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AN INEQUALITY BETWEEN RATIO OF THE EXTENDED
LOGARITHMIC MEANS AND RATIO OF THE EXPONENTIAL MEANS

Feng Qi and Bai-Ni Guo

Abstract. In this article, we prove an inequality between the ratio of the
extended logarithmic means and the ratio of the exponential means. The proof
is based on an inequality between logarithmic mean and one-parameter mean,
which can be deduced from monotonicity of the extended mean values.

1. INTRODUCTION

In [1, 14, 39, 42], a double inequalities were proved using the mathematical
induction and other techniques, which can be expressed as
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where r > 0 and n 2N.
We call the left-hand side of inequality (1) H. Alzer’s inequality [1], and the

right-hand side of inequality (1) J. S. Martins’ inequality [12]. The inequality
between two ends of (1) is called Minc-Sathre’s inequality [13].

In [18], the first author generalized the Alzer’s inequality and obtained
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where r is a given positive real number, n and m are natural numbers, and k is a
nonnegative integer. The lower bound in (2) is the best possible.

In [3], the Martins’ inequality was generalized: Let faig1i=1 be an increasing
sequence of positive real numbers and

(i) for any positive integer ` > 1,
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(ii) for any positive integer ` > 1,
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Then, for any natural numbers n and m, we have
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where n;m2 N and r is a positive number, ai! denotes
Qn
i=1 ai. The upper bound

is the best possible.
As a corollary of inequality (5), we have: Let a and b be positive real numbers,

k a nonnegative integer, and m;n 2 N. Then, for any real number r > 0, we have
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Inequalities (5) and (6) answer an open problem proposed in [17, 18].
The Alzer’s inequality and inequality (2) have been generalized and extended

by many mathematicians. For more information, please refer to [2, 4, 5, 10, 17, 25,
24, 29, 38]. The Minc-Sathre’s inequality was generalized in [10, 17, 20, 25, 26,
27, 29]. In [20, 26, 27, 29], the following inequalities were obtained:
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where n;m 2 N and k being a nonnegative integer.
In [15], the first author proved its integral analogue of inequality (2): Let

b > a > 0 and ± > 0 be real numbers. Then, for any given positive number r 2 R,
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The lower bound in (8) is the best possible.
Inequality (8) has been generalized to inequalities for a positive functional in

[7].
It is well-known [6] that the extended logarithmic means is defined as

Sp(x;y) =

µ
yp¡ xp
p(y ¡x)

¶1=(p¡1)

; x 6= y; p 6= 0; 1(9)

and Sp(x; x) = x, which is reduced to S0(x; y) = L(x; y), the logarithmic mean,
and to the identric mean or the exponential mean I(x; y)

S1(x; y) = I(x;y) = e¡1

µ
xx
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; x 6= y;(10)

and S1(x;x) = I(x;x) = x. Please refer to [19] and other literature.
In this paper, by monotonicity of the extended mean values, from which an

inequality between the logarithmic mean and one-parameter mean is deduced, we
will prove an inequality between ratio of the extended logarithmic means and ratio
of the exponential means, from which an open problem proposed in [15] is resolved,
as follows:

Thmorem 1. Let b > a > 0 and ± > 0 be real numbers. Then; for any positive
r 2R; we have
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The upper bound in (11) is the best possible.

At last, we will give a new open problem.
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2. LEMMAS

In [40], Stolarsky defined the extended mean values E(r;s;x;y) by
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E(r;s;x;x) = x; x= y

and proved that it is continuous on the domain f(r; s;x;y) : r;s 2 R; x;y > 0g.
Leach and Sholander [11] showed that E(r;s; x;y) are increasing with both r

and s, or with both x and y. The monotonicities of E have also been studied by
the authors and others in [9, 28] and [30]-[36] using different ideas and simpler
methods. In [21], the logarithmic convexity of E was proved.

Most of two variable means are special cases of E, for example

E(0;1; x; y) = L(x; y);(16)

E(r; r+ 1; x;y) = Jr(x; y); r > 0:(17)

They are called the logarithmic mean and the one-parameter mean, respectively, and,
by monotonicity of E, we have

Jr(x;y) > L(x;y); r > 0:(18)

Recently, the concepts of mean values has been generalized in [16, 19, 22, 23],
[30]-[35] and [37].

3. PROOF OF THEOREM 1

Inequality (11) can be rewritten as follows

br+1¡ ar+1

(b ¡a)(bb=aa)r=(b¡a) <
(b+ ±)r+1¡ ar+1

(b+ ±¡ a)((b + ±)b+±=aa)r=(b+±¡a)
:(19)
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Therefore, it suffices to prove the function

Á(x) =
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is increasing in x > a > 0.
Taking logarithm and differentiating yields
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Thus, the function lnÁ(x), and then Á(x), is increasing.
Here the L’Hospital rule yields
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Hence, the upper bound in inequality (11) is the best possible. The proof is complete.

4. OPEN PROBLEM

Recently, the first author and Mr. N. Towghi, by definition of integral in the
sense of Riemann and other techniques, proved the following

Theorem 2 ([41]). Let f(x) 6´ 0 be a nonnegative integrable function on the
closed interval [a;b+±]; where b > a and ± > 0. Then; for any positive parameter



234 Feng Qi and Bai-Ni Guo

r > 0; we have
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Theorem 3 ([33]). Let f(x) be a positive increasing integrable function on the
closed interval [a;b+±]; where b > a and ± > 0. Then, for any positive parameter
r > 0; we have
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This almost resolved an open problem proposed in [8].
Now it is natural to propose a new open problem as follows.

Open Problem. Let b > a > 0 and ± > 0 be real numbers, f a positive
integrable function and w a nonnegative weight defined on the interval [a;b + ±].
Then, for any given positive r 2 R, we have
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Further, if f is increasing, then we have the following
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The lower and upper bounds in (24) and (25) are best possible.
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