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ON THE RECURSIVE SEQUENCE xn+1 =
AQk
i=0

+
1

Q2(k+1)
j=k+2 xn¡j

Stevo Stević

Abstract. In [6] the authors proposed two open problems concerning the
boundedness and the periodic nature of positive solutions of the nonlinear
difference equation in the title. In this paper we prove a global covergence
result and solve the open problems in the case A > 1.

1. INTRODUCTION AND BASIC OBSERVATIONS

Recently there has been a lot of interest in studying the global attractivity, the
boundedness character and the periodic nature of nonlinear difference equations.
For some recent results see, for example, [1-5], [7-21].

In [5] the authors established that every positive solution of the difference equa-
tion

xn+1 =
A

xn
+

1

xn¡2
; n= 0; 1; : : : ;(1)

where A2 (0;1), converges to a periodic two solution.
For closely related results concerning, among other problems, the periodic nature

of scalar nonlinear difference equation see, for example, [1], [2], [7-12], [15], [18-
20] and the references cited therein. In [7] and [16] two closely related global
convergence results were established which can be applied to nonlinear difference
equations in proving that every solution of these difference equations converges to
a period-two solution (which is not the same for all solutions).

We believe that nonlinear rational difference equations are of great importance
in their own right and furthermore results about such equations offer prototypes
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towards the development of the basic theory of the global behavior of nonlinear
difference equations.

In [6] the authors proposed to investigate the behaviour of the solutions of the
following, closely related to Eq. (1), difference equation:

xn+1 =
AQk

i=0 xn¡i
+

1
Q2(k+1)
j=k+2 xn¡j

; n = 0;1; : : : ;(2)

where k = 0; 1; : : : ; and x¡2(k+1); : : : ; x¡1; x0; A 2 (0;1).
It can be see that Eq. (2) has infinitely many solutions of period k +2 of the

form
p1; p2; p3; : : : ; pk+2; p1; p2; : : :

where p1 p2 : : : pk+2 =A +1.
Following [6], we can apply the change yn = xnxn¡1xn¡2 : : :xn¡k¡1 in Eq. (2)

and obtain the equation

yn+1 =A+
yn

yn¡(k+1)
; n= 0;1; : : : ;(3)

where k = 0; 1; : : : ; and y¡(k+1); : : : , y¡1 , y0 , A 2 (0;1).

Note that Eq. (3) has a unique positive equilibrium, namely ¹y = A + 1. It is
easy to see that the following equation represents the linearized equation of Eq. (3)
near the equilibrium

zn+1 ¡ 1

A+ 1
zn +

1

A+ 1
zn¡k¡1 = 0:

In the case A > 1, all the zeros of the characteristic polynomial lies in the unit
disc. Indeed, we have

¯̄
¯̄ tk+1¡ 1

A+ 1

¯̄
¯̄ < jtjk+2; for t 2 fzj jzj = 1g;

from which the result follows by Rouchet’s theorem.
Thus by the linearized stability result (see [11]), the positive equilibrium of

Eq. (3) is a locally asymptotically stable (attractor) in this case.
The following conjectures and open problems were posed in [6].

Conjecture 1. Show that every positive solution of Eq. (2) is bounded and
persists.

Open problem 1. Obtain necessary and sufficient conditions for the global
asymptotic stability of the positive equilibrium of Eq. (3).
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Open problem 2. Obtain necessary and sufficient conditions under which every
positive solution of Eq. (2) converges to a period k+ 2 solution.

In this paper we confirm the conjecture and solve the open problems in the case
A> 1.

We say that a solution (xn) of a difference equation is bounded and presists if
there exist positive constants P and Q such that

P · xn ·Q for n =¡1;0; : : : :

A positive semicycle of a solution (xn) consists of a “string” of terms
fxl; xl+1; : : : , xmg, all greater than or equal to ¹x, with l ¸ ¡1 and m · 1 and
such that

either l =¡1; or l >¡1 and xl¡1 < ¹x

and
either m =1; or m <1 and xm+1 < ¹x

A negative semicycle of a solution (xn) consists of a “string” of terms fxl,
xl+1, : : : , xmg, all less than to ¹x, with l ¸ ¡1 and m ·1 and such that

either l =¡1; or l >¡1 and xl¡1 ¸ ¹x

and
either m =1; or m <1 and xm+1 ¸ ¹x

The first semicycle of a solution starts with the term x¡1 and is positive if x¡1 ¸ ¹x
and negative if xl¡1 < ¹x

Following [17], we say that the real number ¹x is a geometrically global attractor
for some difference dquation DE if for each solution (xn) of the DE there exist
L2 R+ and µ 2 [0; 1) such that

jxn ¡ ¹xj · Lµn for all n 2N:

The following lemma was proved in [17]:

Lemma A. Let (an) be a sequence of positive numbers which satisfies the
inequality

an+k · Amaxfan+k¡1; an+k¡2; : : : ; ang for n 2N;

where A 2 (0;1) and k 2N are fixed. Then there exist L 2 R+ such that

akm+r · LAm for all m 2N[ f0g and 1 · r · k:
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Corollary A. Let (an) be the sequence of positive numbers in Lemma A. Then
there exists M > 0 such that

an ·M
³

k
p
A
´n
:

2. A GLOBAL CONVERGENCE RESULT

In this section we present a global convergence result. By this result we confirm
the conjecture in the case A> 1.

Theorem 1. Consider the difference equation

xn+1 = ®+
xn

g(xn¡k)
; n = 0;1; 2; : : :(4)

where ® > 1; k 2N; the initial conditions x¡k;x¡k+1; : : : ;x¡1 and x0 of Eq. (4)

are arbitrary positive numbers and where g(x) is a positive continuous real function
defined on the interval (0;1) which satisfies the following conditions :

(a) g(x)> 1 for x > 1;
(b) ®g(x)¡x is increasing;
(c) x=g(x) is nondecreasing.

Then every positive solution of Eq. (4) converges.

Proof. First we prove that Eq. (4) has the unique positive equilibrium. The
equlibrium points ¹x of Eq. (4) satisfy the equation

¹x= ®+
¹x

g(¹x)
:

Let F(x) = x¡®¡ x
g(x) . It is clear that F is a contimous function on [0;1)

such that F (0) = ¡® < 0 and limx¡!+1F (x) = +1, because from (b) it
follows that g(x) is increasing. Thus it follows that there is an x¤ 2 (0;1) such
that F (x¤) = 0. On the other hand

F(x)¡ F(y)= x¡ y +
y

g(y)
¡ x

g(x)

=
(x¡ y)g(y)(g(x)¡ 1) + y(g(x)¡ g(y))

g(x)g(y)
> 0;

if x > y. So F(x) is an increasing function and consequently x¤ is the unique
positive equilibrium of Eq. (4).
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Further, we prove that every possitive solution of Eq. (4) is bounded. From (4)
we can see that xn > ® for n ¸ 1. Thus we obtain

xn+1= ®+
xn

g(xn¡k)
< ®+

xn
g(®)

= ®+
xn
¯
; n = k +1; k+ 2; : : : ;

(5)

where ¯ = g(®) > 1.
From (5) using induction we obtain

xn+1<
xk+1

¯n¡k
+®

µ
1 +

1

¯
+ ¢ ¢ ¢+ 1

¯n¡k¡1

¶

<
xk+1

¯n¡k
+

®¯

¯ ¡ 1
;

from which the boundedness follows.
Thus liminfn!1 xn = l and limsupn!1 xn = L are finite, moreover l > 1.

Letting lim infn!1 and lim supn!1 in (4) we obtain

l ¸ ®+
l

g(L)
and L · ®+

L

g(l)
:

From this and by (c) we obtain

®g(l) + L ¸ Lg(e) ¸ lg(L)¸ ®g(L) + l:

Since ® > 1 and by (b) we obtain l = L, as desired.

From Theorem 1 we obtain the following corollary.

Corollary 1. Assume that A > 1. Then the positive equilibrium A + 1 of
Eq. (3) is a globally asymptotically attractoor.

Proof. Setting g(x) = x and replace k by k +1 in Theorem 1.

Remark 1. Corollary 1 solves Open problem 1 in the case A > 1.

Similarly, we can prove the following theorem. The proof will be omitted.

Theorem 1 a). Consider the difference equation

xn+1 = ®+
xn¡k
g(xn)

; n= 0;1;2; : : :(6)

where ® > 1; k 2N; the initial conditions x¡k; x¡k+1; : : : ; x¡1 and x0 of Eq. (6)
are arbitrary positive numbers and where g(x) is a continuous positive real function
defined on the interval (0;1) which satisfies the following conditions :
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(a) g(x)> 1 for x > 1;
(b) ®g(x)¡x is increasing;
(c) x=g(x) is nondecreasing.

Then every positive solution of Eq. (6) converges.

3. BOUNDEDNESS AND GLOBAL ATTRACTIVITY OF EQ. (3)

In contrast to convergence result on Eq. (3) we prove that the all solutions of
some generalized equation are bounded.

Theorem 2. Let (yn) be a nontrivial positive solution of the difference equation

yn+1 = ®n +
yn

yn¡(k+1)
; n= 0;1; : : : ;(7)

where y¡(k+1); : : : ; y¡1; y0 2 (0;1) and ®n is a sequence which satisfies the
following condition

m < ®n < M; n= 0; 1; : : : ;(8)

for some m;M 2 (0;1). Then (yn) is bounded and persists.

Proof. From (7) and (8) it follows that yn > m for all n = 1; 2; : : : . On the
other hand, from (7) we obtain

yn+1= ®n+
yn

yn¡(k+1)
= ®n+

®n¡1 + yn¡1
yn¡(k+2)

yn¡(k+1)

= ®n+
®n¡1

yn¡(k+1)
+

yn¡1

yn¡(k+1)yn¡(k+2)

= ®n+
®n¡1

yn¡(k+1)
+

®n¡2 + yn¡2

yn¡(k+3)

yn¡(k+1)yn¡(k+2)

= ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
= ®n+

®n¡1

yn¡(k+1)
+

®n¡2

yn¡(k+1)yn¡(k+2)
+ ¢ ¢ ¢

¢ ¢ ¢+ ®n¡(k+1)

yn¡(k+1) ¢ ¢ ¢yn¡(2k+1)
+

1

yn¡(k+2) ¢ ¢ ¢yn¡(2k+2)

<M +
M

m
+
M

m2
+ ¢ ¢ ¢ + M

mk+1
+

1

mk+1
;

as desired.
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Then main result in this section is the following.

Theorem 3. Assume that A > 1. Then the positive equilibrium A+ 1 is a
geometrically global attractor of all positive solutions of Eq. (3).

Proof. Setting yn = zn + ¹y we obtain

zn+1 =
zn¡ zn¡(k+1)

zn¡(k+1) + ¹y
:

By Theorem 1, zn ! 0 as n!1. Thus we have jznj < " for n ¸ n0("). First,
let us choose " > 0 such that A+ 1 ¡ " > 2. Hence for sufficiently large n, for
example n ¸ n1, we have

jzn+1j ·
jznj+ jzn¡(k+1)j

A+1 ¡ " · 2

A+ 1¡ "maxfjznj; jzn¡(k+1)jg

hence by Corollary A we obtain that there is an L > 0 such that

jznj · L

Ã
k+2

r
2

A +1 ¡ "

!n
for all n= 0;1; : : : ;

from which the result follows.

4. BOUNDEDNESS AND PERIODIC CHARACTER OF THE SOLUTIONS OF EQ. (2)

In this section we investigate the boundedness and the periodic character of the
solutions of Eq. (2).

Theorem 4. Assume that A > 1. Then every solution of Eq. (2) is bounded.

Proof. By Corollary 1 we have that

lim
n!1

yn+1

yn
= 1:

By Theorem 3, for " > 0 such that A+1¡" > 2 and sufficiently large n, we have
¯̄
¯̄ xn+1

xn¡k¡1
¡ 1

¯̄
¯̄=
¯̄
¯̄yn+1

yn
¡ 1

¯̄
¯̄ =

¯̄
¯̄zn+1 + ¹y

zn + ¹y
¡ 1

¯̄
¯̄ =

¯̄
¯̄zn+1 ¡ zn
zn + ¹y

¯̄
¯̄

· 2 maxfjzn+1j; jznjg
A +1 ¡ " · L

Ã
k+2

r
2

A+ 1¡ "

!n
= Lµn:

(9)
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Thus ¯̄
¯̄ xn+1

xn¡k¡1

¯̄
¯̄ =

¯̄
¯̄1 +

yn+1

yn
¡ 1

¯̄
¯̄ · 1 +Lµn;

i.e.
jxn+1j · jxn¡k¡1j(1 +Lµn);

for sufficiently large n.
The infinite product

Q1
i=1(1 + Lµi) converges for jµj < 1, hence the result

follows.

Remark 2. Theorem 4 confirms Conjecture 1 in the case A > 1.

Theorem 5. Assume that A > 1. Then every positive solution of Eq. (2)
converges to a period k+ 2 solution.

Proof. Let (xn) be a nontrivial positive solution of Eq. (2), then by Theorem
4 we have that (xn) is bounded and persists. Thus there is a constant M > 0 such
that

jxnj < M for n =¡2(k+1);¡(2k+ 1); : : : :(10)

From (9) and (10) we obtain

jxn+1 ¡xn¡(k+1)j ·MLµn;(11)

for sufficiently large n.
From (11) using Cauchy’s criterion we obtain that the sequences (x(k+2)n),

(x(k+2)n+1) : : : (x(k+2)n+k+1) converge, as desired.

Remark 3. Theorem 5 solves Open problem 2 in the case A > 1.

5. LOCAL STABILITY WHEN 0 < A · 1

In this section we present some examples of Eq. (3) when the unique equilibrium
is unstable in the case 0 <A · 1.

As we already noted the following equation represents the linearized equation
of Eq. (3) near the equilibrium

zn+1¡ 1

A+1
zn +

1

A+1
zn¡(k+1) = 0:(12)

Let k be an odd number i.e. k = 2l ¡ 1, for some l 2 N. We can see that
the characteristic polynomial Pk+2(t), of Eq. (12) has the only one real root which
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belongs to the interval (¡1; 0). Let t1 be the real root and let t2j ; t2j+1 = ¹t2j ,
j = 1; : : : ; l be the remaining roots of the characteristic polynomial. Clearly

t1t2 ¢ ¢ ¢ tk+2 = t1jt2j2 ¢ ¢ ¢ jt2lj2 =¡ 1

A+ 1
:

Thus if t2j ; t2j+1 = ¹t2j ; j = 1; : : : l lie in the unit disk then

t1 2
µ
¡1;¡ 1

A+ 1

¶
:

Since
P

µ
¡ 1

A +1

¶
= 1 ¡ 2

(A+ 1)2l
;

we obtain that
t1 2

µ
¡1;¡ 1

A+ 1

¶
if A > 2l

p
2¡ 1:

Hence by the linearized stability result (see [11]), we obtain the following the-
orem.

Theorem 6. Assume k = 2l ¡ 1; l 2N and A 2 (0; 2l
p

2 ¡ 1): Then ¹y is an
unstable equilibrium solution of Eq. (3).

When l = 1, from the above we obtain more.

Theorem 7. (a) Assume A >
p

2¡ 1. Then ¹y is a locally asymptotically stable
equilibrium solution of Eq. (3).

(b) Assume A 2 (0;
p

2 ¡ 1). Then ¹y is an unstable equilibrium solution of
Eq. (3).

Remark 4. The case k = 1; A 2 [
p

2¡ 1;1] has not yet been understood. We
believe that when A 2 (

p
2 ¡ 1;1]; the positive equilibrium of Eq. (3) is globally

asymptotically stable.
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