet differential ∂φε is
Lipschitz continuous on H with Lipschitz constant ε−1 where ∂φε = ε−1(I − (I +
ε∂φ)−1] as seen in Corollary 2.2 in chapter II of [2]. It is also well known that the
result limε→0 φε = φ and limε→0 ∂φε(x) = (∂φ)0(x) for every x ∈ D(∂φ), where
(∂φ)0 : H → H is the minimum element of ∂φ. Now, we introduce the smoothing
system corresponding to (1) as follows

(2)

cDα
t x(t)+Ax(t)+∂φε(x(t)) = Bu(t)+f(t, x(t))

+
∫

Z
g(t, x(t), η)Ñ(dt, dη), t ∈J, x(0) = x0.

Definition 2.3. An H- valued stochastic process {xε(t), t ∈ J} is a mild solution
of (2) if for each u ∈ LF

2 (J, U), it satisfies the following integral equation

(3)
xε(t)= T̂α(t)x0+

∫ t

0
(t−s)α−1Tα(t−s)[Bu(s)+f(s, xε(s))−∂φε(xε(s))]ds

+
∫ t

0

∫
Z
(t − s)α−1Tα(t − s)g(s, xε(s), η)Ñ(ds, dη),

where T̂α(t)x =
∫ ∞
0 ηα(θ)T (tαθ)xdθ, Tα(t)x = α

∫ ∞
0 θηα(θ)T (tαθ)xdθ, ηα(θ) =

1
αθ−1− 1

α wα(θ−
1
α ) ≥ 0, wα(θ) = 1

π

∑∞
n=1(−1)n−1θ−αn−1 Γ(nα+1)

n! sin(nπα), θ ∈
(0,∞), ηα is a probability density function defined on (0,∞), that is ηα(θ) ≥ 0,
θ ∈ (0,∞) and

∫ ∞
0 ηα(θ)dθ = 1.
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Lemma 2.4. (see [30]). For any fixed t ≥ 0, the operator T̂α(t) and Tα(t) are
linear and bounded operators, i.e., for any x ∈ H , ‖T̂α(t)x‖ ≤ M‖x‖ and ‖Tα(t)x‖ ≤

Mα
Γ(1+α)

‖x‖.

Let xε(b; x0, u) be the state value of the system (2) at terminal time b corre-
sponding to the control u and the initial value x0. Introduce the set R(b; x0, u) =
{xε(b; x0, u), u ∈ LF

2 (J, U)}, which is called the reachable set of the system (2) at
terminal time b.

Definition 2.5. The system (2) is said to be approximately controllable on J if
R(b; x0, u) = L2(Ω, H), where R(b; x0, u) is the closure of R(b; x0, u).

To prove our results, we impose the following hypotheses:

(H1) The nonlinear function f : J × V → H satisfies the Lipschitz condition and
there exists a positive constant Mf > 0 such that

‖f(t, x1) − f(t, x2)‖2
H ≤ Mf‖x1 − x2‖2

V ,

for all x1, x2 ∈ V .
(H2) The nonlinear function g : J ×V ×Z → H satisfies the Lipschitz condition and

there exists positive constants Mg , Lg > 0 such that∫
Z
‖g(t, x1, η)− g(t, x2, η)‖2

Hλ(dη) ≤ Mg‖x1 − x2‖2
V ,∫

Z
‖g(t, x1, η)− g(t, x2, η)‖4

Hλ(dη) ≤ Lg‖x1 − x2‖4
V ,

for all x1, x2 ∈ V .
(H3) (∂φ)0 is uniformly bounded, i.e., ‖(∂φ)0x‖2 ≤ M1, x ∈ H.

Consider the following L2- regularity for the abstract fractional linear parabolic equation

(4)
cDα

t x(t) + Ax(t) = k(t), t ∈ J,

x(0) = x0,

has a unique solution x(t) in [0, b] for each b > 0 and the bounded linear operator
k(t) ∈ L2(0, b; H) is taken instead of the control term Bu(t) (see [10]).

Lemma 2.6. (see [9, 10]). Let x0 ∈ H and k ∈ L2(0, b; V ∗), b > 0. Then
there exists a unique solution x(t) of (4) belonging to C([0, b]; H)∩ L2(0, b; V ) and
satisfying

‖x(t)‖C([0,b];H)∩L2(0,b;V ) ≤ M2

(
‖x0‖ + ‖k‖L2(0,b;V ∗)

)
,

where M2 is a constant depending on b.
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Lemma 2.7. Let xε and xϑ be the solutions of (2) with same control u, then there
exists a non-negative constant M3 independent of ε and ϑ such that

E‖xε − xϑ‖2
C([0,b];H)∩L2(0,b;V ) ≤ M3, 0 ≤ t ≤ b.

Proof. For given ε, ϑ > 0, let xε and xϑ be the solutions of (2) corresponding to ε
and ϑ, respectively. Then from the equation (3), we have

E‖xε(t) − xϑ(t)‖2

≤ 3E‖
∫ t

0
(t − s)α−1Tα(t − s)[f(s, xε(s))− f(s, xϑ(s))]ds‖2

+ 3E‖
∫ t

0
(t − s)α−1Tα(t − s)[∂φε(xε(s)) − ∂φϑ(xϑ(s))]ds‖2

+ 3E‖
∫ t

0

∫
Z

(t − s)α−1Tα(t − s)[g(s, xε(s), η)− g(s, xϑ(s), η)]Ñ(ds, dη)‖2,

≤3
( Mα

Γ(1+α)

)2 b2α−1

2α−1

∫ t

0
E‖f(s, xε(s))−f(s, xϑ(s))‖2ds+3

( Mα

Γ(1+α)

)2 b2α−1

2α−1

×
∫ t

0
E‖(∂φ)0xε(s) − (∂φ)0xϑ(s)‖2ds + 3

( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

×
{∫ t

0

∫
Z

E‖g(s, xε(s), η)− g(s, xϑ(s), η)‖2λ(dη)ds

+
(∫ t

0

∫
Z

E‖g(s, xε(s), η)− g(s, xϑ(s), η)‖4λ(dη)ds
)1/2}

,

≤ 3
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1
(Mf + Mg +

√
Lg)

∫ t

0

E‖xε(s) − xϑ(s)‖2ds

+ 3
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

∫ t

0
‖(∂φ)0(xε(s) − xϑ(s))‖2ds,

≤ 3
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1
(Mf + Mg +

√
Lg)

∫ t

0
E‖xε(s) − xϑ(s)‖2ds

+ 3
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1
M1b.

Here, we used ∂φε(xε(t)) = ε−1(I − (I + ε∂φ)−1)xε(t) and ‖∂φε(x)‖ ≤ ‖(∂φ)0x‖
for every x ∈ D(∂φ) and by using the Grownwall inequality

E‖xε(t) − xϑ(t)‖2

≤3
( Mα

Γ(1+α)

)2 b2α

2α−1
M1 exp

{
3
( Mα

Γ(1+α)

)2 b2α

2α−1
(Mf +Mg+

√
Lg)

}
=M3.
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Theorem 2.8. Assume that the hypotheses (H1)− (H3) hold. Then x = limε→0 xε

in L2(0, b; V ) ∩ C([0, b]; H) is a solution of (1), where xε is the solution of (2).

Proof. From Theorem 3.2 in [9], Theorem 3.1 in [10] and Lemma 2.7 in this section,
there exists x(·) ∈ L2(0, b; V ) such that xε(·) → x(·) in L2(0, b; V ) ∩ C([0, b]; H).

(5) From (H1), f(·, xε) → f(·, x) strongly in L2(0, b; H).

(6)
From (H2),

∫
Z g(t, xε(t), η)Ñ(dt, dη) → ∫

Z g(t, x(t), η)Ñ(dt, dη)

stronglyin L2(0, b; H),

(7) and Axn → Ax strongly in L2(0, b; V ∗).

From (H3), ∂φε(xε) is uniformly bounded, also by using (5), (6), (7), We have
cDα

t xε →c Dα
t x, weakly in L2(0, b; V ∗).

Therefore

∂φε(xε) → f(·, x) +
∫

Z
g(t, x(t), η)Ñ(dt, dη)+ k −c Dα

t x − Ax

weakly in L2(0, b; V ∗).

Note that ∂φε(xε(t)) = ε−1(I−(I +ε∂φ)−1)xε(t). Since (I +ε∂φ)−1xε → x strongly
and ∂φ is demiclosed, we have

f(·, x) +
∫

Z
g(t, x(t), η)Ñ(dt, dη) + k −c Dα

t x − Ax ∈ ∂φ(x) in L2(0, b; V ∗).

Thus, we have proved that x(t) satisfies a.e on (0, b) the equation (1).

3. APPROXIMATE CONTROLLABILITY

In this section sufficient conditions are established for the approximate controllabil-
ity of the system (2) under the boundedness condition on the control operator. First, we
consider the sufficient conditions for the approximate controllability of the following
linear deterministic system associated with (2) with f, g ≡ 0 have discussed in [8] and
[13],

cDα
t x(t) + ∂φε(x(t)) = −Ax(t) + Bu(t), t ∈ J,

x(0) = x0.

Let us define the linear operator Ŝ from L2(0, b; H) to H by

Ŝp =
∫ b

0
(b − s)α−1Tα(b − s)p(s)ds, for p ∈ L2(0, b; H)
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The system (2) is approximately controllable on J if for any ε > 0 and ξb ∈ H , there
exists a control u ∈ L2(0, b; U) such that

E‖ξb − T̂α(b)x0 − Ŝ{f(·, xε(·))− ∂φε(xε(·))}

−
∫ b

0

∫
Z
(b − s)α−1Tα(b − s)g(s, xε(s), η)Ñ(ds, dη)− ŜBu‖2 < ε.

To this purpose, the following hypothesis is needed;

(H4) For any ε > 0 and p ∈ L2(0, b; H), there exists a u ∈ L2(0, b; U) such that
E‖Ŝp − ŜBu‖2 < ε,

‖Bu‖2
L2(0,t;H) ≤ N‖p‖2

L2(0,t;H), 0 ≤ t ≤ b,

where N is a constant independent of p.

To prove the approximate controllability of the system (2), the following lemma is
required.

Lemma 3.1. Let u1 and u2 be in L2(0, b; U). Then, under the hypotheses (H1)−
(H2), we have

E‖xε1(t; u1) − xε2(t; u2)‖2

≤ 4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
‖Bu1 − Bu2‖2

L2(0,b;H)

exp
{
4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
(Mf + ε−1 + Mg +

√
Lg)

}
Proof.

E‖xε1(t; u1) − xε2(t; u2)‖2

≤ 4E‖
∫ t

0
(t − s)α−1Tα(t − s)[Bu1(s) − Bu2(s)]ds‖2

+4E‖
∫ t

0
(t − s)α−1Tα(t − s)[f(s, xε1(s; u1)) − f(s, xε2(s; u2))]ds‖2

+4E‖
∫ t

0
(t − s)α−1Tα(t − s)[∂φε(xε1(s; u1))− ∂φε(xε2(s; u2))]ds‖2

+4E‖
∫ t

0

∫
Z
(t−s)α−1Tα(t−s)[g(s,xε1(s; u1),η)−g(s,xε2(s; u2),η)]Ñ(ds,dη)‖2,

≤ 4
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

∫ t

0
E‖Bu1(s) − Bu2(s)‖2ds
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+4
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1
(Mf + ε−1)

×
∫ t

0
E‖xε1(s; u1) − xε2(s; u2)‖2ds + 4

( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

×
( ∫ t

0

∫
Z

E‖g(s, xε1(s; u1), η)− g(s, xε2(s; u2), η)‖2λ(dη)ds

+
( ∫ t

0

∫
Z

E‖g(s, xε1(s; u1), η)− g(s, xε2(s; u2), η)‖4λ(dη)ds
)1/2)

,

≤ 4
( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

∫ t

0
E‖Bu1(s) − Bu2(s)‖2ds + 4

( Mα

Γ(1 + α)

)2 b2α−1

2α − 1

×(Mf + ε−1 + Mg +
√

Lg)
∫ t

0
E‖xε1(s; u1) − xε2(s; u2)‖2ds,

by using the Gronwall’s inequality

≤ 4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
‖Bu1 − Bu2‖2

L2(0,b;H)

exp
{

4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
(Mf + ε−1 + Mg +

√
Lg)

}
.

Theorem 3.2. Under the hypotheses (H1), (H2) and (H4), the system (2) is ap-
proximately controllable on [0, b].

Proof. Let us show that D(A) ⊂ R(·), i.e, for given ε > 0 and ξb ∈ D(A), there
exists a u ∈ L2(0, b; U) such that

E‖ξb − xε(b; u)‖2 < ε,

where xε(b; u) = T̂α(b)x0+
∫ b
0 (b−s)α−1Tα(b−s)[Bu(s)+f(s, xε(s; u))−∂φε(xε(s; u))]ds+∫ b

0

∫
Z(b − s)α−1Tα(b − s)g(s, xε(s; u), η)Ñ(ds, dη). Because ξb ∈ D(A), there ex-

ists a q1 ∈ L2(0, b; H) such that Ŝq1 = ξb − T̂α(b)x0, for instance, take q1(s) =
(ξb − sAξb) − T̂α(s)x0/b. Let u1 ∈ L2(0, b; U) be arbitrary fixed. Because by (H4),
there exists a u2 ∈ L2(0, b; U) such that

E‖Ŝ
(
q1 − f(s, xε(s; u1)) + ∂φε(xε(s; u1))

)
−

∫ b

0

∫
Z
(b − s)α−1Tα(b − s)g(s, xε(s; u1))Ñ(ds, dη)− ŜBu2‖2 <

ε

22
,

it follows that
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(8)
E‖ξb − T̂α(b)x0 − Ŝf(s, xε(s; u1)) + Ŝ∂φε(xε(s; u1))

−
∫ b

0

∫
Z
(b − s)α−1Tα(b − s)g(s, xε(s; u1))Ñ(ds, dη)− ŜBu2‖2 <

ε

22
.

It can be chosen that v2 ∈ L2(0, b; U) by the hypothesis (H4) such that

(9)

E‖Ŝ
(
f(·, xε(·; u2)) − f(·, xε(·; u1))

)
+ Ŝ

(
∂φε(xε(·; u2)) − ∂φε(xε(·; u1))

)
+

∫ b

0

∫
Z
(b − s)α−1Tα(b − s)[g(s, xε(s; u2), η)

−g(s, xε(s; u1), η)]Ñ(ds, dη)− ŜBv2‖2 <
ε

23
,

and

‖Bv2‖2
L2(0,t;H) ≤ N

{
‖f(·, xε(·; u2)) − f(·, xε(·; u1))‖2

L2(0,t;H)

+‖∂φε(xε(·; u2)) − ∂φε(xε(·; u1))‖2
L2(0,t;H)

+‖
∫ t

0

∫
Z

[g(s, xε(s; u2), η)− g(s, xε(s; u1), η)]Ñ(ds, dη)‖2
L2(0,t;H)

}
,

for 0 ≤ t ≤ b. Therefore, in view of Hypotheses (H1), (H2) and (H4) and Lemma 3.1

‖Bv2‖2
L2(0,t;H)

≤ N
{∫ t

0
E‖f(τ, xε(τ ; u2))− f(τ, xε(τ ; u1))‖2dτ

+
∫ t

0
E‖∂φε(xε(τ ; u2))− ∂φε(xε(τ ; u1))‖2dτ

+
∫ t

0

∫
Z

E‖g(τ, xε(τ ; u2), η)− g(τ, xε(τ ; u1), η)‖2λ(dη)dτ

+
( ∫ t

0

∫
Z

E‖g(τ, xε(τ ; u2), η)− g(τ, xε(τ ; u1), η)‖4λ(dη)dτ
)1/2}

≤ N{Mf + ε−1 + Mg +
√

Lg}
∫ t

0

E‖xε(τ ; u2) − xε(τ ; u1)‖2dτ,

≤ 4N{Mf + ε−1 + Mg +
√

Lg}
( Mα

Γ(1 + α)

)2 1
2α − 1

× exp
{

4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
(Mf + ε−1 + Mg +

√
Lg)

}
∫ t

0
τ2α‖Bu2 − Bu1‖2

L2(0,t;H)dτ,
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≤ 4N
( Mα

Γ(1 + α)

)2 1
2α − 1

{Mf + ε−1 + Mg +
√

Lg}

× exp
{

4
( Mα

Γ(1 + α)

)2 b2α

2α − 1
(Mf + ε−1 + Mg +

√
Lg)

}
t2α+1

2α + 1
‖Bu2 − Bu1‖2

L2(0,t;H).

Put u3 = u2 − v2, we determine v3 such that

E‖Ŝ
(
f(·, xε(·; u3)) − f(·, xε(·; u2))

)
+Ŝ

(
∂φε(xε(·; u3)) − ∂φε(xε(·; u2))

)
+

∫ b

0

∫
Z

(b − s)α−1

×Tα(b − s)[g(s, xε(s; u3), η)− g(s, xε(s; u2), η)]Ñ(ds, dη)− ŜBv3‖2 <
ε

23
,

and

‖Bv3‖2
L2(0,t;H) ≤ N

{
‖f(·, xε(·; u3)) − f(·, xε(·; u2))‖2

L2(0,t;H)

+‖∂φε(xε(·; u3)) − ∂φε(xε(·; u2))‖2
L2(0,t;H)

+‖
∫ t

0

∫
Z
[g(s, xε(s; u3), η)− g(s, xε(s; u2), η)]Ñ(ds, dη)‖2

L2(0,t;H)

}
,

for 0 ≤ t ≤ b. We have

‖Bv3‖2
L2(0,t;H)

≤ N
{∫ t

0
E‖f(τ, xε(τ ; u3)) − f(τ, xε(τ ; u2))‖2dτ

+
∫ t

0

E‖∂φε(xε(τ ; u3)) − ∂φε(xε(τ ; u2))‖2dτ

+
∫ t

0

∫
Z

E‖g(τ, xε(τ ; u3), η)− g(τ, xε(τ ; u2), η)‖2λ(dη)dτ

+
( ∫ t

0

∫
Z

E‖g(τ, xε(τ ; u3), η)− g(τ, xε(τ ; u2), η)‖4λ(dη)dτ
)1/2}

≤ N{Mf + ε−1 + Mg +
√

Lg}
∫ t

0
E‖x(τ ; u3) − x(τ ; u2)‖2dτ,

≤ 4N
( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1+Mg+
√

Lg} exp
{

4
( Mα

Γ(1+α)

)2 b2α

2α−1
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×(Mf + ε−1 + Mg +
√

Lg)
}∫ t

0
τ2α‖Bu3 − Bu2‖2

L2(0,t;H)dτ,

≤ 4N
( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1+Mg+
√

Lg} exp
{
4
( Mα

Γ(1+α)

)2 b2α

2α−1

×(Mf + ε−1 + Mg +
√

Lg)
}∫ t

0
τ2α‖Bv2‖2

L2(0,t;H)dτ,

≤
{
4N

( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1 + Mg+
√

Lg} exp
{
4
( Mα

Γ(1+α)

)2 b2α

2α−1

×(Mf + ε−1 + Mg +
√

Lg)
}}2

∫ t

0
τ2α τ2α+1

2α + 1
‖Bu2 − Bu1‖2

L2(0,t;H)dτ,

≤
{
4N

( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1+Mg+
√

Lg} exp
{
4
( Mα

Γ(1+α)

)2 b2α

2α−1

×(Mf + ε−1 + Mg +
√

Lg)
}}2 t4α+2

(2α + 1)(4α + 2)
‖Bu2 − Bu1‖2

L2(0,t;H).

By proceeding this process, a sequence {un}n≥1 such that un+1 = un − vn can be
obtained and from

‖Bun − Bun+1‖2
L2(0,t;H)

≤ ‖Bvn‖2
L2(0,t;H),

≤
{

4N
( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1+Mg+
√

Lg} exp
{

4
( Mα

Γ(1+α)

)2 b2α

2α−1

×(Mf + ε−1 + Mg +
√

Lg)
}}n−1

t(2α+1)(n−1)

(2α + 1)(4α + 2) . . .(2α + 1)(n − 1)
‖Bu2 − Bu1‖2

L2(0,t;H),

≤
{

4N
( Mα

Γ(1+α)

)2 1
2α−1

{Mf +ε−1+Mg+
√

Lg} exp
{

4
( Mα

Γ(1+α)

)2 b2α

2α−1

×(Mf + ε−1 + Mg +
√

Lg)
} t2α+1

2α + 1

}n−1 1
(n − 1)!

‖Bu2 − Bu1‖2
L2(0,t;H),

it follows that
∞∑

n=1

‖Bun+1 − Bun‖2
L2(0,b;H)
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≤
∞∑

n=0

{
4N

( Mα

Γ(1 + α)

)2 1
2α − 1

{Mf + ε−1 + Mg +
√

Lg}

exp
{
4
( Mα

Γ(1 + α)

)2 b2α

2α − 1

×(Mf + ε−1 + Mg +
√

Lg)
} b2α+1

2α + 1

}n 1
(n)!

‖Bu2 − Bu1‖2
L2(0,t;H) < ∞.

Therefore, there exists u∗ ∈ L2(0, b; H) such that limn→∞ Bun = u∗ in L2(0, b; H).
From (8) and (9) it follows that

E‖ξb−T̂α(b)x0−Ŝf(·, xε(·; u2))+Ŝ∂φε(xε(·; u2))−
∫ b

0

∫
Z
(b−s)α−1Tα(b−s)

×g(s, xε(s; u2), η)Ñ(ds, dη)− ŜBu3‖2 = E‖ξb − T̂α(b)x0 − Ŝf(·, xε(·; u1))

+Ŝ∂φε(xε(·; u1))−
∫ b

0

∫
Z

(b − s)α−1Tα(b − s)g(s, xε(s; u1), η)Ñ(ds, dη)

−ŜBu2 + ŜBv2 − Ŝ
(
f(·, xε(·; u2))− f(·, xε(·; u1))

)
+Ŝ

(
∂φε(xε(·; u2))− ∂φε(xε(·; u1))

)
−

∫ b

0

∫
Z

(b − s)α−1Tα(b − s)

×
(
g(s, xε(s; u2), η)− g(s, xε(s; u1), η)

)
Ñ(ds, dη)‖2 < (

1
22

+
1
23

)ε.

By choosing vn ∈ L2(0, b; U) by the Hypothesis (H4) such that

E‖Ŝ
(
f(·, xε(·; un))− f(·, xε(·; un−1))

)
+Ŝ

(
∂φε(xε(·; un))− ∂φε(xε(·; un−1))

)
+

∫ b

0

∫
Z
(b − s)α−1

×Tα(b−s)[g(s, xε(s; un), η)−g(s, xε(s; un−1), η)]Ñ(ds, dη)−ŜBvn‖2 <
ε

2n+1
,

putting un+1 = un − vn, we have

E‖ξb−T̂α(b)x0−Ŝf(·, xε(·; un))+Ŝ∂φε(xε(·; un))−
∫ b

0

∫
Z
(b−s)α−1Tα(b−s)

×g(s, xε(s; un), η)Ñ(ds, dη)−ŜBun+1‖2 <(
1
22

+· · ·+ 1
2n+1

)ε, n=1, 2, . . .

Therefore, for ε > 0, there exists an integer N such that

E‖ŜBuN+1 − ŜBuN ‖2 <
ε

22
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and

E‖ξb − T̂α(b)x0 − Ŝf(·, xε(·; uN)) + Ŝ∂φε(xε(·; uN))

−
∫ b

0

∫
Z
(b − s)α−1Tα(b − s)g(s, xε(s; uN ), η)Ñ(ds, dη)− ŜBuN ‖2

≤ E‖ξb−T̂α(b)x0−Ŝf(·, xε(·; uN ))+Ŝ∂φε(xε(·; uN))−
∫ b

0

∫
Z
(b−s)α−1Tα(b−s)

×g(s, xε(s; uN ), η)Ñ(ds, dη)− ŜBuN+1‖2 + E‖ŜBuN+1 − ŜBuN ‖2,

≤ 2(
1
22

+ · · ·+ 1
2N+1

)ε + 2(
ε

22
) ≤ ε.

Thus, the system (2) is approximately controllable on [0, b] as N tends to infinity.

From Theorem 2.8 and Theorem 3.2, the following result can be obtained.

Theorem 3.3. Under the hypotheses (H1)− (H4), the system (1) is approximately
controllable on [0, b].

4. EXAMPLE

Let D be a region in an n-dimensional Euclidean space R
N with smooth boundary

Γ and closure D. For an integer m ≥ 0, Cm(D) is the set of all m− times continuously
differentiable function on D. Cm

0 (D) will denote the subspace of Cm(D) consisting of
these functions which have compact support in D. For 1 ≤ p ≤ ∞, Wm,p(D) is the
set of all functions f = f(x) whose derivative Dαf up to degree m in distribution
sense belong to Lp(D). As usual, the norm of Wm,p(D) is given by

‖f‖m,p =
( ∑

α≤m

‖Dαf‖p
p

)1/p
, 1 ≤ p < ∞, ‖f‖m,∞ = max

α≤m
‖Dαf‖∞,

where D0f = f . In particular, W 0,p(D) = Lp(D) with the norm ‖ · ‖p. W
m,p
0 (D) is

the closure of C∞
0 (D) in Wm,p(D). For p = 2 we denote Wm,2(D) = H

m(D) (simply,
W 1,2(D) = H(D)), Wm,2

0 (D) = H
m
0 (D). H

−1(D) stands for the dual space W 1,2
0 (D)�

whose norm is denoted by ‖ · ‖−1. From now on, Gelfand triples are considered as
V = H0(D), H = L2(D) and V � = H

−1(D). Let us consider the following fractional
order stochastic variational inequality driven by Poisson jumps

(10)

cDα
t y(t, x) + A(x,Dx)y(t, x) + ∂φ(y(t, x)) � Bu(t, x) +

e−t

k + et
y(t, x)

+
∫

Z
(cos t)y(t, x)ηÑ(dt, dη), (t, x) ∈ [0, b]× D,

y(t, x) = 0, x ∈ Γ, t ∈ [0, b],
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where cDα
t is a Caputo fractional partial derivative of order 0 < α < 1, b > 0. Let

{q(t), t ∈ J} be the Poisson point process taking values in the space K = [0,∞) with
a σ- finite intensity measure λ(dη) on the complete probability space (Ω, F, P ). We
denote by N (ds, dη) the Poisson counting measure, which is induced by q(·), and the
compensating martingale measure by

Ñ(ds, dη) = N (ds, dη)− λ(dη)ds.

Here, A(x,Dx) is a second order linear differential operator with smooth coefficients
in D and A(x,Dx) is elliptic. If Ay = A(x,Dx)y, then it is known that −A generates
an analytic semigroup in H

−1(D) as is seen in [25].
Let us denote the realization of A in L2(D) under the Dirichlet boundary condition

by Â

D(Â) = H
2(D) ∩ H0(D),

Ây = Ay for y ∈ D(Â).

The operator −Â generates analytic semigroup in L2(D). From now on, both A and
Â are denoted simply by A. So, it may be considered that −A generates an analytic
semigroup in both of H = L2(D) and V ∗ = H

−1(D) as seen in [10].
For every y ∈ H0(D), define φ : V → (−∞,∞] given by

φ(y) =

{ ∫
D

(
|grad(y(x))|2 + ϕ(y(x))

)
dx if ϕ(y(·)) ∈ L1(D).

∞ otherwise.
.

From [2], it follows φ is a proper convex and lower semi continuous function. We
can define the nonlinear functions f : J × V → H and g : J × V → H by
f(y)(x) = e−t

k+et y(t, x) and g(y)(x) = (cos t)y(t, x) and assuming that
∫
Z η2λ(dη) <

∞,
∫
Z η4λ(dη) < ∞. Clearly, f and g satisfies hypotheses (H1) − (H2). In order to

verify the hypothesis (H4), let U = H , 0 < τ < b and the intercept control operator B
on L2(0, b; H) (see [8]) is defined by

Bu(t) =

{
0, 0 ≤ t < τ,

u(t), τ ≤ t ≤ b,

for u ∈ L2(0, b; H). For a given q1 ∈ L2(0, b; H), let us choose a control function u
satisfying

u(t) =

{
0, 0 ≤ t < τ,

q1(t) + τ
b−τ Tα

(
t − τ

b−τ (t − τ)
)
q1

(
τ

b−τ (t − τ)
)
, τ ≤ t ≤ b.

Then u ∈ L2(0, b; H) and E‖Ŝq1 − ŜBu‖2 < ε. From the following
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E‖Bu‖2
L2(0,b;H) = E‖u‖2

L2(τ,b;H),

≤ 2‖q1‖2
L2(τ,b;H) + 2‖ τ

b − τ
‖2

( Mα

Γ(1 + α)

)2‖q1

( τ

b − τ
(t − τ)

)
‖2

L2(τ,b;H),

≤ 2
(
1 + ‖ τ

b − τ
‖2

( Mα

Γ(1 + α)

)2)‖q1‖2
L2(0,b;H),

it follows that the controller B satisfies hypothesis (H4). Then, we can rewrite (10) in
the form of (1). Further, all the conditions stated in Theorem 3.2 and Theorem 3.3 are
satisfied. Hence, by Theorem 3.2 and Theorem 3.3, the system (10) is approximately
controllable on [0, b].

5. CONCLUSION

This paper contains approximate controllability results for fractional order stochastic
variational inequalities driven by Poisson jumps. The sufficient conditions of controlla-
bility results are obtained by using the Moreau-Yosida approximation of subdifferential
operator, fractional calculus, stochastic analysis techniques and semigroup theory. An
example is also included to illustrate the importance of the main results. For the future
research, it is interesting to study the controllability results for fractional stochastic
variational problem of order 1 < α < 2.
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