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PRIME RINGS WITH ANNIHILATOR CONDITIONS ON POWER
VALUES OF DERIVATIONS ON MULTILINEAR POLYNOMIALS

Vincenzo De Filippis

Abstract. Let R be a prime algebra over a commutative ring K, d a
nonzero derivation of R, f(x1,..,2,) a multilinear polynomial over K in
n non-commuting variables, a € R and m > 1 a fixed integer. Suppose
that f(x1,..,2,) is not central on R. If a(d(f(r1,..,70)))™ = 0, for any
r1,..,7n € R, then a = 0.

Throughout this paper R always denotes a prime ring with center Z(R) and
with extended centroid C, @ its Martindale quotient ring. We will consider some
related problems concerning annihilators of power values of derivations in prime
rings.

In [2] M. Bresar proved that if R is a semiprime ring, d a nonzero derivation
of R and a € R such that ad(z)™ = 0, for all z € R, where m is a fixed integer,
then ad(R) = 0 when R is (m — 1)!-torsion free. In [9] T. K. Lee and J. S. Lin
proved Bresar’s result whitout the assumption of (m — 1)!-torsion free on R. They
studied the Lie ideal case and, for the prime case, they showed that if R is a prime
ring with a derivation d # 0, L a Lie ideal of R, a € R such that ad(u)™ = 0, for
all w € L, where m is fixed, then ad(L) = 0 unless the case when char(R) = 2
and dim¢RC = 4. In addition, if [L, L] # 0, then ad(R) = 0.

Recently in [3] C. M. Chang and T. K. Lee established a unified version of the
previous results for prime rings. More precisely they proved the following theorem:
let R be a prime ring, ¢ a nonzero right ideal of R, d a nonzero derivation of R,
a € R such that ad([z,y])™ € Z(R) (d([z,y])"a € Z(R)). If [0, 0]0 # 0 and
dime RC' > 4, then either ad(g) = 0 (¢ = 0 resp.) or d is the inner derivation
induced by some ¢ € @ such that go = 0.

Here we shall continue the investigation about the properties of a subset S of
R related to its left annihilator Anng(S) = {z € R : xS = (0)}. More precisely
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we shall study the case when S = {d(f(z1,..,2,))™ : x1,..,2, € R}, where
f(z1,..,x,) is a multilinear polynomial in n non-commuting variables and m is a
fixed integer. We shall prove:

Theorem 1. Let R be a prime algebra over a commutative ring K, d a nonzero
derivation of R, f(x1, .., xn) a multilinear polynomial over K in n non-commuting
variables, a € R, m > 1 a fixed integer. Suppose that f(x1,..,2,) is not central
on R. If a(d(f(r1,..,rn)))™ =0, for any ri,..,r, € R, then a = 0.

We first dispose of the case that R is not a domain. In fact, if R is a domain,
by supposing a # 0, we get (d(f(r1,..,7)))™ = 0, for any rq,..,7, € R. In this
situation, by [13], f(z1, .., x,) must be central on R.

In all that follows let 7' = @ *c C{X} be the free product over C' of the
C-algebra @) and the free C-algebra C{X }, with X the countable set consisting
of non-commuting indeterminates z1,xs3,...,Tn,.... We refer the reader to [4]
for the definitions and the related properties of these objects. Moreover we must
remark that the main tool will be the theory of differential identities, initiated by
Kharchenko in [6].

Remark 1. Recall that d can be extended uniquely to a derivation on @ [8]
which will be also denoted by d. Since by [8] R and @ satisfy the same differential
identities, we have that a(d(f(z1,..,2,)))™ = 0 also in Q). Moreover @ is prime,
by the primeness of R, and replacing R by () we may assume, without loss of
generality, C = Z(R) and R is a C-algebra centrally closed.

From now on let K be a commutative ring, R a prime K-algebra, f(z1, .., )
a multilinear polynomial over K in n non-commuting variables, a € R and m > 1.

Moreover f(z1, .., ) is not central on R and, for all vy, .., 7, € R, a(d(f(r1, ..,
r,)))™ = 0. We will use the following notation:

flz1, .y xn) = 12920 + Z Qo T (1)L (2) T (n)-
oc€Sh

We begin with the following:
Lemma 1. If d is an outer derivation of R then a = 0.

Proof. Suppose on the contrary that a # 0. We denote by f%(x1,..,z,) the
polynomial obtained from f(z1, .., z,) by replacing each coefficient v, with §(c, -
1). Thus we write d(f(x1,..,2,)) = fHw1,..,2,) + Yo flwr, o d(xg), .. ).
Since R satisfies the generalized differential identity

a(d(f(z1, .., zn)))" =
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a (fd(xl, ey Tp) + Zf(xl, ey d(xg), ., xn)>

and d is an outer derivation, by [6] R satisfies the generalized polynomial identity

a (fd(xl, ey Tp) Zf(xl, ces Yis ooy xn)>

and in particular R satisfies a (f(y1,x2, .., z,))". As a consequence of [5], since
R is prime and f(x1, .., x,) is not an identity for R, we get a = 0, a contradiction.
[

In all that follows we will consider the only case when d is an inner derivation
in R. This means that there exists ¢ € R such that a[q, f(r1,..,7,)]™ = 0, for any
1, ..,Tn € R.

Lemma 2. If R does not satisfy any non-trivial generalized polynomial identity,
then a = 0.

Proof. Since R does not satisfy any non-trivial generalized polynomial identity,
we have that

alg, f(@1, .., 2n)]™

is the zero element in the free product 7' = @ x¢ C{z1, .., z,,}, that is

alq, f(z1, ..,xn)]m_l(qf(xl, vy p) — f(21, ., 20)q) =0 € T.

Since ¢ ¢ C, it follows that alq, f(z1, .., z,)]™ ' f(21,..,2,)g = 0 € T and so
alg, f(x1,..,2,)]™ ' = 0 € T. Continuing this process, we obtain that ¢ = 0. =

Lemma 3. If R is a dense ring of linear transformations over an infinite
dimensional right vector space V over a division ring D, then a = 0.

Proof. Since f(x1,..,2,) is a multilinear polynomial and a[q, f(r1, .., 7)™ =

0, for all ry,..,7, € R, by [13, Lemma 2] we have a[g,r|™ = 0, for all » € R.
Hence a = 0 follows from [9, Theorem 1]. [

Now we are ready to prove the following:

Theorem 1. Let R be a prime K-algebra, d a nonzero derivation of R,
f(z1, .., xn) a multilinear polynomial over K in n non-commuting variables, a € R
and m > 1. Suppose that f(x1, .., xy) is not central on R. If a(d(f(r1,..,ry))™ =
0, for any r1,..,r, € R, then a = 0.
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Proof. By Lemma 1, we assume that d is the inner derivation induced by ¢ € R,
moreover by remark 1, C' = Z(R) and R is a C-algebra centrally closed, that is
R = RC. If R does not satisfy any non-trivial generalized polynomial identity then,
by Lemma 2, a = 0. Thus we may suppose that R satisfies a non-trivial generalized
polynomial identity. By Martindale’s theorem in [11], R is a primitive ring which
is isomorphic to a dense ring of linear transformations of a vector space V over
a division ring D. If dimpV = oo, then, by Lemma 3, we get the conclusion
required.

Therefore consider the case dimp (V) = k, with k finite positive integer > 2,
because R is not a domain. In this condition R is a simple ring which satisfies a
non-trivial generalized polynomial identity. By [7, Lemma 2; 12 theorem 2.3.29]
R C My(F), for a suitable field F' and ¢ > 2, moreover M;(F) satisfies the same
generalized identity of R. Since f(z1,..,2,) is not central on R then, by [10],
there exist w1, .., un, € My(F'), such that f(u1, .., u,) = fe;j, for some distinct ¢, j,
with 5 € F' — {0} and e;; the usual matrix unit with 1 in (4, j)-entry and zero
elsewhere. Moreover, since the set { f(x1, .., x,) : 21, .., T, € M(F)} is invariant
under the action of all F-automorphisms of M;(F'), then for any i # j there exist
T1,..,Tn € My(F) such that f(r1,..,m,) = [e;j.

Suppose on the contrary that the matrix a = ) apjep; is not zero. Let ¢ =
> qnien, with gp; € F and fix ¢ and j # i. Then

0=alq, f(r1,...,ra)]" = alqf(r1,..,rn) — f(r1, ., mn)q)™
= a(qBeij — Beijq)" .
In particular, right multiplying by e;;q we have
0 = a(qfBeij — Beijq)™ eijq = a(—B)"(e;0)" .
Then, for all j # i, either g;; = 0 or the i-th column of the matrix a is zero, a

desired contradiction.

Case1: t =2,

Since f(z1,..,2y,) is not central on R, by [10, lemmas 2 and 9], there exists a
sequence of matrices r = (r1, .., r,,) such that f(r) = Bea; is not zero.

Suppose that ¢ is not diagonal, say ¢12 # 0, then the 2-nd column of a is zero.
In other words the following hold:

qi1  qi2
pu— 5 0
4 [ a1 422 ] a2 7
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0 0
=15 0]
By calculation it follows that

4, (2" = [ (2B " ] |

Then 0 = a[g, f(r)]*™ = a(q128)*™ = 0 and so a = 0.
Moreover we get the same conclusion if suppose ¢g21 # 0. Thus we conclude
that if £k = 2, either ¢ is a diagonal matrix or a = 0.

Case 2: t > 3.

Also in this case we want to prove that if a is not zero then ¢ is a diagonal
matrix. Suppose there exists g;; # 0, i # j, then the i-th column of a is zero. For
all [ # 1, j let ¢, € Autp(My(F)) such that ¢;;(z) = (14 €;)z(1 —ey;). Consider
the following valutations of f(x1, .., 2y,):

f(r) =~eij,  f(s)=wu(f(r)) =ei; +vey, v #0.

Since the i-th column of a is zero, by a[q, f(s)]™ = 0 and right multiplying by
e;j + ey, we have:

0 =alg, f(s)]"(eij + erj) = al—=7)"(gji + qj)" (eij +erj) (1)

Notice that if g;; + gj; = 0, then ¢j; = —g;; # 0 and, as in the first part of the
proof, the I-th column of a is zero. On the other hand, if ¢;; + ¢; # 0, by (1), for
all k, ag; = —ay; and, since the i-th column of a is zero, it follows again that the
l-th one is also zero. Hence we can say that the matrix a has at most one nonzero
column, the j-th one.

Thus a = aej; and so

0= alg, f(r)]™ = aejjlq, vei;]™ = aejj(qyei; — veizq)la, vei])™
m—1 _

= aejjqes;lg, yei]m T = e = aejj(qve;)™ = a(gz i)™

Hence a = 0.

The previous two cases show that if a is the nonzero matrix then ¢ is a di-
agonal one, ¢ = ) qrrers. Now let ;; € Autp(M;(F)) such that ¢;j(x) =
(1 + e;j)z(1 — e;5), with @ # j. Since 0 = ¢;i(a)|pij(q), p(f(z1, .., 2n))]™ =
vij(a)leii(q), f(y1, .., yn)]™ and a # 0, we have that ¢(q) is also diagonal. On
the other hand ¢;;(¢) = ¢+ (gj; — Gii)eij» i.e. ¢j; = gi; and ¢ is central in M (F),
which is a contradiction. Therefore must be a = 0. ]
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