RECOGNIZING HINGE-FREE LINE GRAPHS AND TOTAL GRAPHS

Jou-Ming Chang and Chin-Wen Ho

Abstract

In this paper, we characterize line graphs and total graphs that are hinge-free, i.e., there is no triple of vertices x, y, z such that the distance between y and z increases after x is removed. Based on our characterizations, we show that given a graph G with n vertices and m edges, determining its line graph and total graph to be hinge-free can be solved in $\mathrm{O}(n+m)$ time. Moreover, characterizations of hinge-free iterated line graphs and total graphs are also discussed.

1. Introduction

All graphs considered in this paper are undirected without self-loops and multiple edges. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$, respectively. We call $V(G) \cup E(G)$ the set of elements of G, and write $n=|V(G)|$ to be the order of G and $m=|E(G)|$ to be the size of G. Two elements are said to be associated if they are either adjacent or incident. The distance $d_{G}(x, y)$ of two elements $x, y \in V(G) \cup E(G)$ is the length (i.e., the number of edges) of a shortest path joining x and y in G, but not including x and y (if $x \in E(G)$ or $y \in E(G)$). A shortest path joining x and y is called an $x-y$ geodesic.

A vertex u in a graph G is called a hinge vertex if there exist two other vertices x and y such that $d_{G-u}(x, y)>d_{G}(x, y)$, where $G-u$ denotes the subgraph of G induced by the vertex set $V(G) \backslash\{u\}$. That is, u is a hinge vertex if and only if every $x-y$ geodesic in G must pass through u. Graphs without hinge vertices are called hinge-free graphs. The study of hinge-free graphs arises naturally from network design [5, 6, 9]. Because many interconnection networks can be constructed using line (di)graph iterations, such as Kautz networks [10], de Bruijn networks

[^0][4] and Imase-Itoh networks [13], this provides with a motivation for us to study characterizations of hinge-free (iterated) line graphs.

The line graph of G, denoted by $L(G)$, is the intersection graph whose vertices correspond to the edges of G, and two vertices of $L(G)$ are joined by an edge if and only if the corresponding edges in G are adjacent. A natural extension of line graphs is the total graph. The total graph $T(G)$ is the graph whose vertex set is the set of all elements of G, and two vertices are adjacent if and only if the corresponding elements are associated in G. For example, Figure 1 shows a graph G and its line graph and total graph. More generally, the iterated line graphs and total graphs are defined as follows: $L^{1}(G)=L(G)$ (resp. $T^{1}(G)=T(G)$) and $L^{i}(G)=L\left(L^{i-1}(G)\right)\left(\right.$ resp. $\left.T^{i}(G)=T\left(T^{i-1}(G)\right)\right)$ for $i \geq 2$.

In this paper, we characterize hinge-free line graphs and total graphs. Moreover, we extend these results to iterated line graphs and total graphs. Two interesting results acquired from our study are these:

Theorem 1. The line graph $L(G)$ is hinge-free if and only if G is P_{4}-free.

Theorem 2. The total graph $T(G)$ is hinge-free if and only if G is both hingefree and P_{4}-free.

A graph is P_{k}-free if it contains no induced path of length $k-1$. For the case $k=4$, many structural and algorithmic properties of P_{4}-free graphs have been discovered (see e.g. [7, 8, 14]). A familiar synonym of P_{4}-free graph is complement reducible graph (abbreviated to cograph). Corneil et al. [8] showed that cographs can be recognized in $\mathrm{O}(n+m)$ time by constructing a unique tree representation. Therefore, our first result indicates that if the line graph model (i.e., the root graph) G is given, determining whether its line graph is hinge-free or not can be solved in the same time complexity.

FIG. 1.

Due to the fact that $T(G)$ always contains both G and $L(G)$ as induced subgraphs, if $T(G)$ is P_{k}-free then G and $L(G)$ are also P_{k}-free, but the converse is not true. The second result seems to be not intuitive since, unlike the P_{k}-free property, the hinge-free property is not hereditary, i.e., not every induced subgraph of a hinge-free graph is hinge-free. It is well-known that cographs are properly contained in a class of graphs called distance-hereditary graphs, i.e., graphs in which every pair of vertices has the same distance in every connected induced subgraph containing them. Distance-hereditary graphs were first introduced by Howorka [12] and further characterized by Bandelt and Mulder [1]. It is obvious from the definition that every hinge vertex in a distance-hereditary graph must be a cut vertex. Thus, the depth-first search algorithm on graphs (see e.g. [3]) can be used for finding all hinge vertices of a distance-hereditary graph (cograph). An immediate consequence obtained from Theorem 2 is that the hinge-free total graph recognition problem can be solved in linear time once its root graph is given.

2. Preliminaries

Throughout the rest of this paper, we assume that a graph G is connected and nontrivial. For a vertex $u \in V(G)$, the neighborhood $N_{G}(u)$ is the set of all vertices of G adjacent to u. When no ambiguity arises, the subscript G can be omitted. Note that the term "path" always refers to a simple path, i.e., no vertex appears more than once. In particular, a path is called trivial if it has a single vertex. Two nontrivial paths joining x and y are vertex-disjoint (resp. edge-disjoint) if they have no vertices (resp. edges), excluding x and y, in common. Notations and terminologies not given here may be found in any standard textbook on graphs.

A point of view proposed in [6] showed that to identify a hinge vertex of an arbitrary graph, we only need to inspect the neighborhood of this vertex instead of examining the distances among all the vertex-pairs. Based on this property, lineartime algorithms for finding all hinge vertices for some special graphs were found [5, 11].

Lemma 1. (Chang et al. [6]) A vertex v in a graph G is a hinge vertex if and only if there exist two nonadjacent vertices $x, y \in N(v)$ such that $N(x) \cap N(y)=$ $\{v\}$.

An undirected graph G is k-connected if the removal of at least k vertices is necessary to disconnect G or reduce it to a single vertex. In [9], Entringer et al. defined that a graph G is k-geodetically connected (k-GC for short) if G is k connected and the removal of at least k vertices is required to increase the distance of at least two vertices. That is, the structure of k-GC graphs can tolerate any $k-1$ vertices failures without increasing the distance among all the remaining vertices.

In fact, the class of hinge-free graphs is identical to the class of 2 -GC graphs. A necessary and sufficient condition for a graph to be hinge-free (see Lemma 2) was proved in [5]. This result suggests that a hinge-free graph recognition algorithm can easily be implemented in $\mathrm{O}(\mathrm{nm})$ time. Indeed, a characterization which generalizes the result of Lemma 2 for k-GC graphs, $k \geq 2$, was also provided in [5].

Lemma 2. (Chang and Ho [5]) A graph G is hinge-free if and only if every pair of nonadjacent vertices in G are joined by at least two vertex-disjoint geodesics.

3. Hinge-Free Line Graphs

It is well-known that a line graph does not contain $K_{1,3}$ (claw) as an induced subgraph. A complete list of the forbidden induced subgraphs for the family of line graphs was characterized by Beineke [2]. In this section, we characterize hinge-free (iterated) line graphs.

We first give some observations which can easily be derived from the definition of a line graph. For an arbitrary graph G, there is a one-to-one correspondence between the nontrivial paths of G and the induced paths of $L(G)$; i.e., if G contains a path $P=v_{0} v_{1} \ldots v_{k}$ of length $k \geq 1$ which consists of edges $e_{i}=v_{i-1} v_{i}$, then the corresponding vertices of e_{i} in $L(G)$ form an induced path $P^{\prime}=e_{1} e_{2} \ldots e_{k}$ of length $k-1$, and vice versa. Further, P is a $v_{0}-v_{k}$ geodesic in G if and only if P^{\prime} is an $e_{1}-e_{k}$ geodesic in $L(G)$, and two geodesics in G are edge-disjoint if and only if the corresponding induced geodesics in $L(G)$ are vertex-disjoint. Thus, we have the following properties.

Proposition 1. The line graph $L(G)$ is P_{k}-free if and only if G contains no path of length k.

Proposition 2. Let G be a graph and $l \geq 2$ be an integer. Two vertices of $L(G)$ are joined by k vertex-disjoint geodesics of length l if and only if the corresponding edges in G are joined by k edge-disjoint geodesics of length $l-1$.

Proof of Theorem 1. By Lemma 2, if $L(G)$ is hinge-free then every pair of nonadjacent vertices in $L(G)$ are joined by at least two vertex-disjoint geodesics. It follows from Proposition 2 that every pair of nonadjacent edges in G is joined by at least two edge-disjoint geodesics. Let $w x y z$ be any path of G. Since edges $w x$ and $y z$ are joined by at least two edge-disjoint geodesics, at least one of edges $w y$, $w z$, and $x z$ must exist. Thus G contains no induced P_{4}.

Conversely, suppose that w is a hinge vertex of $L(G)$. By Lemma 1, there exist two nonadjacent vertices $x, y \in N_{L(G)}(w)$ such that $N_{L(G)}(x) \cap N_{L(G)}(y)=\{w\}$.

That is, $x w y$ is the unique $x-y$ geodesic in $L(G)$. Let $x=a b$ and $y=c d$ be two such corresponding edges of G. Since $a b$ and $c d$ are nonadjacent, by Proposition 2, they are joined by only one edge w. Hence, in G, w must be one of the following: $a c, b d, a d$, or $b c$. Therefore, a, b, c, d induce a P_{4} in G.

Given a connected graph G, we write $k G$ for the graph with k components each isomorphic with G. For two vertex-disjoint graphs G_{1} and G_{2}, the union of G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph having $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph consisting of the union $G_{1} \cup G_{2}$ together with $\left\{u v: u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$. Define H_{k} as the star $K_{1, k+2}$ with one additional edge added, i.e., $H_{k} \cong K_{1}+\left(k K_{1} \cup K_{2}\right)$. Note that $H_{0} \cong K_{3}$ and each H_{k} for $k \geq 2$ contains a claw as an induced subgraph.

In what follows, the hinge-free iterated line graphs will be characterized. Obviously, for every graph G of order $n<3, L^{i}(G), i \geq 2$, does not exist. By Proposition 1 and Theorem $1, L^{2}(G)$ is hinge-free if and only if every path of G has length at most 3. Thus, if G has order 4 or less, $L^{2}(G)$ is trivially hinge-free.

Theorem 3. Let G be a graph of order at least 5. Then $L^{2}(G)$ is hinge-free if and only if G is a tree of diameter at most 3 or one of the graphs H_{k} for $k \geq 2$.

Proof. Clearly, if G is a tree of diameter no more than 3 then G contains no path of length 4. We now consider the graphs with order at least 5 and containing a cycle. Let G be a graph of order $n \geq 5$ and let C be a longest cycle of G (without induced). Since G is connected and $n \geq 5$, if $|V(C)| \geq 4$ then G contains a path of length 4 . For $|V(C)|=3$, it is easy to verify that if $G \notin\left\{H_{k}: k=2,3, \ldots\right\}$, then G contains an induced subgraph isomorphic to W_{1}, W_{2} or W_{3} (see Figure 2), and in each case G always contains a path of length 4 . On the contrary, if $G \in\left\{H_{k}: k=2,3 \ldots\right\}$ then G has no path of length 4 . Thus, the graphs $L^{2}\left(H_{k}\right)$ for $k \geq 2$ are hinge-free.

From above, the family of graphs with order $n \geq 3$ containing no path of length 4 is precisely $\{T: T$ is a tree of diameter 2 or 3$\} \cup\left\{H_{k}: k=0,1,2, \ldots\right\} \cup$ $\left\{C_{4}, K_{4}, K_{4}-e\right\}$, where $K_{4}-e$ is a 4-vertex complete graph by deleting any edge.

W_{1}

W_{2}

W_{3}

FIG. 2.

FIG. 3.

Furthermore, by Proposition 1 and Theorem $1, L^{3}(G)$ is hinge-free if and only if $L(G)$ contains no path of length 4 . Thus, we can characterize $L^{3}(G)$ to be hinge-free by considering those graphs whose corresponding line graphs appear in the above family.

Obviously, not every graph containing no path of length 4 is the line graph of some graph. Note that, except for $K_{1,3}$, every forbidden induced subgraph of a line graph (provided by Beineke [2]) contains a path of length 4. Thus, we only need to restrict our attention to the $K_{1,3}$ inspection in the above family when we consider line graphs without a path of length 4 . Since a line graph that is a tree must be a path if it has no claw, and since each H_{k} for $k \geq 2$ contains an induced claw, we characterize $L^{3}(G)$ to be hinge-free as follows: $L\left(P_{4}\right) \cong P_{3}$, $L\left(P_{5}\right) \cong P_{4}, L\left(K_{3}\right) \cong L\left(K_{1,3}\right) \cong K_{3} \cong H_{0}, L(Y) \cong H_{1}$ (see Figure 3 for the graph $Y), L\left(C_{4}\right) \cong C_{4}, L\left(K_{1,4}\right) \cong K_{4}$ and $L\left(H_{1}\right) \cong K_{4}-e$. Therefore, we have the following theorem.

Theorem 4. $L^{3}(G)$ is hinge-free if and only if $G \in\left\{P_{4}, P_{5}, K_{3}, K_{1,3}, Y, C_{4}\right.$, $\left.K_{1,4}, H_{1}\right\}$.

4. Hinge-Free Total Graphs

In this section, the hinge-free and P_{k}-free properties for total graphs are considered. Let P be an induced path of $T(G)$. We say that P is vertex-unified (resp. edge-unified) if all the corresponding elements of the vertices in P are vertices (resp. edges) of G. For convenience, we say that P is unified if it is either vertex-unified or edge-unified. Clearly, every trivial path is unified. If P is not unified, then it can be divided into maximal unified subpaths such that vertex-unified subpaths and edge-unified subpaths alternate along P. The following properties are directly obtained from the fact that $T(G)$ contains G (resp. $L(G)$) as an induced subgraph.

Proposition 3. Let P be a vertex-unified induced path in $T(G)$ of length l. Then $V(P)$ induces a path of the same length in G.

Proposition 4. Let P be an edge-unified induced path in $T(G)$ of length l. Then the corresponding edges of $V(P)$ constitute a path of length $l+1$ in G.

Let P be an induced path of $T(G)$ having L_{1}, \ldots, L_{j} as its maximal unified subpaths. By Propositions 3 and 4, for each L_{i}, there is a corresponding path L_{i}^{\prime} in G. Since P is an induced path, the collection of paths L_{i}^{\prime} in G still forms a path. For instance, we consider an induced path $P=a b f g$ of $T(G)$ in Figure 1. Then P can be divided into $a b$ and $f g$ maximal unified subpaths. The vertex set $\{a, b\}$ in G induces a path of length 1 and the edge set $\{f=b c, g=c d\}$ in G yields a path of length 2. Consequently, the elements a, b, f, g in G produce a path $a b c d$ of length 3. We now prove three geodetic properties related to the graphs G and $T(G)$, which are helpful to establish the main result for hinge-free total graphs.

Lemma 3. Two nonadjacent vertices of a graph G are joined by k vertexdisjoint geodesics of length l if and only if their corresponding vertices in $T(G)$ are joined by k vertex-disjoint geodesics with the same length.

Proof. The "only if" part follows immediately from the fact that G is an induced subgraph of $T(G)$. Conversely, we show that for any two nonadjacent vertices x and y in G, every $x-y$ geodesic in $T(G)$ must be vertex-unified. Thus the result follows from Proposition 3.

Let P be an $x-y$ geodesic of length l in $T(G)$. Suppose that P is not vertexunified. Then P contains at least one maximal edge-unified subpath. We may assume that $P=x \cdots v_{0} e_{1} e_{2} \cdots e_{j} v_{j} \cdots y$, where $v_{0}, v_{j} \in V(G), e_{i}=v_{i-1} v_{i} \in$ $E(G)$ and $j \geq 1$. This means that $e_{1} \cdots e_{j}$ is a maximal edge-unified subpath of P. It is easy to see that $x \cdots v_{0} v_{1} \cdots v_{j-1} v_{j} \cdots y$ forms another path in $T(G)$ of length $l-1$. This contradicts the fact that P is an $x-y$ geodesic in $T(G)$.

Lemma 4. Two nonadjacent edges of a graph G are joined by k edge-disjoint geodesics of length l if and only if their corresponding vertices in $T(G)$ are joined by k vertex-disjoint geodesics of length $l+1$.

Proof. The "only if" part follows immediately from the fact that $L(G)$ is an induced subgraph of $T(G)$. Conversely, a similar proof of Lemma 3 can show that every $x-y$ geodesic in $T(G)$ is edge-unified, where x and y are any two nonadjacent edges in G. Thus the result follows from Proposition 4.

Lemma 5. For any two nonassociated elements $x \in V(G)$ and $y=u v \in E(G)$, the corresponding vertices of x and y in $T(G)$ are joined by at least two vertexdisjoint geodesics.

Proof. Since G is connected, without loss of generality, we may assume that $P=w_{1} w_{2} \cdots w_{k}$ is an $x-y$ geodesic of G where $w_{1}=x, w_{k}=u$ and $k \geq 2$. Let $e_{i}=w_{i} w_{i+1}$. Then we can find two vertex-disjoint paths of length k joining x and y in $T(G)$, namely, $P^{\prime}=w_{1} w_{2} w_{3} \cdots w_{k} y$ and $P^{\prime \prime}=w_{1} e_{1} e_{2} \cdots e_{k-1} y$. Also, if $T(G)$ contains another $x-y$ path of length less than k, then P cannot be an $x-y$ geodesic in G. Thus P^{\prime} and $P^{\prime \prime}$ are vertex-disjoint geodesics in $T(G)$.

Now, we complete the proof of Theorem 2.
Proof of Theorem 2. Suppose that $T(G)$ is hinge-free. By Lemma 2, every pair of nonadjacent vertices in $T(G)$ are joined by at least two vertex-disjoint geodesics. Since two vertices $x, y \in V(G)$ are nonadjacent if and only if the corresponding vertices of x and y in $T(G)$ are also nonadjacent, it follows from Lemma 3 that every two nonadjacent vertices of G are joined by at least two vertex-disjoint geodesics. Thus, by Lemma 2, G is hinge-free. To show that G is P_{4}-free, by Theorem 1 it suffices to show that $L(G)$ is hinge-free. Let x and y be nonadjacent vertices in $L(G)$. Since $T(G)$ contains $L(G)$ as an induced subgraph, x and y are also nonadjacent in $T(G)$. Since $T(G)$ is hinge-free, there exist at least two vertexdisjoint geodesics joining x and y in $T(G)$. By Lemma 4, the corresponding edges of x and y in G are joined by at least two edge-disjoint geodesics. Thus, by Proposition 2 and Lemma 2, we conclude that $L(G)$ is hinge-free.

Conversely, let G be a P_{4}-free and hinge-free graph and assume that $T(G)$ contains a hinge vertex w. By Lemma 1, there exist two nonadjacent vertices $x, y \in N_{T(G)}(w)$ such that $N_{T(G)}(x) \cap N_{T(G)}(y)=\{w\}$. That is, the corresponding elements of x and y in G are nonassociated, and the induced path $x w y$ in $T(G)$ is the unique $x-y$ geodesic. We now consider all possible cases about the elements x and y to be either vertices or edges of G as follows.

Case 1: x and y are nonadjacent vertices of G. Since $x w y$ is the unique $x-y$ geodesic in $T(G)$, by Lemma 3, there is only one geodesic with length 2 between x and y in G. Thus, by Lemma $2, G$ is not hinge-free, a contradiction.

Case 2: $x=a b$ and $y=c d$ are nonadjacent edges of G. Since $x w y$ is the unique $x-y$ geodesic in $T(G)$, by Lemma $4, a b$ and $c d$ in G must be joined by only one edge. Thus, G contains an induced P_{4}, a contradiction.

Case 3: $x \in V(G)$ and $y \in E(G)$ or $x \in E(G)$ and $y \in V(G)$ are nonassociated elements. By Lemma 5, x and y in $T(G)$ are joined by at least two vertex-disjoint geodesics. This violates the fact that $x w y$ is the unique $x-y$ geodesic in $T(G)$.

As immediate consequences, we obtain the following corollaries.

Corollary 1. The total graph $T(G)$ is hinge-free if and only if both G and $L(G)$ are hinge-free.

Corollary 2. The following statements are equivalent for a graph G :
(1) $T(L(G))$ is hinge-free.
(2) $L(G)$ is both hinge-free and P_{4}-free.
(3) Both G and $L(G)$ are P_{4}-free.
(4) G is P_{4}-free and every path of G has length at most 3 .
(5) $G \in\left\{C_{4}, K_{4}, K_{4}-e\right\} \cup\left\{H_{k}: k=0,1,2, \ldots\right\} \cup\left\{K_{1, n}: n=1,2,3, \ldots\right\}$.

Proof. The equivalences of statements (1), (2), (3) and (4) are established by Theorems 2, 1 and Proposition 1. (4) $\Leftrightarrow(5)$ can be proved similarly to Theorem 3 by restricting G without an induced P_{4}.

In what follows, we present some properties of total graphs without induced P_{k} and then use these properties to characterize the hinge-free iterated total graphs. Let P be an induced path of a total graph $T(G)$. We first show that the number of maximal unified subpaths with respect to P has a bound.

Lemma 6. Every induced path of length $k-1$ in $T(G)$ can be divided into at most $\left\lfloor\frac{k}{2}\right\rfloor+1$ maximal unified subpaths.

Proof. Let $P=x_{1} x_{2} \cdots x_{k}$ be an induced path of $T(G)$ which consists of j maximal unified subpaths L_{1}, \ldots, L_{j}. Consider three consecutive vertices x_{i}, x_{i+1} and x_{i+2} in P, where $i=1, \ldots, k-2$. Clearly, if the corresponding elements of these three vertices in G satisfy $x_{i}, x_{i+2} \in V(G)$ and $x_{i+1} \in E(G)$ or $x_{i}, x_{i+2} \in$ $E(G)$ and $x_{i+1} \in V(G)$, then x_{i} and x_{i+2} are two associated elements of G (corresponding to two adjacent vertices of $T(G)$). This implies that P is not an induced path of $T(G)$. Thus, each subpath L_{i}, excluding L_{1} and L_{j}, contains at least two vertices. So P has $k \geq 2(j-2)+2$ vertices. Since j must be an integer, we have $j \leq\left\lfloor\frac{k}{2}\right\rfloor+1$.

Theorem 5. Let G be a graph and let $k \geq 2$. Then $T(G)$ is P_{k}-free if G contains no path of length $\left\lceil\frac{3 k}{4}\right\rceil-1$.

Proof. We will show that if $T(G)$ is not P_{k}-free, then G contains a path of length at least $\left\lceil\frac{3 k}{4}\right\rceil-1$. Assume that there is an induced path $P=x_{1} x_{2} \cdots x_{k}$ of length $k-1$ in $T(G)$ which is divided into L_{1}, \ldots, L_{j} maximal unified subpaths such that $x_{1} \in V\left(L_{1}\right)$ and $x_{k} \in V\left(L_{j}\right)$. For $i=1, \ldots, j$, let L_{i}^{\prime} be the corresponding path of L_{i} in G. By Propositions 3 and 4, the length of L_{i}^{\prime} can be determined by the
length of L_{i}. Let P^{\prime} be the path in G that is constituted from the set of subpaths $L_{1}^{\prime}, \ldots, L_{j}^{\prime}$. Then $\left|P^{\prime}\right|=\sum_{i=1}^{j}\left|L_{i}^{\prime}\right|$, where $\left|P^{\prime}\right|$ denotes the length of P^{\prime}. We claim that $\left|P^{\prime}\right| \geq\left\lceil\frac{3 k}{4}\right\rceil-1$. Consider elements x_{1} and x_{k} to be either vertices or edges of G by the following three cases:

Case 1: $x_{1}, x_{k} \in V(G)$. In this case, j is odd and each subpath L_{i} for i even (resp. odd) is edge-unified (resp. vertex-unified). Thus we have

$$
\left|P^{\prime}\right|=\sum_{i=1}^{\frac{j+1}{2}}\left(\left|V\left(L_{2 i-1}\right)\right|-1\right)+\sum_{i=1}^{\frac{j-1}{2}}\left|V\left(L_{2 i}\right)\right|=\sum_{i=1}^{j}\left|V\left(L_{i}\right)\right|-\frac{j+1}{2}=k-\frac{j+1}{2}
$$

Case 2: $x_{1}, x_{k} \in E(G)$. In this case, j is odd and each subpath L_{i} for i even (resp. odd) is vertex-unified (resp. edge-unified). Thus we have

$$
\left|P^{\prime}\right|=\sum_{i=1}^{\frac{j-1}{2}}\left(\left|V\left(L_{2 i}\right)\right|-1\right)+\sum_{i=1}^{\frac{j+1}{2}}\left|V\left(L_{2 i-1}\right)\right|=k-\frac{j-1}{2}
$$

Case 3: $x_{1} \in V(G)$ and $x_{k} \in E(G)$ or $x_{1} \in E(G)$ and $x_{k} \in V(G)$. In this case, j is even. Without loss of generality, we assume that $x_{1} \in V(G)$ and $x_{k} \in E(G)$. Thus we have

$$
\left|P^{\prime}\right|=\sum_{i=1}^{\frac{j}{2}}\left(\left|V\left(L_{2 i-1}\right)\right|-1\right)+\sum_{i=1}^{\frac{j}{2}}\left|V\left(L_{2 i}\right)\right|=k-\frac{j}{2}
$$

Since $j \leq\left\lfloor\frac{k}{2}\right\rfloor+1$ by Lemma 6, the length of P^{\prime} in the above three cases is at least

$$
k-\frac{j+1}{2} \geq k-\frac{\left\lfloor\frac{k}{2}\right\rfloor}{2}-1 \geq \frac{3 k}{4}-1
$$

Thus, G contains a path of length $\left\lceil\frac{3 k}{4}\right\rceil-1$.
A necessary condition for $T(G)$ to be P_{k}-free can readily be made as follows. Since $T(G)$ contains both G and $L(G)$ as induced subgraphs, if $T(G)$ is P_{k}-free then both G and $L(G)$ are P_{k}-free. By Proposition 1, this implies that G contains no path of length k and no induced path of length $k-1$. The following theorem improves this bound.

Theorem 6. Let G be a graph and let $k \geq 2$. If $T(G)$ is P_{k}-free, then
(1) G contains no path of length $k-1$, and
(2) G contains no induced path of length $\left\lceil\frac{3 k-2}{4}\right\rceil$.

Proof. (1) Assume that G contains a path $v_{1} v_{2} \cdots v_{k}$ of length $k-1$. For $i=1, \ldots, k-1$, let $e_{i}=v_{i} v_{i+i}$. Then $e_{1} \cdots e_{k-1} v_{k}$ forms an induced path of length $k-1$ in $T(G)$. Thus, $T(G)$ is not P_{k}-free.
(2) Assume that G has an induced path $P=v_{0} v_{1} \cdots v_{p}$ with $p \geq\left\lceil\frac{3 k-2}{4}\right\rceil$. We will show that $T(G)$ is not P_{k}-free. Let $e_{i}=v_{i-1} v_{i}$ for $i=1, \ldots, p$ and let $S=\left\{v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{p-1}, e_{p}, v_{p}\right\}$ be the set of elements of P. Denote G_{S} as the subgraph of $T(G)$ induced by the corresponding vertices of the elements of S. We claim that G_{S} contains an induced path of length at least $k-1$.

To simplify the description, we use $f(i)$ for $i=1,2, \ldots, 2 p+1$ to denote the vertices of G_{S}, where

$$
f(i)= \begin{cases}v_{\frac{i-1}{2}} & \text { if } i \text { is odd } \\ e_{\frac{i}{2}} & \text { if } i \text { is even }\end{cases}
$$

Since P is an induced path of G, distinct vertices $f(i)$ and $f(j)$ in G_{S} are adjacent for $|i-j| \leq 2$, and are nonadjacent for $|i-j| \geq 3$. Let $X=x_{0}, x_{1}, \ldots, x_{h}$ be an increasing sequence from the set $\{1,2, \ldots, 2 p+1\}$. Obviously, if $x_{i+1}-x_{i} \leq 2$ for all $i=0, \ldots, h-1$, then $f\left(x_{0}\right) \cdots f\left(x_{h}\right)$ forms a path of length h in G_{S}. Moreover, if additional conditions $x_{i+2}-x_{i} \geq 3$ hold for all $i=0, \ldots, h-2$, then $f\left(x_{0}\right) \cdots f\left(x_{h}\right)$ is an induced path of length h in G_{S}.

Let $q=\left\lceil\frac{2 p+1}{3}\right\rceil$ and $r=(2 p+1) \bmod 3$. We now consider a $v_{0}-v_{p}$ induced path P^{\prime} in G_{S} that is constructed from an increasing sequence X such that all the terms of X satisfy the conditions:

$$
x_{i+1}-x_{i} \leq 2 \text { and } x_{i+2}-x_{i} \geq 3
$$

Case 1: $r=0$. In this case, we have $2 p+1=3 q$ and $p \equiv 1(\bmod 3)$. We select $X=1,3,4,6,7,9, \ldots, 3 q-2,3 q$. Then $\left|P^{\prime}\right|=2 q-1=\frac{4 p-1}{3}$.

Case 2: $r=1$. In this case, we have $2 p+1=3 q-2$ and $p \equiv 0(\bmod 3)$. Select $X=1,3,4,6,7,9, \ldots, 3 q-5,3 q-3,3 q-2$. Then $\left|P^{\prime}\right|=2 q-2=\frac{4 p}{3}$.

Case 3: $r=2$. In this case, we have $2 p+1=3 q-1$ and $p \equiv 2(\bmod 3)$. Select $X=1,2,4,5,7,8, \ldots, 3 q-5,3 q-4,3 q-2,3 q-1$. Then $\left|P^{\prime}\right|=2 q-1=\frac{4 p+1}{3}$.

In the above three cases, the length of P^{\prime} can be expressed in term $\left\lceil\frac{4 p-1}{3}\right\rceil$ by considering the congruence of p. Since $p \geq\left\lceil\frac{3 k-2}{4}\right\rceil \geq \frac{3 k-2}{4}$, we have

$$
\left\lceil\frac{4 p-1}{3}\right\rceil \geq \frac{4 p-1}{3} \geq k-1
$$

From the above argument, we obtain that the induced subgraph G_{S} of $T(G)$ contains an induced path of length at least $k-1$. Thus, $T(G)$ is not P_{k}-free.

Corollary 3. The following statements are equivalent for a graph G :
(1) $T(G)$ is $P_{4}-$ free.
(2) $L(T(G))$ is hinge-free.
(3) $T(G)$ is both hinge-free and P_{4}-free.
(4) $T^{2}(G)$ is hinge-free.

Moreover, the only connected graph G for which $T(G)$ is P_{4}-free are K_{2} and K_{3}.

Proof. The equivalences $(1) \Leftrightarrow(2)$ and $(3) \Leftrightarrow(4)$ follow directly from Theorems 1 and 2 , respectively. $(3) \Rightarrow(1)$ is trivial. We prove $(1) \Rightarrow(3)$ as follows.

By Theorem 6, if $T(G)$ is P_{4}-free then G has no path of length 3. The nontrivial connected graphs containing a path of length at most 2 are K_{2}, K_{3}, P_{3}, and $K_{1, n}$ for $n \geq 3$. Clearly, $T\left(P_{3}\right)$ is not P_{4}-free. Since every $T\left(K_{1, n}\right)$ for $n>3$ contains $T\left(P_{3}\right)$ as an induced subgraph, it is not P_{4}-free. Also, it is easy to check that $T\left(K_{2}\right)$ and $T\left(K_{3}\right)$ are both P_{4}-free and hinge-free.

References

1. H. J. Bandelt and H. M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (1986), 182-208.
2. L. W. Beineke, Derived graphs and digraphs, Beiträge Graphentheorie (Teubner, Leipzig, 1968).
3. G. Brassard and P. Bratley, Algorithmics: theory and practice, Prentice-Hall, Englewood Cliffs, 1988.
4. N. G. de Bruijn, A combinatorial problem, Proc. Konink. Nederl. Akad. Wetensch. Ser. A 49 (1946), 758-764.
5. J. M. Chang and C. W. Ho, The recognition of geodetically connected graphs, Inform. Process. Lett. 65 (1998), 81-88.
6. J. M. Chang, C. W. Ho, C. C. Hsu and Y. L. Wang, The characterizations of hingefree networks, in: Proc. International Computer Symposium on Algorithms, 1996, pp. 105-112.
7. D. G. Corneil, H. Lerchs and L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163-174.
8. D. G. Corneil, Y. Perl and L. K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985), 926-934.
9. R. C. Entringer, D. E. Jackson and P. J. Slater, Geodetic connectivity of graphs, IEEE Trans. Circuits Systems CAS 24 (1977), 460-463.
10. M. A. Fiol, J. L. A. Yebra and I. Alegre, Line digraph iterations and the (d, k) digraph problem, IEEE Trans. Comput. 33 (1984), 400-403.
11. T. Y. Ho, Y. L. Wang and M. T. Juan, A linear time algorithm for finding all hinge vertices of a permutation graph, Inform. Process. Lett. 59 (1996), 103-107.
12. E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford Ser. (2) 28 (1977), 417-420.
13. M. Imase and M. Itoh, A design for directed graph with minimum diameter, IEEE Trans. Comput. 32 (1983), 782-784.
14. L. Stewart, Cographs, a class of tree representable graphs, TR 126/78, Department of Computer Science, University of Toronto, 1978.

Jou-Ming Chang ${ }^{*, \dagger}$ and Chin-Wen Ho*

* Institute of Computer Science and Information Engineering, National Central University, Chung-Li, Taiwan 320, R.O.C.
${ }^{\dagger}$ Department of Information Management, National Taipei College of Business, Taipei, Taiwan 100, R.O.C.
E-mail: spade@mail.ntcb.edu.tw.

[^0]: Received October 18, 1999.
 Communicated by F. K. Hwang.
 2001 Mathematics Subject Classification: 05C75, 05C85.
 Key words and phrases: Hinge-free graph, line graph, total graph, cograph.
 ${ }^{\dagger}$ Corresponding author. E-mail: spade@mail.ntcb.edu.tw.

