TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 6, pp. 1713-1719, December 2014 DOI: 10.11650/tjm.18.2014.4334 This paper is available online at http://journal.taiwanmathsoc.org.tw

A REMARK ON WEIGHTED REPRESENTATION FUNCTIONS

Zhenhua Qu

Abstract. Let G be a finite abelian group, and k_1, k_2 be two integers. For any subset $A \subset G$, let $r_{k_1,k_2}(A, n)$ denote the number of solutions of $n = k_1a_1 + k_2a_2$ with $a_1, a_2 \in A$. In this paper, we generalize a result of Q.-H. Yang and Y.-G. Chen to finite abelian groups. More precisely, we characterize all subsets $A \subset G$ such that $r_{k_1,k_2}(A, n) = r_{k_1,k_2}(G \setminus A, n)$ for all $n \in G$.

1. INTRODUCTION

Let N be the set of nonnegative integers. For any subset $A \subset N$ and $n \in N$, let $R_1(A, n)$, $R_2(A, n)$ and $R_3(A, n)$ denote the number of solutions of n = a + a'with $a, a' \in A$, n = a + a' with $a, a' \in A$, a < a', and n = a + a' with $a, a' \in A$, $a \le a'$ respectively. These representation functions are studied by Erdös, Sárközy and Sós in a series of papers [7, 8, 11, 9, 10]. Since then, representation functions have been extensively studied by many authors.

Sárközy asked, for each i = 1, 2, 3, whether there exist sets A and B with infinite symmetric difference such that $R_i(A, n) = R_i(B, n)$ for all sufficiently large integers n. Dombi [5] observed that the answer is negative for i = 1, and is affirmative for i = 2. Chen and Wang [3] gave an example of a subset $A \subset \mathbb{N}$ such that $R_3(A, n) = R_3(\mathbb{N} \setminus A, n)$ for all $n \ge 1$. For i = 2, 3, Lev, Sándor and Tang [6, 12, 13] characterized all subsets A with the property that $R_i(A, n) = R_i(\mathbb{N} \setminus A, n)$ for all $n \ge 2N + 1$. Some asymptotic results of the representation functions of these sets are obtained in [1, 2].

For any two positive integers $k_1 \leq k_2$, $A \subset \mathbb{N}$ and $n \in \mathbb{N}$, one can also define the weighted representation function $r_{k_1,k_2}(A, n)$ as the number of solutions of the equation $n = k_1a_1 + k_2a_2$ with $a_1, a_2 \in A$. If $k_2 \geq k_1 \geq 2$, Cillruelo and Rué [4] proved that $r_{k_1,k_2}(A, n)$ can not be eventually constant. Yang and Chen [14] proved that there

Received January 19, 2014, accepted March 10, 2014.

Communicated by Wen-Ching Winnie Li.

²⁰¹⁰ Mathematics Subject Classification: 11B34, 20K01.

Key words and phrases: Representation function, Partition, Sárközy problem.

This work was supported by the National Natural Science Foundation of China, Grant No. 11101152.

Zhenhua Qu

exists a set $A \subset \mathbf{N}$ such that $r_{k_1,k_2}(A,n) = r_{k_1,k_2}(\mathbf{N}\setminus A,n)$ for all sufficiently large n if and only if $k_1 \mid k_2$ and $k_1 < k_2$.

In a recent paper [15], Yang and Chen studied weighted representation functions on \mathbb{Z}_m , the cyclic group of order m. For any two integers $k_1, k_2, A \subset \mathbb{Z}_m$ and $n \in \mathbb{Z}_m$, define $r_{k_1,k_2}(A,n)$ to be the number of solutions of the equation $n = k_1a_1 + k_2a_2$ with $a_1, a_2 \in A$. For $d \mid m$, A is said uniformly distributed modulo d if

$$|\{x : x \in A, x \equiv i \pmod{d}\}| = |A|/d$$

for all $i = 0, 1, \dots, d-1$. They proved the following theorem.

Theorem A. Let m, k_1 , and k_2 be three integers with $m \ge 2$, $A \subseteq \mathbb{Z}_m$. Then $r_{k_1,k_2}(A,n) = r_{k_1,k_2}(\mathbb{Z}_m \setminus A, n)$ for all $n \in \mathbb{Z}_m$ if and only if |A| = m/2 and A is uniformly distributed modulo d'_1 and d'_2 , respectively, where $d'_1 = (k_1, m)/(k_1, k_2, m)$ and $d'_2 = (k_2, m)/(k_1, k_2, m)$.

In this paper, we generalize their results to finite abelian groups. We fix some notation first. Let G be a finite abelian group of order m. For any two integers $k_1, k_2, A \subset G$ and $n \in G$, we define similarly the weighted representation function $r_{k_1,k_2}(A,n)$ to be the number of solutions of the equation $n = k_1a_1 + k_2a_2$ with $a_1, a_2 \in A$. For any integer k, let kG denote the subgroup $kG = \{kg : g \in G\}$, and G_k denote the subgroup $G_k = \{g : g \in G, kg = 0\}$. For i = 1, 2, let $d_i = (k_i, m)$, $d_3 = (d_1, d_2) = (k_1, k_2, m)$, $d_i = d'_id_3$. Then d'_1 and d'_2 are coprime. Let $H_i = d'_iG + G_{d_3}$, i = 1, 2. For a subgroup H < G, we say that A is uniformly distributed modulo H if $|A \cap (g + H)|$ is independent of $g \in G$. The following results are proved.

Theorem 1. Let G be a finite abelian group of order m, and k_1, k_2 be two integers, $A \subset G$. With other notations introduced as above, then $r_{k_1,k_2}(A, n) = r_{k_1,k_2}(G \setminus A, n)$ for all $n \in G$ if and only if |A| = m/2 and A is uniformly distributed modulo H_1 and H_2 , respectively.

Corollary 1. Notations as in Theorem 1. Then there exists a set $A \subset G$ such that $r_{k_1,k_2}(A,n) = r_{k_1,k_2}(G \setminus A,n)$ for all $n \in G$ if and only if $|H_1|$ and $|H_2|$ are both even.

Remark. For $G = \mathbf{Z}_m$, $G_{d_3} = \frac{m}{d_3}\mathbf{Z}_m$. Since $d'_i = d_i/d_3$ is a divisor of m/d_3 , $\frac{m}{d_3}\mathbf{Z}_m \subset d'_i\mathbf{Z}_m$, hence $H_i = d'_i\mathbf{Z}_m + \frac{m}{d_3}\mathbf{Z}_m = d'_i\mathbf{Z}_m$ for i = 1, 2. Theorem 1 is consistent with Theorem A in this case. In general, d'_iG may be a proper subset of H_i . For example, $G = \mathbf{Z}_{60} \oplus \mathbf{Z}_2$, m = 120, $k_1 = d_1 = 12$, $k_2 = d_2 = 10$. Then $d_3 = 2$, $d'_1 = 6$, $d'_1G = 6\mathbf{Z}_{60} \oplus 2\mathbf{Z}_2$, $G_{d_3} = 30\mathbf{Z}_{60} \oplus \mathbf{Z}_2$, and G_{d_3} is not a subset of d'_1G , thus d'_1G is a proper subset of $H_1 = d'_1G + G_{d_3}$.

1714

2. PROOF OF THE RESULTS

For any subsets $S, T \subset G$ and $n \in G$, let $r_{k_1,k_2}(S,T,n)$ denote the number of solutions of $n = k_1s + k_2t$ with $s \in S$ and $t \in T$. Let $\Phi_i(n) = \{g : g \in G, n - k_{3-i}g \in k_iG\}$ for i = 1, 2. We need the following lemma.

Lemma 1. Let i = 1, 2. If $n \notin d_3G$, then $\Phi_i(n) = \emptyset$. If $n \in d_3G$, then $\Phi_i(n)$ is a coset of H_i and $|\Phi_i(n)| = |H_i|$. For any $A \subset G$ and $n \in G$,

$$r_{k_1,k_2}(G,A,n) = |A \cap \Phi_1(n)| \cdot |G_{d_1}|,$$

and

$$r_{k_1,k_2}(A,G,n) = |A \cap \Phi_2(n)| \cdot |G_{d_2}|.$$

Proof. If $\Phi_i(n) \neq \emptyset$, say $g \in \Phi_i(n)$, then $n \in k_{3-i}g + k_iG \subset d_3G$ since $d_3 \mid (k_1, k_2)$. Thus $n \notin d_3G$ implies $\Phi_i(n) = \emptyset$.

Suppose $n \in d_3G$. Since $d_3 = (k_1, k_2, m)$, write $d_3 = k_1u + k_2v + mw$ for some $u, v, w \in \mathbb{Z}$. For any $g \in G$,

$$d_3g = (k_1u + k_2v + mv)g = k_1(ug) + k_2(vg) \in k_1G + k_2G,$$

therefore $k_1G + k_2G \supset d_3G$. On the other hand, $k_1G + k_2G \subset d_3G$, thus we conclude that $k_1G + k_2G = d_3G$. In particular, $n = k_1g_1 + k_2g_2$ for some $g_1, g_2 \in G$, therefore $g_{3-i} \in \Phi_i(n)$ and $\Phi_i(n) \neq \emptyset$. Assume $g \in \Phi_i(n)$, then $h \in \Phi_i(n)$ if and only if $(g - h)k_{3-i} \in k_iG = d_iG$. Since $(k_{3-i}, d_i) = d_3$, it is equivalent to $g - h \in d'_iG + G_{d_3} = H_i$, thus $\Phi_i(n)$ is a coset of H_i . In particular, $|\Phi_i(n)| = |H_i|$.

If $a \in A$ and $g \in G$ satisfy $n = k_1 a + k_2 g$, then $n - k_1 a \in k_2 G$, thus $a \in A \cap \Phi_2(n)$. On the other hand, for any $a \in A \cap \Phi_2(n)$, there exists $g_0 \in G$ such that $n = k_1 a + k_2 g_0$ by the definition of $\Phi_2(n)$. Since

$$\{g: g \in G, n = k_1 a + k_2 g\} = g_0 + G_{k_2} = g_0 + G_{d_2},$$

which is a coset of G_{d_2} , we have $|\{g: g \in G, n = k_1a + k_2g\}| = |G_{d_2}|$. Therefore

$$r_{k_1,k_2}(A,G,n) = |\{(a,g) : a \in A, g \in G, k_1a + k_2g = n\}|$$
$$= \sum_{a \in A \cap \Phi_2(n)} |\{g : g \in G, n = k_1a + k_2g\}| = |A \cap \Phi_2(n)| \cdot |G_{d_2}|.$$

Similarly,

$$r_{k_1,k_2}(G,A,n) = |A \cap \Phi_1(n)| \cdot |G_{d_1}|.$$

This completes the proof of the lemma.

Proof of Theorem 1. Let $B = G \setminus A$. We first note that

(1)
$$r_{k_1,k_2}(A,n) = r_{k_1,k_2}(B,n)$$

Zhenhua Qu

is equivalent to

$$(r_{k_1,k_2}(A,A,n) + r_{k_1,k_2}(B,A,n)) + (r_{k_1,k_2}(A,A,n) + r_{k_1,k_2}(A,B,n))$$

= $(r_{k_1,k_2}(A,B,n) + r_{k_1,k_2}(B,B,n)) + (r_{k_1,k_2}(B,A,n) + r_{k_1,k_2}(B,B,n)),$

that is,

(2)
$$r_{k_1,k_2}(G,A,n) + r_{k_1,k_2}(A,G,n) = r_{k_1,k_2}(G,B,n) + r_{k_1,k_2}(B,G,n).$$

By Lemma 1, equality (2) is equivalent to

(3)
$$\sum_{i=1}^{2} |A \cap \Phi_i(n)| \cdot |G_{d_i}| = \sum_{i=1}^{2} |B \cap \Phi_i(n)| \cdot |G_{d_i}|.$$

If $n \notin d_3G$, then $\Phi_i(n) = \emptyset$ by Lemma 1, hence both sides of (3) are zero. Assume now $n \in d_3G$, by Lemma 1, $|\Phi_i(n)| = |H_i|$, hence

$$|A \cap \Phi_i(n)| + |B \cap \Phi_i(n)| = |\Phi_i(n)| = |H_i|.$$

Adding both sides of equation (3), we see that (3) is equivalent to

(4)
$$\sum_{i=1}^{2} |A \cap \Phi_i(n)| \cdot |G_{d_i}| = \frac{1}{2} \sum_{i=1}^{2} |H_i| \cdot |G_{d_i}|$$

for all $n \in d_3G$.

We now prove the sufficiency part. Assume |A| = m/2, and A is uniformly distributed modulo H_1 and H_2 , respectively. We shall show that equality (4) holds for all $n \in d_3G$. By Lemma 1, $\Phi_i(n)$ is a coset of H_i , therefore $|A \cap \Phi_i(n)| = |H_i|/2$, and

$$\sum_{i=1}^{2} |A \cap \Phi_i(n)| \cdot |G_{d_i}| = \frac{1}{2} \sum_{i=1}^{2} |H_i| \cdot |G_{d_i}|.$$

Next we prove the necessity part. Assume that equalities (1)-(4) are satisfied. Since

(5)
$$|A|^2 = \sum_{n \in G} r_{k_1, k_2}(A, n) = \sum_{n \in G} r_{k_1, k_2}(B, n) = |B|^2,$$

we have |A| = |B|, hence |A| = m/2. Note that the right hand side of equality (4) is fixed. If $n \in k_1G$, then

$$\Phi_1(n) = \{g : g \in G, k_2g \in k_1G\} = H_1,$$

which is independent of $n \in k_1G$. Consequently, $|A \cap \Phi_2(n)|$ is independent of $n \in k_1G$. When n runs through all elements of k_1G , $\Phi_2(n)$ runs through all cosets of H_2 as we immediately see that $g \in \Phi_2(k_1g)$ for all $g \in G$. It follows that $|A \cap (g+H_2)|$

1716

is independent of $g \in G$, hence A is uniformly distributed modulo H_2 . By similar arguments, A is also uniformly distributed modulo H_1 .

Proof of Corollary 1. Assume there exists a subset $A \subset G$ such that

$$r_{k_1,k_2}(A,n) = r_{k_1,k_2}(G \setminus A,n)$$

for all $n \in G$. By Theorem 1, |A| = m/2 and A is uniformly distributed modulo H_1 and H_2 respectively. Therefore $|A \cap H_i| = |H_i|/2$, hence $|H_i|$ is even for i = 1, 2.

Conversely, assume $|H_i|$ is even for i = 1, 2. Since

$$H_1 + H_2 \supseteq d'_1 G + d'_2 G = (d'_1, d'_2, m)G = G,$$

we have $H_1 + H_2 = G$. Let X_1, X_2, \dots, X_s and Y_1, Y_2, \dots, Y_t denote the cosets of H_1 and H_2 respectively. Put $H = H_1 \cap H_2$. By Chinese Remainder Theorem, we have $G/H \cong G/H_1 \times G/H_2$. Therefore

$$X_i \cap Y_j, \quad 1 \le i \le s, 1 \le j \le t$$

are all the cosets of *H*, and $|X_i| = |H_1| = t|H|$, $|Y_j| = |H_2| = s|H|$ for $1 \le i \le s$, $1 \le j \le t$.

Case 1. |H| is even. We take

$$A = \bigcup_{\substack{1 \le i \le s \\ 1 \le j \le t}} A_{ij}$$

where $A_{ij} \subset X_i \cap Y_j$ is any subset with $|A_{ij}| = |H|/2$. Then

$$|A \cap X_i| = \left| \bigcup_{1 \le j \le t} (A \cap X_i \cap Y_j) \right| = \sum_{j=1}^t |A_{ij}| = t|H|/2 = |H_1|/2,$$

that is, A is uniformly distributed modulo H_1 . Similarly, A is uniformly distributed modulo H_2 .

Case 2. |H| is odd. Since $|H_2|$ is even and $|H_2| = s|H|$, we see that s is even. Similarly, t is also even. Write s = 2k, t = 2l, and we take

$$A = \left(\bigcup_{\substack{1 \le i \le k \\ 1 \le j \le l}} (X_i \cap Y_j)\right) \bigcup \left(\bigcup_{\substack{k+1 \le i \le 2k \\ l+1 \le j \le 2l}} (X_i \cap Y_j)\right).$$

For $1 \le i \le k$

$$|A \cap X_i| = \sum_{j=1}^{l} |X_i \cap Y_j| = l|H| = |X_i|/2$$

Zhenhua Qu

For $k+1 \leq i \leq 2k$,

$$|A \cap X_i| = \sum_{j=l+1}^{2l} |X_i \cap Y_j| = l|H| = |X_i|/2.$$

Thus A is uniformly distributed modulo H_1 . Similarly, A is uniformly distributed modulo H_2 . By Theorem 1, we have

$$r_{k_1,k_2}(A,n) = r_{k_1,k_2}(G \backslash A,n)$$

for all $n \in G$. This completes the proof of the corollary.

ACKNOWLEDGMENTS

I am grateful to the referee for his/her detailed comments.

References

- 1. Y.-G. Chen, On the values of representation functions, *Sci. China Math.*, **54** (2011), 1317-1331.
- 2. Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, *J. Number Theory*, **129** (2009), 2689-2695.
- 3. Y.-G. Chen and B. Wang, On additive perperties of two special sequences, *Acta Arith.*, **110** (2003), 299-303.
- 4. J. Cilleruelo and J. Rué, On a question of Sárközy and Sós for bilinear forms, *Bull. Lond. Math. Soc.*, **41** (2009), 274-280.
- 5. G. Dombi, Additive properties of certain sets, Acta Arith., 103 (2002), 137-146.
- 6. V. F. Lev, Reconstructing integer sets from their representation functions, *Electron. J. Combin.*, **11** (2004), R78.
- P. Erdös and A. Sárközy, Problems and results on additive properties of general sequences, I, *Pacific J. Math.*, **118** (1985), 347-357.
- 8. P. Erdös and A. Sárközy, Problems and results on additive properties of general sequences, II, *Acta Math. Hungar.*, **48** (1986), 201-211.
- P. Erdös, A. Sárközy and V. T. Sós, *Problems and results on additive properties of general sequences, IV*, Number Theory (Proceedings, Ootacamund, India), Lecture Notes in Math., Vol. 1122, Springer-Verlag, Berlin, 1984, pp. 85-104.
- P. Erdös, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, V, *Monatsh. Math.*, **102** (1986), 183-197.
- 11. P. Erdös, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, III, *Studia Sci. Math. Hungar.*, **22** (1987), 53-63.

1718

- 12. C. Sándor, Partitions of natural numbers and their representation functions, *Integers*, 4 (2004), A18.
- 13. M. Tang, Partitions of the set of natural numbers and their representation functions, *Discrete Math.*, **308** (2008), 2614-2616.
- 14. Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted representation functions, *J. Number Theory*, **132** (2012), 3047-3055.
- 15. Q.-H. Yang and Y.-G. Chen, Weighted representation functions on \mathbb{Z}_m , *Taiwan. J. Math.*, **17(4)** (2013), 1311-1319, Erratum: to appear in Taiwan. J. Math.

Zhenhua Qu Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University 500 Dongchuan Rd. Shanghai 200241 P. R. China E-mail: zhqu@math.ecnu.edu.cn