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MULTIPLICATIVE PRINCIPAL-MINOR INEQUALITIES FOR

TRIDIAGONAL SIGN-SYMMETRIC P -MATRICES

Shaun M. Fallat∗ and Charles R. Johnson†

Abstract. The question of which ratios of products of principal minors are

bounded over all matrices in a given class has been of interest historically.

This question is settled herein for the class of tridiagonal sign-symmetric P -
matrices, which essentially lies in each of the classes: positive definite, invert-

ible totally nonnegative and M -matrices. It happens that all bounded ratios

are bounded by one.

1. INTRODUCTION

An n-by-n real matrix A = [aij ] is called a P-matrix if each of its principal
minors are positive, and A is called sign-symmetric if aijaji > 0 or aij = aji = 0
for each pair 1 ≤ i, j ≤ n. Further, A is called weakly sign-symmetric if aijaji ≥ 0
for each pair 1 ≤ i, j ≤ n. The tridiagonal sign-symmetric P -matrices (TSP) lie at

the crossroads of the three most important classes that generalize positivity among

matrices: the positive definite, the invertible totally nonnegative (all minors non-

negative and positive determinant) and the M -matrices. Sign-symmetric tridiagonal

matrices may be symmetrized by positive diagonal equivalence (or similarity), and

A ∈ TSP if and only if its symmetrization is positive definite. A signature matrix
is a diagonal matrix S of ±1’s. A sign-symmetric tridiagonal matrix A is signature

similar to a (unique) nonnegative matrix and A ∈ TSP if and only if that nonnega-
tive matrix is a totally nonnegative matrix. A sign-symmetric tridiagonal matrix A
is also signature similar to a (unique) matrix with nonpositive off-diagonal entries,

and A ∈ TSP if and only if this matrix is an M -matrix. We also note that diagonal
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similarity does not change the value of any principal minor, so that inequalities

among products of principal minors of a TSP matrix are unchanged by the diagonal

similarities mentioned above. Tridiagonal matrices arise in a variety of applications

including orthogonal polynomials, continued fractions, recurrence relations and spe-

cial reductions in numerical analysis. Thus the TSP matrices are a natural class to

study.

Our interest here lies in understanding all ratios of products of principal minors

that are bounded (independent of the matrix) over the class of TSP matrices. (We

note that, by an elementary closure argument, if “weakly sign-symmetric” were

substituted for “sign-symmetric” in the definition of TSP, the answer to our question

would be the same.) Such questions have been addressed (though not always fully

settled) in the case of each of the classes we have mentioned: positive definite

[2], invertible totally nonnegative [3] and M -matrices [4] (see also [5]). Since,

essentially, the TSP matrices lie inside each of these classes (discussion above), the

inequalities/bounded ratios for TSP matrices are a superset of those for each of the

three classes, and, thus, may be a possible source of insight for those problems. We

give a complete solution to the problem for TSP matrices, and, like the M -matrix

case, though unlike the positive definite case, all bounded ratios are bounded by 1.

2. PRELIMINARIES

For an n-by-n matrix A = [aij ], α, β ⊆ N ≡ {1, 2, . . . , n}, the submatrix of
A lying in rows indexed by α and the columns indexed by β will be denoted by
A[α|β]. Similarly, A(α|β) is the submatrix obtained from A by deleting the rows

indexed by α and columns indexed by β. If α = β, then the principal submatrix
A[α|α] is abbreviated to A[α], and the complementary principal submatrix is A(α).
Let α = {α1, α2, . . . , αp} denote a collection of index sets, in which αi ⊆ N,
i = 1, 2, . . . , p. Then we define α(A) = det A[α1] detA[α2] · · ·det A[αp]. If,
further, β = {β1, β2, . . . , βq} is another collection of index sets with βi ⊆ N, for
all i, then we write α ≤ β with respect to TSP if α(A) ≤ β(A) for every n-by-n
TSP matrix A.

We shall also consider ratios of products of principal minors. For two given

collections α and β of index sets we shall interpret α/β as both a numerical ratio

α(A)/β(A) for a given TSP matrix A and also as a formal ratio to be manip-

ulated according to natural rules. When interpreted numerically, such ratios are

well-defined because the class of TSP is preserved under extraction of principal

submatrices, so that β(A) 6= 0 whenever A is a TSP matrix. Since, by convention,

det A[φ] = 1, we also assume, without loss of generality, that in any ratio α/β both
collections α and β have the same number of index sets, since if there is a disparity
in the total number of index sets between α and β, the one with the fewer sets may

be augmented with copies of φ. Either α or β may include repeated index sets.
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The following multiplicative principal minor inequalities are classical for n-by-n

positive definite, totally nonnegative or M -matrices (see [1, 6, 7, 8, 10, 11]):

Hadamard: det A ≤
n∏

i=1

aii;

Fischer: For S ⊆ N, det A ≤ det A[S] · detA[Sc];

Koteljanskii: Let S, T ⊆ N,

det A[S ∪ T ] · detA[S ∩ T ] ≤ det A[S] · detA[T ].

Here, as throughout, Sc is the complement of S relative to N. Since the class TSP
may be viewed as lying in any of the classes: invertible totally nonnegative, M -

matrices, or positive definite, it follows that each inequality (Hadamard, Fischer, and

Koteljanskii) holds for every matrix in TSP. Each of the above classical inequalities

may be written in our form α ≤ β. For example, Hadamard’s inequality, det A ≤∏n
i=1 aii, has α = {N, φ, . . . , φ} and β = {{1}, {2}, . . . , {n}}, and Koteljanskii’s

inequality has the collections α = {S ∪ T, S ∩ T} and β = {S, T}. Our main and
most general problem of interest is to characterize, via set-theoretic conditions, all

pairs of collections of index sets α, β such that

α(A)
β(A)

≤ K

for some constant K ≥ 0 (which depends on n) and for all n-by-n TSP matrices

A. If such a constant exists for all TSP matrices A, we say that the ratio α/β is
bounded with respect to the class of TSP matrices. Whenever α/β ≤ 1 for a given
class of matrices we say that α/β is an inequality with respect to the class.

This problemwas resolved for the classes ofM - and inverseM -matrices [4], and

has received much attention for the class of positive definite and totally nonnegative

matrices.

Let α be any given collection of index sets. For i ∈ {1, 2, . . . , n}, we define
fα(i) to be the number of index sets in α that contain the element i. In other words,
fα(i) counts the multiplicity of the index i in the collection α (see also [2, 4]).

The next proposition demonstrates a simple necessary (and by no means sufficient)

condition for a given ratio of principal minors to be bounded with respect to TSP

matrices.

Proposition 2.1. Let α and β be two collections of index sets. If α/β is

bounded with respect to the class of TSP matrices, then fα(i) = fβ(i) for every
i = 1, 2, . . . , n.

Proof. Suppose there exists an index i for which fα(i) > fβ(i) (if fα(i) <

fβ(i), consider the inverse of the matrix used in the argument to follow). For
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k ≥ 1, let Dk = diag(1, . . . , 1, k, 1, . . . , 1), where the number k occurs in the

(i, i)-entry of Dk. Then Dk is a TSP matrix for every value k, and α(A)/β(A) =
k(fα(i)−fβ(i)) = kt, where t ≥ 1. Hence α/β is not a bounded ratio.

If a given ratio α/β satisfies the condition fα(i) = fβ(i) for every i =
1, 2, . . . , n, then we say that the ratio satisfies ST0, or set-theoretic zero (see also

[2, 4]).

Let α = {α1, α2, . . . , αp} be a given collection of index sets. We let fα(J)
denote the number of index sets in α that contain J , where J ⊆ N. In [2], it is
shown that if a ratio α/β is bounded with respect to the class of positive definite

matrices, then

fα(J) ≥ fβ(J) for every subset J ⊆ N.(1)

If a ratio α/β satisfies (1), then we say that the ratio α/β satisfies (ST1). In [5],

it was also noted that this condition is not sufficient for a ratio to be bounded with

respect to the class of positive definite matrices.

In [4], one of the main results is as follows.

Theorem 2.2. Let α/β be a given ratio of index sets. Then the following are

equivalent :

( i ) α/β satisfies (ST0) and (ST1);

( ii ) α/β is bounded with respect to M -matrices;

(iii) α ≤ β with respect to M -matrices.

Thus a ratio α/β is bounded with respect to the class of M -matrices if and only

if it satisfies (ST0) and (ST1), and any such bounded ratio is an inequality with

respect to M -matrices.

We note here that the condition (ST1) is neither necessary nor sufficient (see

[3]) for a ratio to be bounded with respect to the class of totally nonnegative matri-

ces. However, the following result holds for bounded ratios with respect to totally

nonnegative matrices. The dispersion of a given nonempty set S = {i1, i2, . . . , ik},
where ij < ij+1 (j = 1, 2, . . . , k − 1), is given by d(S) = ik − i1 − (k − 1) for
k > 1 and d(S) = 0 for k = 1 (see [1, p. 170]).

Proposition 2.3. ([3]). Let α/β be a given ratio. If α/β is bounded with
respect to the class of totally nonnegative matrices, then fα(J) ≥ fβ(J) for all
J ⊆ N, with d(J) = 0, that is, for all contiguous subsets J of N.

If a ratio α/β satisfies the condition in Proposition 2.3, we say that α/β satisfies

(ST1)′. We note that (ST1)′ will play an integral role here.
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Before we come to our main results we consider one more concept, which we

illustrate with an example. If A is a tridiagonal matrix (not necessarily in TSP),

then it follows that

A[{1, 2, 4, 6, 7}] = A[{1, 2}]⊕ A[{4}]⊕ A[{6, 7}],

where ⊕ denotes direct sum. In particular,

detA[{1, 2, 4, 6, 7}] = det A[{1, 2}] detA[{4}] detA[{6, 7}].

It is clear that to compute a principal minor of a tridiagonal matrix it is enough to

compute principal minors based on associated contiguous index sets. Let S and T be

any two ordered index sets of {1, 2, . . . , n}. We say that S � T if the the maximum
element of S is less than the minimum element of T . For example, if S = {1, 2, 3}
and T = {4, 6, 7, 8, 9}, then S � T , but if S = {1, 2, 3} and T = {3, 5, 6, 7}, then
S 6� T .

Definition 2.4. Let α be any index set. Then we say that β1, β2, . . . , βp is the

contiguous set decomposition of α if

1. β1, β2, . . . , βp is a partition of α,

2. βi is an ordered contiguous set, i.e., d(βi) = 0 for i = 1, 2, . . . , p,

3. βi � βj for i < j, and

4. βi ∪ βj , i 6= j, is not an ordered contiguous set.

Often we may refer to β1, β2, . . . , βp as the contiguous components of α.
For example, the contiguous set decomposition of {1, 2, 4, 6, 7} is {1, 2}, {4},

{6, 7}. The above definition is motivated by the fact that if α is any index set and

β1, β2, . . . , βp are its contiguous components, then

det A[α] =
p∏

i=1

det A[βi]

for any tridiagonal matrix A.

3. MAIN RESULTS

If α is a collection of index sets, then we let α′ denote the collection obtained

from α by replacing each index set of α by its contiguous components. Observe
that by the remarks following Definition 2.4, α(A) = α′(A) for any tridiagonal
matrix A. Hence we may view the contiguous decomposition of a collection of

index sets as evaluation, namely, α(A), at any tridiagonal matrix A and vice-versa.
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This connection will be utilized throughout this section. It is easy to verify that if

α/β satisfies (ST0), then the ratio α′/β′ also satisfies (ST0).

Lemma 3.1. The ratio of products of index sets α/β satisfies (ST1)′ if and
only if α′/β′ satisfies (ST1).

Proof. First observe that if α/β satisfies (ST1)′, then it is clear that α′/β′ also
satisfies (ST1)′. Let J ⊂ N, and let J ′ be the smallest contiguous set that contains

J . (Note, by definition, J = J ′ if and only if J is contiguous.) We claim that

fα′(J) = fα′(J ′). To verify the claim, first note that since J ⊂ J ′, it is clear that

fα′(J) ≥ fα′(J ′). To prove fα′(J) ≤ fα′(J ′), observe that if si is a contiguous

index set in α′ that contains J , then si also contains J ′. This completes the proof

of the claim. Next, observe that

fα′(J) = fα′(J ′) ≥ fβ′(J ′) = fβ′(J),

where the inequality follows since α′/β′ satisfies (ST1)′. Hence α′/β′ satisfies

(ST1). The converse follows easily from the fact that for any contiguous index set

L,

fα(L) = fα′(L) ≥ fβ′(L) = fβ(L)

(here the inequality follows since α′/β′ satisfies (ST1)). Thus if α′/β′ satisfies

(ST1), then α/β satisfies (ST1)′.

We are now in a position to prove our main observations.

Theorem 3.2. Let α/β be a given ratio of index sets. Then the following are

equivalent :

( i ) α/β satisfies (ST0) and (ST1)′;

( ii ) α/β is bounded with respect to TSP;

(iii) α ≤ β with respect to TSP.

Proof. (i) ⇒ (ii): Assume that α/β satisfies (ST0) and (ST1)′. Let α′ (β′)

be the collection of index sets obtained from α (β) by replacing each index set
in α (β) by its contiguous components. Then for any tridiagonal matrix A, we

have α(A)/β(A) = α′(A)/β′(A). By Lemma 3.1, the new ratio α′/β′ satisfies
(ST0) and (ST1). Thus the ratio α′/β′ is bounded with respect to the M -matrices

(Theorem 2.2). Since any TSP matrix A is signature similar to an M -matrix, and

signature similarity does not affect the value of a ratio, we have

α(A)
β(A)

=
α′(A)
β′(A)

=
α′(SAS)
β′(SAS)

≤ K(2)
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for some positive constant K (by Theorem 2.2). Hence the ratio α/β is bounded

with respect to TSP.

(ii) ⇒ (iii): By Theorem 2.2, the constant K in (2) can be chosen to equal 1, since

SAS is an M -matrix. Hence any bounded ratio with respect to TSP is, in fact, an

inequality.

(iii) ⇒ (i): We have already verified the necessity of (ST0) in Proposition 2.1.

Suppose that the ratio α/β does not satisfy (ST1)′, say fα(J) < fβ(J) for some
contiguous index set J with |J | = k > 1. We will construct a sequence of TSP
matrices Ai for which the set {α(Ai)/β(Ai), i = 1, 2, . . .} is unbounded above.
Let A = [aij ] be defined by

aij =





1 if i = j,

−x if j = i + 1 or j = i − 1 and i, j ∈ J ,
0 otherwise,

where x = (2 cos(π/k + 1))−1. It is well-known that the largest eigenvalue of the

(0,1) matrix of order k with ones on the superdiagonal and subdiagonal and zeros

elsewhere is 2 cos(π/k + 1). Hence A[J ] is singular and all of its proper principal
submatrices are nonsingular (in fact, A[J ] is an irreducible singular M -matrix).

Then, let Ai = A + (1/i)I , i = 1, 2, . . . . It is easily seen that Ai is a TSP matrix

and the set {α(Ai)/β(Ai), i = 1, 2, . . .} is unbounded above.

We now discuss the notion of a basic k-ratio R(i1, . . . , ik) on k indices

i1, . . . , ik ∈ N (see also [4]). In R(i1, . . . , ik), the full set {i1, . . . , ik} appears
in the numerator, all of its (k − 1)-membered subsets appear in the denominator,
all (k − 2)-membered subsets in the numerator, and so on, until φ appears in the
denominator when k is odd and in the numerator when k is even. For example, a

basic 2-ratio, or R(1, 2), is
{1, 2}φ
{1}{2} ,

and a basic 3-ratio, or R(2, 3, 5), is

{2, 3, 5}{2}{3}{5}
{2, 3}{2, 5}{3, 5}φ,

and so-on. The class of basic n-ratios were essential in [4] as they turned out to be
the “generators” of all of the bounded ratios for M -matrices. In particular, it was

shown in [4, Lemma 4.1] that any ratio which satisfies (ST1) can be written as a

product of basic ratios and conversely. Hence, by Theorem 2.2, any bounded ratio

with respect to the M -matrices is a product of basic ratios. For TSP matrices we

have the following.
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Lemma 3.3. Let α/β be any ratio of index sets satisfying (ST0). Then α/β is

bounded with respect to TSP if and only if α′/β′ is a product of basic ratios.

Proof. If α/β is bounded, then, by Theorem 3.2, α/β satisfies (ST1)′ and

hence by Lemma 3.1 α′/β′ satisfies (ST1). Thus using [4, Lemma 4.1], α′/β′ can
be written as a product of basic ratios. On the other hand, suppose α/β is a ratio
satisfying (ST0) such that α′/β′ is a product of basic ratios. Then by [4, Lemma

4.1] and Theorem 2.2, α′/β′ is bounded with respect to the M -matrices. Therefore

α/β is bounded with respect to TSP.

Consider the following illustrative example. Let α = {{1, 2, 3}, {2, 3, 4}, {1},
{4}} and let β = {{1, 2, 4}, {1, 3, 4}, {2}, {3}}. Then α/β satisfies (ST1)′ but
not (ST1). Furthermore, after canceling repeated sets:

α′

β′ =
{1, 2, 3}, {2, 3, 4}, ∅, ∅
{1, 2}, {3, 4}, {2}, {3}.

It then follows that α′/β′ = R(1, 2, 3)R(2, 3, 4)R(1, 3)R2(2, 3)R(2, 4).
Let A be an n-by-n matrix partitioned as follows:

A =
[

A11 a12

a21 ann

]
,

where ann is a scalar and A11 is (n−1)-by-(n−1). Then we let A/ann denote the

Schur complement of ann in A, which is equal to A/ann = A11 − (a21a12)/ann;

see also [9, p. 22]. It is well-known that

det A[S ∪ {n}] = ann det(A/ann[S]),(3)

where S ⊆ {1, 2, . . . , n−1}. Also, it follows from (3) and the definition of A/ann

that if A is TSP so is A/ann.

Before we come to our final lemma we first consider the following instructive

example. Let γ/δ = R(1, 2, 3). It is easy to verify directly that the contiguous
decomposition of R(1, 2, 3) is

γ ′/δ′ =
{1, 2, 3}{2}
{1, 2}{2, 3},(4)

a Koteljanskii ratio. In other words, for any 3-by-3 TSP matrix A, we have

γ(A)/δ(A) =
detA[{1, 2, 3}] detA[{2}]
detA[{1, 2}] detA[{2, 3}].
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Now consider α/β = R(1, 2, 3, 4). Observe that

α/β = (R(1, 2, 3))−1

[
{1, 2, 3, 4}{1, 4}{2, 4}{3, 4}
{1, 2, 4}{1, 3, 4}{2, 3, 4}{4}

]
.(5)

Our goal is to describe α′/β′, the contiguous decomposition of R(1, 2, 3, 4).
Equivalently, we are interested in describing α(A)/β(A) for any TSP matrix A. By
(4), we already know the contiguous decomposition of R(1, 2, 3). Notice that the
ratio in the second factor of (5) is a basic 3-ratio on the index set {1, 2, 3} in which
each index set has been appended by the index 4. This is where Schur complements

come in as a device to “decompose” this second factor. Namely, for any 4-by-4

TSP matrix A, let C = A/a44. Then by (3), the second factor evaluated at A can

be written as

detC[{1, 2, 3}] detC[{1}] detC[{2}] detC[{3}]
det C[{1, 2}] detC[{1, 3}] detC[{2, 3}]φ ,

which is a basic 3-ratio on the index set {1, 2, 3} evaluated at the TSP matrix C.

Hence this ratio reduces to

det C[{1, 2, 3}] detC[{2}]
det C[{1, 2}] detC[{2, 3}] =

det A[{1, 2, 3, 4}] detA[{2, 4}]
det A[{1, 2, 4}] detA[{2, 3, 4}] (by (3))

=
det A[{1, 2, 3, 4}] detA[{2}]
det A[{1, 2}] detA[{2, 3, 4}],

(6)

since A is tridiagonal. Combining (4) and (6) gives

α(A)/β(A) =
det A[{1, 2, 3, 4}] detA[{2, 3}]
det A[{1, 2, 3}] detA[{2, 3, 4}]

for any 4-by-4 TSP matrix A. In other words,

α′/β′ =
{1, 2, 3, 4}{2, 3}
{1, 2, 3}{2, 3, 4}.

This argument represents the essence of our proof for the next lemma.

Lemma 3.4. Let α/β = R(i + 1, i + 2, . . . , i + k) be a basic k-ratio on the

contiguous index set {i + 1, i + 2, . . . , i + k}. Then

α′/β′ =
{i + 1, i + 2, . . . , i + k}{i + 2, i + 3, . . . , i + k − 1}
{i + 1, i + 2, . . . , i + k − 1}{i + 2, i + 3, . . . , i + k} .

Proof. The proof is by induction on k, the number of indices. If k = 2, then
we are done. Assume that the result is true for all basic ratios on contiguous index
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sets with fewer than k indices. Consider R(i+1, i+2, . . . , i+k). Without loss of
generality, we may assume that {i + 1, i + 2, . . . , i + k} = {1, 2, . . . , k}. Observe
that

R(1, 2, . . . , k) = (R(1, 2, . . . , k − 1))−1γ

δ
,(7)

where γ/δ is a basic (k− 1)-ratio on the index set {1, 2, . . . , k− 1} in which each
index set is appended with the index k. Let A be any k-by-k TSP matrix, and
define C = A/akk. Then, applying (3) it follows that

γ(A)
δ(A)

=
S(C)
T (C)

,

where S/T = R(1, 2, . . . , k − 1). Thus the contiguous decomposition of γ/δ
coincides with the contiguous decomposition of R(1, 2, . . . , k − 1). Applying the
induction hypothesis to the ratio S/T , we have

S ′/T ′ =
{1, 2, . . . , k − 1}{2, 3, . . . , k − 2}
{1, 2, . . . , k − 2}{2, 3, . . . , k − 1} .

Hence

S(C)/T (C)=
det C[{1, 2, . . . , k − 1}] detC[{2, 3, . . . , k − 2}]
det C[{1, 2, . . . , k − 2}] detC[{2, 3, . . . , k − 1}]

=
det A[{1, 2, 3, . . . , k}] detA[{2, 3, . . . , k − 2, k}]
det A[{1, 2, . . . , k − 2, k}] detA[{2, 3, . . . , k}] (by (3))

=
det A[{1, 2, 3, . . . , k}] detA[{2, 3, . . . , k − 2}]
det A[{1, 2 . . . , k − 2}] detA[{2, 3, . . . , k}] ,

(8)

since A is tridiagonal. Thus using (7), (8), and induction, we obtain

α(A)/β(A) =
det A[{1, 2, 3, . . . , k}] detA[{2, 3, . . . , k − 1}]
det A[{1, 2 . . . , k − 1}] detA[{2, 3, . . . , k}]

for any k-by-k TSP matrix A. Hence the contiguous decomposition of α/β is given

by

α′/β′ =
{1, 2, 3, . . . , k}{2, 3, . . . , k − 1}
{1, 2 . . . , k − 1}{2, 3, . . . , k}

,

as desired.

Note that in the above lemma the ratio α′/β′ is a Koteljanskii ratio. We remark
here that a purely combinatorial proof would be interesting so as to avoid the need

for Schur complements; nonetheless they are a useful tool in this case. Hence using

Lemma 3.4 we have the next result.
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Corollary 3.5. Let α/β be any ratio of index sets. Then α/β is bounded with

respect to TSP if and only if α′/β′ is a product of Koteljanskii ratios.

Proof. By Lemma 3.3, α/β is bounded with respect to TSP if and only if α′/β′

is a product of basic ratios. By Lemma 3.4, it follows that α′/β′ is a product of

Koteljanskii ratios. This completes the proof.
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Sér. 2, 17 (1893), 240-246.

9. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New

York, 1985.

10. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University

Press, New York, 1991.
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