PRIME RINGS WITH ANNIHILATOR CONDITIONS ON POWER VALUES OF DERIVATIONS ON MULTILINEAR POLYNOMIALS

Vincenzo De Filippis

Abstract

Let R be a prime algebra over a commutative ring K, d a nonzero derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over K in n non-commuting variables, $a \in R$ and $m \geq 1$ a fixed integer. Suppose that $f\left(x_{1}, . ., x_{n}\right)$ is not central on R. If $a\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)\right)^{m}=0$, for any $r_{1}, . ., r_{n} \in R$, then $a=0$.

Throughout this paper R always denotes a prime ring with center $Z(R)$ and with extended centroid C, Q its Martindale quotient ring. We will consider some related problems concerning annihilators of power values of derivations in prime rings.

In [2] M. Bresar proved that if R is a semiprime ring, d a nonzero derivation of R and $a \in R$ such that $a d(x)^{m}=0$, for all $x \in R$, where m is a fixed integer, then $a d(R)=0$ when R is $(m-1)$!-torsion free. In [9] T. K. Lee and J. S. Lin proved Bresar's result whitout the assumption of $(m-1)$!-torsion free on R. They studied the Lie ideal case and, for the prime case, they showed that if R is a prime ring with a derivation $d \neq 0, L$ a Lie ideal of $R, a \in R$ such that $a d(u)^{m}=0$, for all $u \in L$, where m is fixed, then $\operatorname{ad}(L)=0$ unless the case when $\operatorname{char}(R)=2$ and $\operatorname{dim}_{C} R C=4$. In addition, if $[L, L] \neq 0$, then $\operatorname{ad}(R)=0$.

Recently in [3] C. M. Chang and T. K. Lee established a unified version of the previous results for prime rings. More precisely they proved the following theorem: let R be a prime ring, ϱ a nonzero right ideal of R, d a nonzero derivation of R, $a \in R$ such that $a d([x, y])^{m} \in Z(R)\left(d([x, y])^{m} a \in Z(R)\right)$. If $[\varrho, \varrho] \varrho \neq 0$ and $\operatorname{dim}_{C} R C>4$, then either $a d(\varrho)=0(a=0$ resp.) or d is the inner derivation induced by some $q \in Q$ such that $q \varrho=0$.

Here we shall continue the investigation about the properties of a subset S of R related to its left annihilator $A n n_{R}(S)=\{x \in R: x S=(0)\}$. More precisely

[^0]we shall study the case when $S=\left\{d\left(f\left(x_{1}, . ., x_{n}\right)\right)^{m}: x_{1}, . ., x_{n} \in R\right\}$, where $f\left(x_{1}, . ., x_{n}\right)$ is a multilinear polynomial in n non-commuting variables and m is a fixed integer. We shall prove:

Theorem 1. Let R be a prime algebra over a commutative ring K, d a nonzero derivation of $R, f\left(x_{1}, . ., x_{n}\right)$ a multilinear polynomial over K in n non-commuting variables, $a \in R, m \geq 1$ a fixed integer. Suppose that $f\left(x_{1}, . ., x_{n}\right)$ is not central on R. If $a\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)\right)^{m}=0$, for any $r_{1}, . ., r_{n} \in R$, then $a=0$.

We first dispose of the case that R is not a domain. In fact, if R is a domain, by supposing $a \neq 0$, we get $\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)\right)^{m}=0$, for any $r_{1}, . ., r_{n} \in R$. In this situation, by [13], $f\left(x_{1}, . ., x_{n}\right)$ must be central on R.

In all that follows let $T=Q *_{C} C\{X\}$ be the free product over C of the C-algebra Q and the free C-algebra $C\{X\}$, with X the countable set consisting of non-commuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}, \ldots$. We refer the reader to [4] for the definitions and the related properties of these objects. Moreover we must remark that the main tool will be the theory of differential identities, initiated by Kharchenko in [6].

Remark 1. Recall that d can be extended uniquely to a derivation on Q [8] which will be also denoted by d. Since by [8] R and Q satisfy the same differential identities, we have that $a\left(d\left(f\left(x_{1}, . ., x_{n}\right)\right)\right)^{m}=0$ also in Q. Moreover Q is prime, by the primeness of R, and replacing R by Q we may assume, without loss of generality, $C=Z(R)$ and R is a C-algebra centrally closed.

From now on let K be a commutative ring, R a prime K-algebra, $f\left(x_{1}, . ., x_{n}\right)$ a multilinear polynomial over K in n non-commuting variables, $a \in R$ and $m \geq 1$.

Moreover $f\left(x_{1}, . ., x_{n}\right)$ is not central on R and, for all $r_{1}, . ., r_{n} \in R, a\left(d\left(f\left(r_{1}, .\right.\right.\right.$. , $\left.\left.\left.r_{n}\right)\right)\right)^{m}=0$. We will use the following notation:

$$
f\left(x_{1}, . ., x_{n}\right)=x_{1} x_{2} . x_{n}+\sum_{\sigma \in S_{n}} \alpha_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)} .
$$

We begin with the following:
Lemma 1. If d is an outer derivation of R then $a=0$.
Proof. Suppose on the contrary that $a \neq 0$. We denote by $f^{d}\left(x_{1}, . ., x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, . ., x_{n}\right)$ by replacing each coefficient α_{σ} with $\delta\left(\alpha_{\sigma}\right.$. 1). Thus we write $d\left(f\left(x_{1}, . ., x_{n}\right)\right)=f^{d}\left(x_{1}, . ., x_{n}\right)+\sum_{i} f\left(x_{1}, . ., d\left(x_{i}\right), . ., x_{n}\right)$. Since R satisfies the generalized differential identity

$$
a\left(d\left(f\left(x_{1}, . ., x_{n}\right)\right)\right)^{m}=
$$

$$
a\left(f^{d}\left(x_{1}, . ., x_{n}\right)+\sum_{i} f\left(x_{1}, . ., d\left(x_{i}\right), . ., x_{n}\right)\right)^{m}
$$

and d is an outer derivation, by [6] R satisfies the generalized polynomial identity

$$
a\left(f^{d}\left(x_{1}, . ., x_{n}\right)+\sum_{i} f\left(x_{1}, . ., y_{i}, . ., x_{n}\right)\right)^{m}
$$

and in particular R satisfies $a\left(f\left(y_{1}, x_{2}, . ., x_{n}\right)\right)^{m}$. As a consequence of [5], since R is prime and $f\left(x_{1}, . ., x_{n}\right)$ is not an identity for R, we get $a=0$, a contradiction.

In all that follows we will consider the only case when d is an inner derivation in R. This means that there exists $q \in R$ such that $a\left[q, f\left(r_{1}, . ., r_{n}\right)\right]^{m}=0$, for any $r_{1}, . ., r_{n} \in R$.

Lemma 2. If R does not satisfy any non-trivial generalized polynomial identity, then $a=0$.

Proof. Since R does not satisfy any non-trivial generalized polynomial identity, we have that

$$
a\left[q, f\left(x_{1}, . ., x_{n}\right)\right]^{m}
$$

is the zero element in the free product $T=Q *_{C} C\left\{x_{1}, . ., x_{n}\right\}$, that is

$$
a\left[q, f\left(x_{1}, . ., x_{n}\right)\right]^{m-1}\left(q f\left(x_{1}, . ., x_{n}\right)-f\left(x_{1}, . ., x_{n}\right) q\right)=0 \in T
$$

Since $q \notin C$, it follows that $a\left[q, f\left(x_{1}, . ., x_{n}\right)\right]^{m-1} f\left(x_{1}, . ., x_{n}\right) q=0 \in T$ and so $a\left[q, f\left(x_{1}, . ., x_{n}\right)\right]^{m-1}=0 \in T$. Continuing this process, we obtain that $a=0$.

Lemma 3. If R is a dense ring of linear transformations over an infinite dimensional right vector space V over a division ring D, then $a=0$.

Proof. Since $f\left(x_{1}, . ., x_{n}\right)$ is a multilinear polynomial and $a\left[q, f\left(r_{1}, . ., r_{n}\right)\right]^{m}=$ 0 , for all $r_{1}, . ., r_{n} \in R$, by [13, Lemma 2] we have $a[q, r]^{m}=0$, for all $r \in R$. Hence $a=0$ follows from [9, Theorem 1].

Now we are ready to prove the following:
Theorem 1. Let R be a prime K-algebra, d a nonzero derivation of R, $f\left(x_{1}, . ., x_{n}\right)$ a multilinear polynomial over K in n non-commuting variables, $a \in R$ and $m \geq 1$. Suppose that $f\left(x_{1}, . ., x_{n}\right)$ is not central on R. If $a\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)^{m}=\right.$ 0 , for any $r_{1}, . ., r_{n} \in R$, then $a=0$.

Proof. By Lemma 1, we assume that d is the inner derivation induced by $q \in R$, moreover by remark $1, C=Z(R)$ and R is a C-algebra centrally closed, that is $R=R C$. If R does not satisfy any non-trivial generalized polynomial identity then, by Lemma $2, a=0$. Thus we may suppose that R satisfies a non-trivial generalized polynomial identity. By Martindale's theorem in [11], R is a primitive ring which is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. If $\operatorname{dim}_{D} V=\infty$, then, by Lemma 3, we get the conclusion required.

Therefore consider the case $\operatorname{dim}_{D}(V)=k$, with k finite positive integer ≥ 2, because R is not a domain. In this condition R is a simple ring which satisfies a non-trivial generalized polynomial identity. By [7, Lemma 2; 12 theorem 2.3.29] $R \subseteq M_{t}(F)$, for a suitable field F and $t \geq 2$, moreover $M_{t}(F)$ satisfies the same generalized identity of R. Since $f\left(x_{1}, . ., x_{n}\right)$ is not central on R then, by [10], there exist $u_{1}, . ., u_{n} \in M_{t}(F)$, such that $f\left(u_{1}, . ., u_{n}\right)=\beta e_{i j}$, for some distinct i, j, with $\beta \in F-\{0\}$ and $e_{i j}$ the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. Moreover, since the set $\left\{f\left(x_{1}, . ., x_{n}\right): x_{1}, . ., x_{n} \in M_{t}(F)\right\}$ is invariant under the action of all F-automorphisms of $M_{t}(F)$, then for any $i \neq j$ there exist $r_{1}, . ., r_{n} \in M_{t}(F)$ such that $f\left(r_{1}, . ., r_{n}\right)=\beta e_{i j}$.

Suppose on the contrary that the matrix $a=\sum a_{h l} e_{h l}$ is not zero. Let $q=$ $\sum q_{h l} e_{h l}$, with $q_{h l} \in F$ and fix i and $j \neq i$. Then

$$
\begin{aligned}
0 & =a\left[q, f\left(r_{1}, . ., r_{n}\right)\right]^{m}=a\left(q f\left(r_{1}, . ., r_{n}\right)-f\left(r_{1}, . ., r_{n}\right) q\right)^{m} \\
& =a\left(q \beta e_{i j}-\beta e_{i j} q\right)^{m} .
\end{aligned}
$$

In particular, right multiplying by $e_{i j} q$ we have

$$
0=a\left(q \beta e_{i j}-\beta e_{i j} q\right)^{m} e_{i j} q=a(-\beta)^{m}\left(e_{i j} q\right)^{m+1} .
$$

Then, for all $j \neq i$, either $q_{j i}=0$ or the i-th column of the matrix a is zero, a desired contradiction.

Case 1: $t=2$.

Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central on R, by [10, lemmas 2 and 9$]$, there exists a sequence of matrices $r=\left(r_{1}, . ., r_{n}\right)$ such that $f(r)=\beta e_{21}$ is not zero.

Suppose that q is not diagonal, say $q_{12} \neq 0$, then the 2-nd column of a is zero. In other words the following hold:

$$
\begin{gathered}
q=\left[\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right], \quad q_{12} \neq 0 \\
a=\left[\begin{array}{ll}
a_{11} & 0 \\
a_{21} & 0
\end{array}\right]
\end{gathered}
$$

$$
f(r)=\left[\begin{array}{ll}
0 & 0 \\
\beta & 0
\end{array}\right] .
$$

By calculation it follows that

$$
[q, f(r)]^{2 m}=\left[\begin{array}{cc}
\left(q_{12} \beta\right)^{2 m} & 0 \\
0 & \left(q_{12} \beta\right)^{2 m}
\end{array}\right]
$$

Then $0=a[q, f(r)]^{2 m}=a\left(q_{12} \beta\right)^{2 m}=0$ and so $a=0$.
Moreover we get the same conclusion if suppose $q_{21} \neq 0$. Thus we conclude that if $k=2$, either q is a diagonal matrix or $a=0$.

Case 2: $t \geq 3$.
Also in this case we want to prove that if a is not zero then q is a diagonal matrix. Suppose there exists $q_{j i} \neq 0, i \neq j$, then the i-th column of a is zero. For all $l \neq i, j$ let $\varphi_{l i} \in A u t_{F}\left(M_{t}(F)\right)$ such that $\varphi_{l i}(x)=\left(1+e_{l i}\right) x\left(1-e_{l i}\right)$. Consider the following valutations of $f\left(x_{1}, . ., x_{n}\right)$:

$$
f(r)=\gamma e_{i j}, \quad f(s)=\varphi_{l i}(f(r))=\gamma e_{i j}+\gamma e_{l j}, \quad \gamma \neq 0 .
$$

Since the i-th column of a is zero, by $a[q, f(s)]^{m}=0$ and right multiplying by $e_{i j}+e_{l j}$, we have:

$$
\begin{equation*}
0=a[q, f(s)]^{m}\left(e_{i j}+e_{l j}\right)=a(-\gamma)^{m}\left(q_{j i}+q_{j l}\right)^{m}\left(e_{i j}+e_{l j}\right) \tag{1}
\end{equation*}
$$

Notice that if $q_{j i}+q_{j l}=0$, then $q_{j l}=-q_{j i} \neq 0$ and, as in the first part of the proof, the l-th column of a is zero. On the other hand, if $q_{j i}+q_{j l} \neq 0$, by (1), for all $k, a_{k l}=-a_{k i}$ and, since the i-th column of a is zero, it follows again that the l-th one is also zero. Hence we can say that the matrix a has at most one nonzero column, the j-th one.

Thus $a=a e_{j j}$ and so

$$
\begin{aligned}
0 & =a[q, f(r)]^{m}=a e_{j j}\left[q, \gamma e_{i j}\right]^{m}=a e_{j j}\left(q \gamma e_{i j}-\gamma e_{i j} q\right)\left[q, \gamma e_{i j}\right]^{m-1} \\
& =a e_{j j} q \gamma e_{i j}\left[q, \gamma e_{i j}\right]^{m-1}=\ldots . .=a e_{j j}\left(q \gamma e_{i j}\right)^{m}=a\left(q_{j i} \gamma\right)^{m} .
\end{aligned}
$$

Hence $a=0$.
The previous two cases show that if a is the nonzero matrix then q is a diagonal one, $q=\sum q_{k k} e_{k k}$. Now let $\varphi_{i j} \in \operatorname{Aut}_{F}\left(M_{t}(F)\right)$ such that $\varphi_{i j}(x)=$ $\left(1+e_{i j}\right) x\left(1-e_{i j}\right)$, with $i \neq j$. Since $0=\varphi_{i j}(a)\left[\varphi_{i j}(q), \varphi\left(f\left(x_{1}, . ., x_{n}\right)\right)\right]^{m}=$ $\varphi_{i j}(a)\left[\varphi_{i j}(q), f\left(y_{1}, . ., y_{n}\right)\right]^{m}$ and $a \neq 0$, we have that $\varphi(q)$ is also diagonal. On the other hand $\varphi_{i j}(q)=q+\left(q_{j j}-q_{i i}\right) e_{i j}$, i.e. $q_{j j}=q_{i i}$ and q is central in $M_{t}(F)$, which is a contradiction. Therefore must be $a=0$.

Acknowledgement

The author wishes to thank the referee; by following his valuable suggestions, he has been able to shorten the proof of Lemmas 2 and 3 and to correct the proof of case 2 in Theorem 1.

References

1. K. I Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York, 1996.
2. M. Bresar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83-88.
3. C. M. Chang and T. K. Lee, Annihilators of power values in prime rings, Comm. in Algebra, 26(7) (1998), 2091-2113.
4. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Mat. Soc. 103(3), (1988), 723-728.
5. C. L. Chuang and T. K. Lee, Rings with annihilators conditions on multilinear polynomials, Chin. J. Math. 24(2) (1996), 177-185.
6. V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168.
7. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118(3) (1993), 731-734.
8. T. K. Lee, Semiprime ring with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
9. T. K. Lee and J. S. Lin, A result on derivations, Proc. Amer. Math. Soc. 124(6) (1996), 1687-1691.
10. U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103.
11. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
12. L. Rowen, Polynomial identities in Ring Theory, Pure and Applied Math. vol. 84 (1980), Academic Press, New York.
13. T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq. 3(4) (1996), 369-378.

Dipartimento di Matematica, Universitá di Messina
Salita Sperone, contrada Papardo
98166, Messina, ITALIA.
E-mail: enzo@dipmat.unime.it

[^0]: Received June 10, 1999; revised Oct. 19, 1999.
 Communicated by Pjek-Hwee Lee.
 2000 Mathematics Subject Classification: 16N60, 16W25.
 Key words and phrases: Prime rings, Differential identity, generalieed polynomial idenntity.

