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INEQUALITIES BETWEEN DIRICHLET AND NEUMANN

EIGENVALUES FOR DOMAINS IN SPHERES

Yi-Jung Hsu and Tai-Ho Wang

Abstract. Let M be a domain in the unit n-sphere with smooth boundary.
The purpose of this paper is to describe some inequalities between Dirichlet

and Neumann eigenvalues for M under certain convex restrictions on the

boundary. We prove that if the mean curvature of the boundary is nonpositive,

then the kth nonzero Neumann eigenvalue is less than or equal to the kth
Dirichlet eigenvalue for k = 1, 2, · · · . Furthermore, if the second fundamental
form of the boundary is nonpositive, then the (k+

[
n−1

2

]
)th nonzero Neumann

eigenvalue is less than or equal to the kth Dirichlet eigenvalue for k = 1, 2, · · · .

1. INTRODUCTION

LetM be an n-dimensional compact Riemannian manifold with smooth bound-

ary ∂M . We consider the eigenvalues of the Laplace-Beltrami operator acting on

functions. Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the corresponding Dirichlet eigenvalues
and 0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · the corresponding Neumann eigenvalues. We
shall compare the Dirichlet eigenvalues with the Neumann eigenvalues.

There are vast inequalities between Dirichlet and Neumann eigenvalues. For

M being a domain in a Riemannian manifold, it is a simple consequence of the

variation principle of the variation principle of the eigenvalue problems that

µk−1 ≤ λk

for k = 1, 2, · · · [4]. For M being a domain in the Euclidean space, significant

work in this direction has been obtained by Aviles [1], Friedlander [5], Payne [8],

Polya [9], and Levine and Weinberger [6]. The remarkable result of Friedlander

proved that for M being a domain in the Euclidean space,

µk ≤ λk
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for k = 1, 2, · · · [5]. This result gives the affirmative answer to a question raised
by Payne [8]. Mazzeo proved that the analogue of Friedlander’s result is valid for

all compact domains in a symmetric space of noncompact type [7]. However, these

inequalities are in general false for manifolds with boundary. Indeed,

µ1 > λ1

for a geodesic ball B(r) of radius r in the unit sphere if B(r) is bigger than a
semisphere [3].

The aim of this paper is to study domains in the unit n-sphere, an exceptional
case of the Mazzeo’s result. We agree that the second fundamental form (hij) of
the boundary of a geodesic ball in the unit sphere with radius r is (−(cot r)δij)
for convenience. Because of the natural connection between the unit sphere and the

Euclidean space, by solving a certain system of partial differetial equations, we can

adapt the technique used by Levine and Weinberger [6] for the task of constructing

trial functions. Based on the same scheme as Levine and Weinberger, we obtain the

following main result.

Theorem 1.1. Let M be a compact domain in the unit n-sphere with smooth

boundary. If the mean curvature h of the boundary ∂M is nonpositive, then

µk ≤ λk for k = 1, 2, · · · .

Moreover, if one of the equalities holds, then ∂M is a minimal hypersurface.

It is a simple fact that if a compact minimal hypersurface Σ of the unit sphere is
contained in a closed hemisphere then Σ is an equator. Thus the previous theorem

involves the case of domains which are not contained in any closed hemisphere. To

make the second assertion more clear, if we further assume that M is contained in

a closed hemisphere, then one of the equality holds if and only if M is the closed

hemisphere.

For Euclidean domains the resulting inequalities are better if additional convex

restrictions are imposed on the boundary [6]. For spherical domains little improve-

ment seems possible. Indeed, if we assume that the second fundamental form of

the boundary ∂M is nonpositive, then one of the equalities of the previous theo-

rem holds if and only if M is a closed hemisphere. However, the following result

shows that the resulting inequalities are better if we further assume that the second

fundamental form of the boundary is nonpositive.

Theorem 1.2. Let M be a compact domain in the unit n-sphere with smooth
boundary. If the second fundamental form is nonpositive, then

µk+n0 ≤ λk for k = 1, 2, · · · ,
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where n0 =
[

n−1
2

]
, the greatest integer smaller than or equal to n−1

2 .

Finally, the paper closes with two examples on the Dirichlet-Neumann inequali-

ties of the geodesic disks in the unit sphere. Because the geometric structure of the

geodesic disks is simple, we have better inequalities, µk+n−1 ≤ λk, in both cases.

It is a matter of interest to us that for every n, there are infinitely many eigenvalues
so that the equalities of Theorems 1.1 and 1.2 hold whenM is a closed hemisphere.

2. PRELIMINARIES

Let M be a compact domain in the unit n-sphere Sn with smooth boundary

∂M . We choose a local field of orthonormal frames e1, e2, · · · , en in M such that,

restricted to ∂M , the vectors e1, e2, · · · , en−1 are tangent to ∂M and the remaining

vector en is the outward unit normal vector on ∂M . In what follows, it is convenient

to agree to the following range of indices for differentiation:

1 ≤ i, j, k, · · · ≤ n − 1; 1 ≤ α, β, γ, · · · ≤ n.

With respect to the frame field of M chosen above, let ω1, ω2, · · · , ωn be the

corresponding field of dual coframes. Denote by (hij) the second fundamental
form of the boundary ∂M and by h =

∑
hii the mean curvature of the boundary

∂M . The hypersurface ∂M is said to be minimal if its mean curvature h vanishes
identically. Here we agree that the second fundamental form (hij) of the boundary
of a geodesic ball in the unit sphere with radius r is (−(cot r)δij) for convenience.

Let Φ be a function defined on M . We restrict Φ to ∂M and denote it by φ.
Then we have

Φi|∂M = φi,

Φn|∂M =
∂Φ
∂n

,

where ∂Φ
∂n denotes the directional derivative of Φ in the outward normal direction.

Taking exterior differentiation of both Φi and φi, we get

Φij |∂M = φij − hijΦn(2.1)

and

Φni|∂M = (Φn)i +
∑

hijφj .(2.2)

Let Y be a vector field in M , Y =
∑

Y αeα. Take the exterior differenti-

ation of Y α and define Y α
β by dY α +

∑
Y βωαβ =

∑
Y α

β ωβ . Take the exterior

differentiation of Y α
β and define Y α

βγ by dY α
β +

∑
Y γ

β ωγα+
∑

Y α
γβωγβ =

∑
Y α

βγωγ .
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Suppose that W is a vector field on M having the following properties (W will

be constructed in the next section):

1. Wα
β + W β

α = 0 for all α, β,

2. Wα
βγ + W β

αγ = 0 for all α, β, γ,
3.

∑
Wα

ββ = −(n − 1)Wα for all α.

Let λ be a Dirichlet eigenvalue of M , u an eigenfunction corresponding to λ,
and ϕ be the function given by ϕ = 〈W,∇u〉. Then we have

Lemma 2.1. ∆ϕ = −λϕ.

Proof. From the above properties of W , we have

∆ϕ =
∑

Wα
ββuα + 2

∑
Wα

β uαβ +
∑

Wαuαββ

= −
∑

(n − 1)Wαuα +
∑

Wα((∆u)α + (n − 1)uα)

=
∑

Wα(∆u)α

= −λϕ.

Here we have used the Ricci identity
∑

uβαα = (∆u)β + (n − 1)uβ.

Now we are in a position to construct our test function F . Let u1, u2, · · · , uk

be the first k normalized Dirichlet eigenfunctions corresponding to the eigenvalues
λ1, λ2, · · · , λk, respectively. Let F be the function defined by F = T + Z, where

T = 〈W,∇uk〉, Z =
∑k

j=1 cju
j , and c1, c2, · · · , ck are constants. Using Stokes’s

theorem and Lemma 2.1, we have

∫

M
|∇F |2 = λk

∫

M
F 2 −

∫

M
(λkZ

2 + Z∆Z) +
∫

∂M
T

∂T

∂n
.(2.3)

Since

−
∫

M
(λkZ

2 + Z∆Z) = −λk

∑
cicj

∫

M
uiuj +

∑∫

M
λiu

iuj ,

the second term in the right-hand side of (2.3) is nonpositive,

−
∫

M
(λkZ

2 + Z∆Z) =
∑

(λi − λk)c2
i ≤ 0,(2.4)
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and it is zero if and only if ∆Z + λkZ = 0 in M .

Now we turn our attention to the third term on the right-hand side of (2.3). This

term plays a crucial role in our construction. For simplicity, we shall replace uk by

u. Since u is the kth Dirichlet eigenfunction, by (2.1) and (2.2), we get unn = h∂u
∂n

and T |∂M = Wnun. By the definition of
∂T
∂n and taking exterior differentiation of

T , we have
∂T

∂n

∣∣∣∣
∂M

=
∑

W iuin +
∑

Wnunn.

Substituting these into the integral yields

∫

∂M

T
∂T

∂n
=

∫

∂M

[
1
2
W iWn(u2

n)i + h(Wn)2
(

∂u

∂n

)2
]

.

By the Stokes’s theorem, the first term on the right-hand side of the above equation

can be transformed into
∫

∂M

∑
W iWn(u2

n)i = −
∫

∂M
div(WnW )

(
∂u

∂n

)2

.

Using the properties of W , we have d(W iWn) =
∑

WnW j
i ωj −

∑
WnW jωji +∑

W iWn
j ωj +

∑
hij(Wn)2ωj −

∑
hjlW

iW jωl and

div(WnW ) = h(Wn)2 − hijW
iW j + W iWn

i .

Putting this transformation together with the integral, the third term is adapted for

use in the next section

∫

∂M
T

∂T

∂n
=

1
2

∫

∂M
(h(Wn)2 + hijW

iW j − W iWn
i )

(
∂u

∂n

)2

.(2.5)

3. CONVEX CONDITIONS

In this section, we first construct a family of vector fields W which satisfies

the properties stated in Section 2. We then make some assumptions concerning

the convexity of the boundary which imply that the integral in equation (2.5) is

nonpositive.

Consider the vector field W ,

W = (x, a)b− (x, b)a,

where a, b are mutually orthogonal constant vectors in Rn+1 and (·, ·) is the usual
inner product on Rn+1. Using the structure equations of Sn, we have

Lemma 3.1.
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1. Wα = (x, a)(eα, b)− (eα, a)(x, b) for all α,

2. Wα
β = (eβ , a)(eα, b)− (eα, a)(eβ, b) for all α, β,

3. Wα
βγ = W βδαγ − Wαδβγ for all α, β, γ.

It follows that W satisfies the properties stated in Section 2. Substituting the

identities of the above lemma into equation (2.5), we can rewrite equation (2.5) in

the following form

∫

∂M
T

∂T

∂n
=

1
2
I(a, b),(3.1)

where

I(a, b) =
∫

∂M

[
h(Wn)2 + hijW

iW j + |a|2(x, b)(en, b) + |b|2(x, a)(en, a)
](

∂u

∂n

)2

,

Wn = (x, a)(en, b)− (en, a)(x, b) and W i = (x, a)(ei, b)− (ei, a)(x, b).

Now we want to find conditions under which the integral of (3.1) is nonpositive.

We prove our first crucial lemma as follows.

Lemma 3.2. If the mean curvature h of ∂M is nonpositive, then there exist
mutually orthogonal unit constant vectors a0, b0 in R

n+1 such that I(a0, b0) ≤ 0.

Moreover, if the equality holds, then ∂M is a minimal hypersurface.

Proof. First of all, consider the following function Ψ defined on Sn:

Ψ(a)= trace
b,b⊥a

I(a, b)

=
∫

∂M
[hij(2(x, a)2δij + (en, a)2δij + (ei, a)(ej, a))

+(n − 1)(x, a)(en, a)]
(

∂u

∂n

)2

,

where the trace is carried out over all b, b ⊥ a. Let ∆S
n

a be the Laplace-Beltrami

operator of the unit sphere Sn with respect to a. Then we have

1
2
∆S

n

a Ψ(a) = −(n + 1)Ψ(a) + 4
∫

∂M
h

(
∂u

∂n

)2

.

Since Sn is compact, Ψ attains its minimum, say, at a0 ∈ Sn. Then ∆S
n

a Ψ(a0) ≥ 0,
and we have

Ψ(a0) ≤
4

n + 1

∫

∂M
h

(
∂u

∂n

)2

,
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which is nonpositive. Choose a constant unit vector b0 in R
n+1 which is orthog-

onal to a0, and minimizes the quadratic form I(a0, ·) restricted to the orthogonal
complement of a0. Since Ψ(a0) is nonpositive, I(a0, b0) is nonpositive. For our
choice of a0 and b0, if the equality holds, then

I(a0, b) = 0

for all b ∈ Sn, b ⊥ a0. In particular, we have Ψ(a0) = 0, and
∫
∂M h(∂u

∂n)2 = 0.
Since ∂u

∂n cannot vanish on any open subset of ∂M , h must be identically zero on
∂M .

The following lemma is necessary for the proof of Theorem 1.2 .

Lemma 3.3. If the second fundamental form of ∂M is nonpositive, then there

exists a constant unit vector a0, and a subspace V0 of R
n+1 of dimension n0 + 1

which is orthogonal to a0 such that I(a0, b) ≤ 0 for all b ∈ V0, where n0 is given

as in Theorem 1.2.

Proof. Define a quadratic form J on Rn+1 by

J(a) =
∫

∂M
(x, a)(en, a)

(
∂u

∂n

)2

.

Let a0 be a constant unit vector which minimizes J, J(a0) = mina∈Sn J(a). Since
the trace of J is zero, J(a0) is nonpositive. Let b1, b2, · · · , bn be a family of unit

eigenvectors of the quadratic form I(a0, ·) defined on the orthogonal complement
of a0. Rearranging the eigenvalues of I(a0, ·) if necessary, we may assume that

I(a0, b1) ≤ I(a0, b2) ≤ · · · ≤ I(a0, bn).

Since the second fundamental form of ∂M is nonpositive, we have

I(a0, b1) + I(a0, b2) + · · ·+ I(a0, bn0) − Ψ(a0)
≥ J(b1) + J(b2) + · · ·+ J(bn0) + n0J(a0) − (n − 1)J(a0)
≥ (2n0 − (n − 1))J(a0)
≥ 0,

where Ψ(·) was defined in the proof of Lemma 3.2. This implies that

I(a0, bn0+1) + I(a0, bn0+2) + · · ·+ I(a0, bn) ≤ 0.

In particular, we have I(a0, bn0+1) ≤ 0. Let V0 be the linear subspace spanned by

b1, b2, · · ·bn0+1. Then V0 is just the desired subspace.
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4. PROOFS OF THE MAIN THEOREMS

Now we are in the position to prove Theorem 1.1. Using the constant vectors

a0 and b0 given in Lemma 3.2, let W be the vector field corresponding to the

constant vector b = tb0, T = 〈W,∇uk〉, Z =
∑k

j=1 cju
j and F = T + Z.

Let v0, v1, · · · , vk−1 be the first k Neumann eigenfunctions corresponding to the
eigenvalues µ0, µ1, · · · , µk−1, respectively. Consider the following linear system of

equations

∫

M
Fv0 =

∫

M
Fv1 = · · · =

∫

M
Fvk−1 = 0.(4.1)

The system has k linear equations with k + 1 variables t, c1, · · · , ck. There exist

k +1 constants t0, c
0
1, · · · , c0

k, not all of which are zero, satisfying (4.1). When this

is done, by (2.3) and (2.4), we have

∫

M
|∇F |2 ≤ λk

∫

M
F 2 +

∫

∂M
T

∂T

∂n
.(4.2)

Lemma 3.2 implies that ∫

M
|∇F |2 ≤ λk

∫

M
F 2.

If F does not vanish identically on M , we then have

µk ≤
∫
M |∇F |2∫

M F 2
≤ λk,(4.3)

that is, the kth nonzero Neumann eigenvalue is less than or equal to the kth Dirichlet

eigenvalue.

Suppose that F vanishes everywhere on M . We observe that t0 is not zero.
Indeed, if t0 = 0, since 0 = T = −Z on M , Z vanishes identically on M . This

means that all c’s are zero, a contradiction.
Suppose that F vanishes everywhere on M . Then T = −Z on M, and hence

T = 0 on ∂M. Because of the definition of T and uk = 0 on ∂M, we have

(x, a0)(en, b0) − (x, b0)(en, a0) = 0 on ∂M,

since t0 is not zero. For our choice of b0, we then have

∫

∂M
Tb

∂Tb

∂n
= 0
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for all b ∈ Rn+1, b ⊥ a0, where Tb is the function corresponding to the vector field

Wb = (x, a0)b − (x, b)a0. If all the corresponding functions Fb = Tb + Z vanish

identically on M , for all b ∈ Sn, b ⊥ a0, then we have

(x, a0)(en, b)− (x, b)(en, a0) = 0 on ∂M(4.4)

by the same argument as above. Multiplying equation (4.4) by (en, b) and taking
the trace of the resulting equation with respect to b, b ⊥ a0, we have (x, a0) = 0 on
∂M, and conclude that M is a closed hemishpere. The spectrum of the Dirichlet

and Neumann eigenvalue problems for the closed hemisphere are well-known (see

Example 1 in the next section). In this case, the assertion follows. Thus we may

assume that there is a resulting function Fb not identically zero for some b ∈ Sn,

b ⊥ a0. Consequently we have the inequalities (4.3) for k = 1, 2, · · · .
To see what happens as µk = λk, we first observe that if F does not vanish

identically on M then t0 is not zero. Indeed, if t0 = 0, then F = Z. From (2.4),
Z, and therefore F , is a Dirichlet eigenfunction with eigenvalue λk. On the other

hand, since F satisfies conditions of the variational characterization of µk , F is also

a Neumann eigenfunction with eigenvalue µk , a contradiction.

Finally, if µk = λk, since t0 is not zero, then in either case of F , the testing
function corresponding to the vectors a0 and b0, vanishing or otherwise, we have

I(a0, b0) = 0.

It follows from Lemma 3.2 that ∂M is a minimal hypersurface. This completes the

proof of Theorem 1.1.

The proof of Theorem 1.2 is essentially a slight modification of that of Theorem

1.1 except that we choose new a0 from Lemma 3.3. We include the proof here

for completeness. Using the constant vector a0 and the linear subspace V0 given

in Lemma 3.3, let W be the vector field related to b ∈ V0, b =
∑n0+1

i=1 tibi, T =
〈W,∇uk〉, Z =

∑k
j=1 cju

j and F = T + Z. Then there exist k + n0 + 1 constants
t01, · · · , t0n0+1; c

0
1, · · · , c0

k, not all of which are zero, satisfying the following linear

system of equations

∫

M
Fv0 =

∫

M
Fv1 = · · · =

∫

M
Fvk+n0−1 = 0,(4.5)

where v0, v1, · · · , vk+n0−1 are the first k+n0 Neumann eigenfunctions correspond-

ing to the eigenvalues µ0, µ1, · · · , µk+n0−1, respectively. Pick b0 =
∑n0+1

i=1 t0i bi. It
follows from (2.3) and (2.4) that

∫

M
|∇F |2 ≤ λk

∫

M
F 2 +

∫

∂M
T

∂T

∂n
.
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Lemma 3.3 implies that ∫

M
|∇F |2 ≤ λk

∫

M
F 2.

If F does not vanish identically on M , we then have

µk+n0 ≤
∫
M |∇F |2∫

M F 2
≤ λk,(4.6)

that is, the (k + n0)th nonzero Neumann eigenvalue is less than or equal to the kth

Dirichlet eigenvalue.

Suppose that F vanishes everywhere on M . We observe that b0 is not zero.

Indeed, if b0 = 0, since T = −Z on M , Z vanishes identically on M . This means

that all t’s and c’s are zero, and we get a contradiction. Furthermore, if F vanishes

everywhere on M, then T = −Z on M, and hence T = 0 on ∂M. Because of the
definition of T and uk = 0 on ∂M, we have

(x, a0)(en, b0) − (x, b0)(en, a0) = 0 on ∂M.

This means that (x, b0) = s(x, a0) and (en, b0) = s(en, a0) for some function s

defined on ∂M. We then have

0 =
∫

∂M

T
∂T

∂n

=
1
2
I(a0, b0)

≤ 1
2

∫

∂M
(s2 + |b0|2)(x, a0)(en, a0)

(
∂u

∂n

)2

≤ 0.

Since b0 6= 0, this gives

∫

∂M
(x, a0)(en, a0)

(
∂u

∂n

)2

= 0.

For our choice of a0, we have

∫

∂M
(x, a)(en, a)

(
∂u

∂n

)2

= 0

for all a ∈ Rn+1. For the second fundamental form of ∂M being nonpositive, we

get ∫

∂M
Ta

∂Ta

∂n
≤ 0,
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where Ta is the function corresponding to the vector fieldWa = (x, a0)a−(x, a)a0.

If the corresponding functions F = Ta + Z vanish identically on M for all a ∈ Sn,

a ⊥ a0, then we have

(x, a0)(en, a)− (x, a)(en, a0) = 0 on ∂M(4.7)

by the same argument as above. Multiplying equation (4.7) by (en, a) and taking
the trace of the resulting equation with respect to a, a ⊥ a0, we have (x, a0) = 0
on ∂M and M is a closed hemishpere. Since the assertion holds for the spectrum

of the closed hemisphere (see Example 1 in the next section), we may assume that

there is a resulting function F not identically zero for some a, a ⊥ a0. Consequently

we have the desired inequality (4.6). This completes the proof of Theorem 1.2.

Example 5.1. (The closed hemisphere) The spectrum of the Dirichlet and

Neumann eigenvalue problems for the closed hemisphere of the unit n-sphere are
well-known (see [2]). The Dirichlet eigenvalues are given by m(n+m−1) and the
Neumann eigenvalues are given by (m−1)(n+m−2), both of which have the same
multiplicity

(n+m−2
n−1

)
form = 1, 2, · · · . It then follows that the equality of Theorem

1.1, µk = λk, holds for all k =
(
n−1
n−1

)
+

(
n

n−1

)
+ · · ·+

(
n+l−2
n−1

)
, l = 1, 2, · · · . There

are also infinitely many eigenvalues so that the equality of Theorem 1.2 holds. In

fact, µk+[ n−1
2 ] = λk for k = 1 or

(
n−1
n−1

)
+

(
n

n−1

)
+ · · ·+

(
n+l−1
n−1

)
−

[
n−1

2

]
≤ k ≤

(
n−1
n−1

)
+

(
n

n−1

)
+ · · ·+

(
n+l−1
n−1

)
for l = 1, 2, · · · . Furthermore, the best inequalities

in this case can be written as µk+n−1 ≤ λk for all k = 1, 2, · · · .

Example 5.2. (The closed geodesic ball with radius r < π
2 ) Let B(r) be

a geodesic ball in the unit n-sphere with radius r, 0 < r < π
2 . Assume that

the center of B(r) is at the north pole. Let E1, E2, · · · , En+1 be the standard

basis for Rn+1. Then the outer normal en of the boundary of B(r) is given by
en sin r = x cos r − En+1, where x is the position vector. The second fundamental
form (hij) and the mean curvature h of the boundary of B(r) are (−(cot r)δij)
and −(n − 1) cotr, respectively. Choose En+1 as the constant unit vector a in the

bilinear form I(a, b). Then the integrand of the bilinear form I(a, b) is negative
since

h(Wn)2 + hijW
iW j + (x, b)(en, b) + (x, a)(en, a)

= − cot r(1 + (n − 2) csc2 r(x, b)2)
< 0

for all unit vectors b, b ⊥ a. Using the same technique as the one in the proof of

the previous theorems, we have µk+n−1 < λk for k = 1, 2, . . . .
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