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ALGEBRA OF CALDERON-ZYGMUND OPERATORS
ON SPACES OF HOMOGENEOUS TYPE

Yongsheng Han and Chin-Cheng Lin

Abstract. Applying orthonormal wavelets, Meyer proved that all Calderén-
Zygmund operators satisfying T'(1) = T%(1) = 0 form an algebra. In this
article the same result is proved on spaces of homogeneous type introduced by
Coifman and Weiss [5]. Since there is no such an orthonormal wavelet on the
general setting, we apply the discrete Calderon reproducing formula developed
in [13] to approach.

1. INTRODUCTION

We begin by recalling the definitions necessary for introducing the Calderon-
Zygmund operator and spaces of homogeneous type.

To generalize the Hilbert transform and the Riesz transforms, Calderén and Zyg-
mund developed a class of singular integral operators called convolution operators,
which commute with translations. Notice that the Riesz transforms R;,1 j n,
are defined by R; = D;(—A) "'/, where Dj = —id/dxj and A =51 | & /9x2.
We have R;(1) = (R;)"(1) = 0, where (R;)* is the transpose of R, and all
Calderén-Zygmund convolution operators have this property. The collection of these
operators is a commutative algebra of Calderon-Zygmund convolution operators and
T(1) =T*(1) = 0 for every T' in this collection. However, there are a lot of non-
convolution operators such as the Calderén commutators, the Cauchy integral on
Lipschitz curves, the double layer potential on Lipschitz surfaces, the multilinear
operators of Coifman and Meyer (see [1], [2], [4], [9], [7]). Coifman and Meyer
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introduced the following generalized Calderén-Zygmund singular integral operators
which include all non-convolution operators mentioned above and, of course, the
Calderon-Zygmund singular integral convolution operators.

Definition 1.1 ([4]). Let T : D(R™) +— D' (R™) be a continuous linear operator
associated to a kernel K (x,y), a continuous function defined on R™ xR™ {z = y}.
We say that T is a Calderon-Zygmund singular integral operator if there exist a
constant C and an exponent ¢ € (0,1] such that the following conditions are
satisfied

(1.2) (K (z,y)l  Cle—yI™™

(1.3) |[K(x,y) — K(2',y)| Clx —2']Flx —y[™""¢ forall [z —2’| %!w —yl;
1
(1.4) |[K(z,y) — K(z,y")] Cly—yfle —y|7" ¢ forall |y —y/| §Ifc—yl;

T(f)(x) = - K(z,y)f(y)d(y) forall f € D(R")and z ¢ supp(f).

Definition 1.5 ([4]). 4 Calderén-Zygmund singular integral operator T is said
to be a Calderon-Zygmund operator if T can be extended to a bounded operator
on L*(R™). The norm of such an operator is defined by

ITllcz = |IT]|2.2 + inf{C': (1.2), (1.3), and (1.4) hold}.

Meyer introduced a class of Calderon-Zygmund operators and proved that this
class forms an algebra of Calderén-Zygmund operators. To state Meyer’s result, we
need to explain the definition of 7'(1) = 0. By Calder6n-Zygmund operator theory,
if T' is a Calderon-Zygmund operator, then 7" is also a bounded operator on LP for
all 1 < p < oo, and from L to BMO(R"™), where a locally integrable function
f € BMO(R") if

1
b0 = sup /Q | f(x) — foldz < oo,

where the supremum is taken over all cubes () whose sides are parallel to the axes
and fo = W%IIQ f(z)dx. See [4] for details.

If T' is a Calderon-Zygmund operator and, hence 7™ is a Calderon-Zygmund
operator as well. Then by a remarkable duality argument between the Hardy space
H' and BMO proved by C. Fefferman [10], for any function f € H!,T(1) can
be well defined by

(T(1), f) = (L, T*(f))
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since T and 7™ are bounded from H! into L', and therefore, 7'(1) = 0 means that
[T*f(z)dr =0 for all f € H". Similarly, 7*(1) = 0 means that [T f(z)dz = 0
for all f € H'.

We now can state Meyer’s result as follows.

Theorem 1.6. Let A be the collection of Calderén-Zygmund operators satis-
fing T(1) =T*(1) = 0. Then A is an algebra.

The idea of the proof of Theorem 1.6 is to introduce a non-commutative algebra
of matrices acting on ¢2. Meyer considered the matrix representations of operators
in the collection .4 with respect to an orthonormal wavelet basis, and showed that
these matrices representing such operators belong to the non-commutative algebra
of matrices on #2 mentioned above. See [17] for more details.

The purpose of this paper is to generalize Meyer’s result to more general setting,
namely spaces of homogeneous type introduced by Coifman and Weiss [5]. Spaces
of homogeneous type include the Euclidean space, the n-torus in R™, the C°-
compact Riemann manifolds, the boundaries of bounded Lipschitz domains in R™,
and the Lipschitz manifolds introduced recently by Triebel [18], which include
various kind of fractals. See [6] and [19] for more examples.

A quasi-metric d on a set X is a function d : X x X — [0, o] satisfying:

(a) d(z,y) = 0 if and only if z = y;
(b) d(z,y) = d(y, x) forall z,y € X;

(c) there exists a constant A < oo such that
d(z,y) A(d(a:,z) + d(z, y)) for all z,y, and z € X.

Any quasi-metric defines a topology, for which the balls B(z,r) = {y € X :
d(y,x) < r},r > 0, form a base. However, the balls themselves need not to be
open when A > 1. In the sequel we always use A to denote this constant.

Definition 1.7 ([5]). 4 space of homogeneous type (X,d, ) is a set X together
with a quasi-metric d and a nonnegative measure 1 on X satisfying

(i) wW(B(z,r)) < ooforall x € X and all r > 0;

(ii) there exists a constant C' < oo such that
w(B(z,2r)) Cu(B(x,r)) forallz € X and all r > 0.

Here p is assumed to be defined on a o-algebra which contains all Borel sets and
all balls B(z,r).
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Macias and Segovia [16] have shown that one can replace d by another quasi-
metric p such that there exist C' < oo and some 6,0 < 6 < 1,

p(x,y) ~inf{u(B) : B is a ball containing x and y},
lp(z,y) — o, y)| - Cp(x,2")[p(x,y) +p(a’,y)]' 0 forall z,2', and y € X,

where the expression a ~ b means, as usual, that there are constants C; and C5
(independent of the main parameters involved) such that C;  a/b  C. We also
preserve 6 to denote this constant.

We now can introduce Calderén-Zygmund operator theory on spaces of homo-
geneous type.

Definition 1.8 ([6]). Let C’g denote the collection of all continuous functions

with compact support such that ||fl, = supjﬂf(l,—%’;nﬂlL < oo LetT : CJ(X) —

(CIY(X),n > 0, be a continuous linear operator. We say that T is a Calderon-
Zygmund singular integral operator if there exist a continuous function K (x,y), a
constant C, and an exponent € € (0,0] satisfying

(1.9) |K(z,y)]  Cp(z,y)

(110) |K(z,y)—K(,y)| Cplz,2)p(z,y)~ 1= for all p(z, =) P(;UAZ/);

(1.11) ‘K(CL‘, Z/) _ K(CL‘,Z/’)| C«p(y’yl)ap(x,y) 1 for all p(yay’) p(2Ay);

T(f)(2) = A K (z,y)f(g)du(y) for all f € CI(X) and = ¢ supp(f).

Definition 1.12 ([6]). A4 Calderon-Zygmund singular integral operator T de-
fined in Definition 1.8 is said to be a Calderon-Zygmund operator if T can be
extended to a bounded operator on L? (X). The norm of such an operator is de-
fined by

Tl cz = |T |22 + inf{C : (1.9), (1.10) and (1.11) hold}.

Again, by the Calderon-Zygmund operator theory on spaces of homogeneous
type, any Calder6n-Zygmund operator is also bounded on LP;1 < p < oo, and
bounded from L to BM O, where space BMO on spaces of homogeneous type
is defined by similar way as in R™ with replacing cubes Q on R"™ by balls B on
X. See [6] for more details. Moreover, if T' is a Calder6n-Zygmund operator on
spaces of homogeneous type, then 7'(1) = 0 and 7*(1) = 0 have the same meaning
as mentioned above for R™.
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We now are able to state our main theorem.

Theorem 1.13. Let A be the collection of Calderén-Zygmund operators on
spaces of homogeneous type, which satisfy T(1) = T*(1) = 0. Then A is an
algebra.

There are no Fourier transform, translation and dilation on spaces of homoge-
neous type, so the orthonormal wavelet is not available. Hence, the idea used in
[17] doesn’t work for this more general setting. A new idea to prove theorem 1.13
is to use the discrete Calderon reproducing formula developed in [13]. To state
such a discrete Calderon reproducing formula, we will suppose that p(X) = oo and
u({x}) = 0forallz € X. These hypotheses allow us to construct an approximation
to the identity (see [ 15]).

Definition 1.14. A sequence of operators {Sj }rez is called an approximation
to the identity if the kernels S (z, y) of Sk are functions from X x X into C such
that there exist constant C, and some 0 < ¢ 6 satisfying, for all kK € Z and all
x,x',y, and y' € X,

sze
(27% + p(z, 20)) 1€

- . , / e 2—ka
(i) [Sk(@,y) = Sk (', y)l C(Qkpfpzcm? xo)) (27F + p(z,20))H e’
for p(z,z") 5(2% + p(x,70)),

2—ke
2K+ pla,a0)) T

(iii) [Sk(z,y) —Sk(z,9)]  C 2—’fp4(ry;;?x?xo)>s(

1.
for p(y,¢/) 5 127" + plw, 70)).

(iv) [[Sk(x,y) — Sk(z,y")] — [Sk(2',y) — Sk(2’,y")]]
(z,z')  \¢ (1,9)  \¢ 2 ke
() ateeg) 1

27k + p(x7:CO 27k + p(il?, Zo 2=k —}_p(aja:EO))l_'—(E ,

1, 1,
for p(z,a') 5 r (27" +plw,20)) and p(y,y) 527 +p(@,20)),

) L Sk(z,y)du(y) =1,

(vi) L Sk(z,y)du(z) = 1.
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The existence of the above approximation to the identity has been established
in [8] (condition (iv) is not stated there but can be easily established by the same
arguments).

To state the discrete Calderon type reproducing formula on spaces of homoge-
neous type, we recall the following result given by Christ [3], which is an analogue
of the Euclidean dyadic cubes.

Theorem 1.15.  There exist a collection of open subsets {Qﬁ cX :ke
Z,T € I}, where I, denotes some (possibly finite) index set depending on k, and
constants 6 € (0,1), a >0, and C > 0 such that

i) w(X\UQF) =0 forall k € Z;

(i) if j > k, then either Qi, C Qf or Qi, N Qﬁ =¢;
(iii) for each (k,T) and each j <k, there is a unique 7' such that Q¥ C Qi,;
(iv) diameter (Q%)  C&*;

(v) each QF contains some ball B(zF,ad").

We fix such a collection of open subsets and call all Q¥ in Theorem 1.15 the
1
“dyadic cubes” in X . Without loss of generality, we may assume § = — in Theorem

1.15. Let i be a fixed large positive integer, and denote by y*** the point in QF*7.
The discrete Calderdn type reproducing formula on spaces of homogeneous type can
be stated as follows.

Theorem 1.16 ([13]). Suppose that { S}, }i.cz is an approximation to the identity
defined above. Set Dy, = Si, — Si_1. Then there exist two families of operators

{DiYrez and {Dk}kez such that, for all fixed y*+* € Q%% and all f € L*(X),

)=> > wQE) Dy, yE ) Dy (f) ()

kEZ TEIk;.H

=Y > Q) Dy(a W) D) (),

kEZ TEIk;.H

where the series converge in L2(X). Moreover, Dy(z,y), the kernel of Dy, satisfy
the following estimates: for 0 < &' < ¢, there exists a constant C > 0 depending
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on € and €' such that
2—ka’
(27F +p(x,y))t+e”

|Di(z,y)] C

~ ~ xz,x’ ¢ 2~k

for p(z,2) 2{4 (27 "+ pla, v),

/Dkazyd,u /Dkxy)d,u() for all k € Z.

IN?k (z,y), the kernel of IN?k, satisfy the same conditions above but with interchanging
the positions of x and y.

Suppose that {D}, {Dy}, and {D,},k € Z, are families of operators given by
the discrete Calderén reproducing formula in Theorem 1.16. Let T" be a Calderon-
Zygmund operator. Then we obtain the following matrix representation of 7" with

respect to all these families {Dx},{Dx}, and {Dy}, k € Z.

T(A)) S S N0 3 (Tu@FH) 2D (- i), Q)2 Di(yh ™, )

k€Zr€l i k'€l €l ,
(1.17) QU H)E D o (@) 2 Die (N W ™)
It is easy to see that K(z,y), the kernel of T', can be written as

=33 ST ST (T D (-, yB ), w(QEH)E Dy, )

k€Z r€lpti K €L T EL

(QEY)2 Dy (, y ) u(QE )

To introduce the non-commutative matrices algebra, we need the following defini-
tion.

1
2

Dr (55 ).

Definition 1.18. A matrix A = ((A,X'))(n x)eaxa belongs to M. if there
exists a constant C > 0 such that, for all (A, X') € A x A,

(AN Cwe (A, X),
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where A = {(k,y**)) : k € Z,7 € I, ¥ is the center of ball Q¥**} and,
there is an &’ < ¢,

9—(kAk')e
(27 (kAR 4 p(yRte o)) Lbe”

wg()\, )\I) = \/M(Q¢+i)M(QEj+i)2—|k—k’|a’

where a A b denotes the minimum of a and b.

Now we have

Proposition 1.19. Forany 0 <e 60, M. is an algebra.

We say that an operator T' € OPM; if the matrix of 7" with respect to {Dy, }
as mentioned in (1.17) belongs to M;, and say that a Calderon-Zygmund operator
T € Ac if T is a Calderén-Zygmund operator with the regularity exponent ¢ in
Definition 1.8, and 7'(1) =7*(1) = 0.

The following theorem together with Proposition 1.19 shows the main Theorem
1.13.

Theorem 1.20. If0<e OandT € OPM;, then T € Ao, and, conversely,
ifT € Ac,then T € OPM, for all €' < e.

2. THE PROOF OF MAIN THEOREM

The proof of Proposition 1.19. It suffices to show that

2.1) 3 weo Nwe (A A1) Cloe (o, Ar).
A

To establish this inequality, by symmetry we may consider only the cases where
ke ki kko k ki,andk ko k1. Denote I, I, and I3 three partial
sums in (2.1) corresponding to these three cases, respectively.

Notice that

o—(kAko)e . 9~ (kAko)e
(2_(kAk0) +p(y7lf+i’ y7lf8+i))1+5 (2—(k/\ko) + p(y,yﬁ?“))”e

for y € Q5"

and similarly

9—(kAk1)e o—(kAk1)e

i ; c . for y € QF.
(2_(k/\k1) _|_p(y7l§’+l, yf%-l—l))l—i-e (2—(kAk1) + p(y,yff-l-z))l_i_&. Yy Q-,—
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Thus,

2_(k/\k0 )6 2— (k/\kl)&‘

Ic-i—z . -
Z/J’ —(kAko) _|_p(yk+z ykoﬂ))l—i-a (2—(k/\k1) _’_p(y¢+z’y7’f11+1))1+a

k?+l
9—(kAko)e 9—(kAk1)e

C Z/k-H k/\ko) _|_p(y ykoﬂ))l—k—a . (2—(k/\k1) +p(y ykllﬂ))l—i-a

k+z

du(y)

9—(kAko)e 9—(kAky)e
= C/ — ko+i : — ki+i d/“l’(y)
X (27(MR0) 4 py, ym ) 1FE (27 (RARD) 4 p(y, 7t ) )1
In the first case kg k1 k, we get

L CM(Q%M)U%(Q%H)UQ Z (ko —k)e' o(k1—k)e’
ko ki k

2—ko€ 2 kie ( )
: dy)-
g T e e T

We write

2—k0€ 2 —]{715
/‘ : - dp(y)

k _ k
(2% + p(y, yret ) e 27 4 p(y, i)

: o
koti  kq4i ko+i K
/p(y,yro v (e avas i W e (TR Vu B By (T Vs
=1+

Since p(y, y£0+1) < spp(yhott, yki ) implies p(y, yl %) > shpp(yhoti, yhitd),

noc 2 e / R
. n(y
Pk p(ghe T ) S (27K 4 ply, yhi ) e
9—koe
(270 + p(yfio ™, i ¥ )Le

To estimate 17, consider first that 2 %0 > p(yfg + y’ﬁll +4). Then

2 ok 2~ e
I 20/ du(y
D2 L ply e P

C'2ko
9~ koe
(2-F0 4 p(ymott yRatiy)lee”
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If 27%0 < p(yfo e 4f1+) | then

IQ 27k15 27ko€

C : —. / ~ du(y)

P plyhett gty [y 27k 4 ply, yhoth)) e
2fk15

ko+i  ki+i
p(yr ™y T Ite

2—]€0€

2R+ p(y ™yt ) e

since kg k1. Both estimates show
27](508

_ k . k14
(270 + p(yro ™, i )1 He

I

and hence, together with the estimate on [ 11,

9—kie

2—k0€
: : : du(y)
A (2% + p(y, yhs )1+ (278 4 p(y, ylt 7)) e
2—k:0€
(27ho + p(ym T i) )Lre”
This yields
I ClQiy) Qi+ L > 2l
: . :
0 " (2ik0 + p(y‘i]?(?—i_la yf‘11+1))1+8 ko ki k
9—(koAkr )e

ko+i\1/2 k1+i\1/2 , 9—|ko—k1|e’
CU( To ) N(Qn ) 2 (2_(k0Ak1)+p(y¢8+@'7y£l1+i))1+a

since kg ki.
Similarly, for the case kg &k ki,

9—(kAko)e 9—(kAk1)e
A (2—(l~c/\ko) +p(y’y§8+l))1+a (2—(k/\k1) +p(y,y£€_11+z))]_+a M(y)
2_150‘E 2—k6
N / - ko+i C(9— ky+i du(y)
x 270 +ply,ym ) (27 4oy, yn )

2—k0€
27k + plyr ™ yr ) e
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and thus,
Iy Cu(Qk™)2u(Qk+il/2
LY Rk 27k
ko k ky (27 +P(y¢8ﬂaylﬁfﬂ))l+s
. . , 2*]4305
C Qf_ﬁo-ﬁ-z 1/2 Qﬁl-ﬁ-l 1/2 k1 — ko 9(ko—k1)e _ i
MO G = B ot e
2*(]60/\]61)8

Cu(QRo+Y1/2 y Ofr +iY /2 | gThko—h |e” [t
QR Q) (2-(hoAk) - p(yrot? it )14e

Cwe(Ao, A1),
where we use the facts that kg &y and (k; — kg)2(ko—k1)e"  C2-lko—kile” for
any " < ¢’
Finally, if & k9 ki1, by an easier estimates

9—(kAko)e 9—(knk1)e
/ —(kAko) kotiy\14+e  (9—(kAki) Erriy e OH )
X (2 + p(y,ym ")) (2 + p(y, ™))
2*]{:8
(27F + plym Ty )

we obtain
I Cp(Quy) (@ )2

. Z 9(k—ko)e' o (k—k1)e’ ' .
k ko k1 (27k+p(y£€_8+z,y7l§11+2))1+5

Cr(QR ™) u(Qy+) /22 Rtk

27k5

o—k(e—2¢')
,;C (p(yho ™yt Lte
0
pyr0 ™, i1y >0-k >0k
—k(e—2¢’
O Q)2 QY12 (o) 3 27K
T0 T1 han 2_k(1+6)
0 X
27k p(yrgt st T <2k
) ] , 9—k(e—2¢')
+0M(Q§8+1)1/2M(Q7k%+1)1/22—(k0+k1)5 | Z M—1+@
Py urt ) 2 Ro<2k
2~hoe

ko+i)1/2,,( Ok1+i)1/29—| ki —kole’
e P e W X LT

= Cwe (Ao, A1).
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We remark that the estimate in (2.1) is very useful and it will be used often in
the proof of Theorem 1.20.

The proof of Theorem 1.20. We first prove the converse in Theorem 1.20.
Suppose that T' € Ac. It is sufficient to show the following estimate:

‘<TDk/ ('? yqlf/l+i)7 Dk(y7]f+i7 )>‘

(2.2) " 9—(kAK' )’
C271kFkle — ,
(2 4 ()4

where 0 < ¢” < &’. If Ej(x,y), the kernel of E}, appeared in the discrete Calderon
reproducing formula, satisfies

() Ex(z,y) =0if p(z,y) > 27" and | Bx(z,y) |0 2",
(i) |Ex(z,y) — Ep(e/, )| Cp(z,a’)e2k(1+e),
(ili) |Ex(z,y) — Ex(z,9)|  Cply,y’)e2k0+e),

(1V)/Ekxydu /Ekxydu =0,

then the same estimate as (2.2) for Ej, instead of D, is easy to prove. See [15]
for details. To deal with a general Dy whose kernel satisfies the conditions of
Definition 1.14, we use the discrete Calderén reproducing formula:

ZZu Q) By () Br( ) (1)
- Z S (@I By, W)E(f) (i),

where E;(z,y), the kernel of E, satisfies the conditions (i)—(iv) mentioned above.
Now we obtain

(T D (95", Di(Wh )|
(S ST (BP0
23 (QLE)Ey (i By (Du(y ™, (w2 )|

ZZZZ’E (Dy (-, k—l—z)( J+1)E (Di(y* i )(yi’/j/-z”

‘<TE ( =~ )7Ej/(y;7.//—~/_27' >‘/”’( Tﬁ)ﬂ(q-’j’_z)
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. —(§Nk")e
CZZZZ;Q Hle W«)fp( e
. o—i'—kle" 2~
(2-GAR) 4 (et 7 ) )ibe
.9~ li=i'le” 2-Gn9)

Jj+i
( (JAJ)+10( j—z,y],j_l))l—i-a’u(QT/ ) (Q‘r’” )

—CZZZZu (@) 2 Q) o (A, Do) /2 Q212

‘/ 7.///

wer (o, A )(QLE) V2 Q) 12w (g M) QL) QL)

/

where A1 = (K,y51%), o = (5,71, A3 = (j',yi:ji), and My = (k,y"). We
hence have

| <TDk/ k"-H k+z >|
CZZZZu Q) 21 (QEH) 12 (A, Ao Jwer (g, g Jwer (N, Aa)

‘/ 7.///

CM(Q’T“,“) 2p(@ET) T 2wz (M, M)
9—(kNK')e

= O Ik=K'e" , —— -
(2 (kAK) _|_p(y7_+l’y7_/+l))1+€

The last inequality follows again from estimate (2.1).
We now return to the proof that if 0 <e 6 and T € OPM,, then T € A.»
where €’ < €. As mentioned before, K(z, y), the kernel of T, can be written as

)= D 3 > (T @) D (- yE ), (@) Dy(ykt, )

k€Zrelpt i K E€LT €L,

M(Qﬁﬂ) %ﬁk (x, ?/fﬂ),u(Qkuﬂ) 2 Dk/( kuﬂ, Y).

Thus,

K (z,y)|

Y ST ST ST (Tr(@E)E Dy (), @)D, )|
kE€LTE 1 K'ELT €Ly,

(@E)E D, 1) (@) Dy (4, )|
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CZ Z Z Z k-i—z Qk+z)2 |k—K'|e!

keZ relp, K eZ T €l
9—(kNK')e

(2760 1 (T, g ) e

EE TS [
Wi Jokti (2—(kAk') + p(u,v))ite

keZ rely, K eZ 7' €], -

D, )] [ Do ()|

92— ke’ 2—l~c’a’
. d d
(2—k _|_p(1: u))l+€’ (2_k/) +p(v y))1+6/ lu(u) lu(v)
ke —(kNK')e
T3 | s
o—ke’ o—Ke’
. ; ’ ~d d
@+ pla ) (@) + plo, gy P
oy Y 2k k'|s 2~ (knk)e
keZ k' €7 —(knK) + p($,y))1+€
Cp(z,y) .

To show that K(z, y) satisfies the estimate of (1.10), for any fixed k € Z, set

2—k+ , k+’£
Ti = {7’: p(z,z") ZEZ L )}

and

L2 P4 p(a, yk ) )

It is easy to check that if v € Q¥* with 7 € Ty, then, for £” < ¢’ < ¢,

_ / &’ zflcz-:’
D k—H +i C( p(z,z') ) -
Py ) = D) O o) @ v e
If u € Q¥ with T € T, then 5(2_ + p(, %) < p(x, 2') and hence
[Di(r, ) = Dial,yr )| Dl ™) + Dl ™)

plza’) ¢ 2k
¢ (H +p<x,u>) @+ ple,u)

1

27k€’

plz,z') \°
+C (2—k +p(a’, u)) (2—k n p(m’,u))HE’ .
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We now write
|K(z,y) — K(2',y)]

cS S ST S (Tu@FH) Du (o), w(@H)E Dr(yE )|

keZrelpti k'€l €1y,

| Q) (D, ) — Di(a, ) (@) Do (95|

((TXY T Yy y v

k€L TETI W ELT€ly,; keLTET WL el ,
= C(Jl + Jg).

ForT € T1 and e’ < &' <,

JooYY S Y ok w/ / 2~ (ke
K’ "+ Qk+z —(kNE") +p(u 1)))1+5

keZreTi K eZ T elyy,

2 —ke’ 2—k5

.<2 Az.7) ))5”( dudv

ot p@w)) (27F + p(z,u)) (278 + (v, y))

D3I Ranils // g (kK
keZk’eZ ~RAK) 4 p(u,v))1He

( pz, ') ))6 2k’ 2~ ke’ e

4 p(e,w)) @ pla W) (2 pv, )T
lk—K'|¢’ 9—(kAK')e
C 2= 5 / ;
;Zk% (2K 4 p(u,y)) 1+
) ( plz, 2') )5” 9 ke’ "
For 5p(z,y)  p(,w) and p(z, u) < 55p(z,y), the last integral is dominated by
p(aj X ) el 27k5’ +C2k5” ( l)s” 2*(]9/\16/)5
<2_k ol y)> (27F + p(w, y)) 1+ AT N I pla, g)) e
and hence
/e’ / e’ 9—ke'
Ji C o—Ilk—k'le ( p(x, 2) ) |
’;Zk;% 27 +p(z,y)) (27F +pla,y)tte
+CZ Z 2= ‘k kl|€ 2k6“p(.’1) (I,‘) & k/\kQ/ (k/\k/)g :
keZK €L (27BAK) 4 p(, ) )1

Cp(z,z')" p(z,y) 1+,
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. . 1 . .
To deal with Jo, consider first p(x, ') < mp(a:,y). Using the estimate for
u € QFF with T € T3, we have

D3 30 M Dl e I Y
Wi |kt k:/\k’)_|_p(u v))1+e

k€eZreTa K e T el

T, T e’ ke’
' { <2_kpi p(ﬂc),u)> (2—* —}—2/)(:I;, w)) e

)y 2
2F 4 plel )] (@ F @ )T @ o)

which implies

/! /1 ].
J2 Cp(LL',LL'/)E p(x7y)7(1+€ ) for p(il?, xl) < mp(xa y)

This inequality together with the estimate on J; yields

7 _ g’ 1
K (z,y) = K@, 9)|  Cpla,a)* pla,y) "+ for p(a, ) < T pP@y),

which together with the estimate of (1.9) on K(x,y) shows that K(z,y) satisfies
the estimate (1.10).

The proof of the estimate for |K (z,y) — K (z,y’)| is the same.

To see T*(1) = 0, it suffices to show that T is bounded from H! to H!. In
order to do so, we need

Theorem 2.3. ([14]). For 1= <p 1

b

{Z S (|Dk<f><y£+i)|xwi)2}

k€Z el

1/2
[l 20 =

Y

p

where Dy, is the same as the one in the discrete Calderon reproducing formula.

To show the H' boundedness of T', applying Theorem 2.3 and the representation
of T, we write

DTN = 35 S (THQE" Do) @ DUt )

1

QY (@YY DDy ) Do () ().
Using the estimate
9—(jnk)e’

D Dy 27k ,
S (27GN) 4 p(ylist, yiti))ie
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and estimate (2.1) again, we obtain
Di(Tf)(ylh")
D203 3 e O @) (@) e, X5)| D (£)( )

O S werha, M) Q) V(@A) V21D (1) ()
KT

Here we use notation \; = (k,y*t?), Ao = (K/, yk +9), and A3 = (j,/4%). Thus,

DT K o)
C K +iyo—Ik —jle” 2~ (K'Nj)e
;;M(er ) (2*(’“'/\j)+p(yf:+i j+i))1+€/

y Yo

D (N Xy (@)
2~ (k')

k' 44 2 |k' _]|€”
€22 max E <k’Aj>+p<yfi+i,x>>l+a'

/ T/

D ()Xo

By an estimate in [ 12],

9~ (KA 5 k'+i
; (2—(k'Aj) + p( k[’+i $))1+€’ ’ (f)(yT )’
’ ’ 1/r
02k /\J2(k —(K'Nj)) /7"{ (Z’Dk/ ’X k’+z> } / (ZU),

where 1/(1+ ¢’) <r < 1, we obtain

D5 (TH) W) X s () 022 W IR =1e" (W) oK ~(k 1)) /r

o (3 D6t )} @hgsta)
Since 1/(1+¢") <1/(1+¢') < r implies

sup Z2—k’g—lk'—j|a”2(k'/\j)2(k/—(k/Aj))/r < o0
J k:/

sup 327K 2 Wil 909 o~/ < o,
K

\
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(ST @D PRy}

7-//

{ZZ [22 k' =K —jle’g (K i) o (k' — (k' Aj)) /7
e @Dk, ) g

0{ K o=k —3le oK Nj) (K —(K'Aj)/r

7-// /

A @Dk, 0 M)} @)
O{ZZQ K oIk —jle’ ok Aj) o (k' (k' AJ)) /r
{u (Zle/ () \in;ﬂ) |
oS (SBetnl s 1}

This shows, by 1/r > 1 and Fefferman-Stein’s vector valued maximal inequality

[11],

{3 mn i <x>}”2H1

7-//

oMY (ZIDI« Sgs)

=C {Z{ (Z'Dk/ R
(TPt )(yf!“»xQﬁ;H) T
-
_CH{ZTZ’D’“' k+z ’2 ’“’+i}1/2H1

Cll Al

where the last inequality follows from a result in [14].
The proof of T(1) = 0 is similar and we leave details to the reader.

Remark. The above proof can be applied to the H? boundedness of T" for
Tre + - <p <1 It seems that the method used here is new even though for the case
of R™.
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