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A MINIMAX THEOREM INVOLVING TWO FUNCTIONS

Cao-Zong Cheng∗ and Bor-Luh Lin

Abstract. A minimax theorem involving two functions is derived, where the

convexity assumptions on two functions are given by mixed conditions, and in

which we answer the open question raised by Forgó and Joó in [2]. Simons’s

upward-downward minimax theorem and Lin-Quan’s two functions symmetric

minimax theorem are generalized.

Let X and Y be two nonempty sets. Let f, g : X × Y → R with f ≤ g on

X × Y . A minimax theorem implies that, under certain conditions, the following
equality holds:

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

A two-function minimax theorem implies that, under certain conditions, the follow-

ing inequality holds:

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

Throughout this paper, suppose that X is a compact topological space, and f(·, y)
and g(·, y) are upper semicontinuous (usc) on X for any y ∈ Y . For any r ∈ R,
any y ∈ Y and any finite subset A of Y , we denote

Xr
f(y) = {x ∈ X : f(x, y) ≥ r} and Xr

f (A) =
⋂

y∈A

Xr
f(y).

Theorem A [4]. Suppose that there exist s, t in (0, 1) satisfying:

(A1) for any x1, x2 ∈ X, there exists x0 ∈ X such that

f(x0, y) ≥ smax{f(x1, y), f(x2, y)}+ (1 − s) min{f(x1, y), f(x2, y)}
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for all y ∈ Y ,
(A2) for any y1, y2 ∈ Y, there exists y0 ∈ Y such that

f(x, y0) ≤ tmax{f(x, y1), f(x, y2)} + (1 − t) min{f(x, y1), f(x, y2)}
for all x ∈ X .

Then

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

By relaxing the conditions (A1) and (A2), Simons gave an upward-downward

minimax theorem which generalizes Theorem A.

Theorem B [6]. Suppose that

(B1) for any ε > 0, there exists δ > 0 such that for any x1, x2 ∈ X, there exists

x0 ∈ X such that for all y ∈ Y,
f(x0, y) ≥ min{f(x1, y), f(x2, y)}
and for all y ∈ {y ∈ Y : |f(x1, y)− f(x2, y)| ≥ ε},
f(x0, y) ≥ min{f(x1, y), f(x2, y)}+ δ.

(B2) for any ε > 0, there exists δ > 0 such that for any y1, y2 ∈ Y, there exists
y0 ∈ Y such that for all x ∈ X,
f(x, y0) ≤ max{f(x, y1), f(x, y2)}
and for all x ∈ {x ∈ X : |f(x, y1) − f(x, y2)| ≥ ε},
f(x, y0) ≤ max{f(x, y1), f(x, y2)} − δ.

Then

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

In another direction, Lin and Quan generalize Theorem A into two-function

minimax theorem.

Theorem C [5]. Suppose that there exist s, t in (0, 1) satisfying :

(C1) for any x1, x2 ∈ X, there exists x0 ∈ X such that

f(x0, y) ≥ smax{f(x1, y), g(x2, y)}+ (1 − s) min{f(x1, y), g(x2, y)}
for all y ∈ Y,

(C2) for any y1, y2 ∈ Y, there exists y0 ∈ Y such that

g(x, y0) ≤ tmax{f(x, y1), g(x, y2)}+ (1− t) min{f(x, y1), g(x, y2)}
for all x ∈ X .
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Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

The aim of this paper is to give the following two-function minimax theorem

which generalizes Theorem B and Theorem C.

Theorem. Suppose that

(i) for any x1, x2 ∈ X and any finite subset A of Y, there exists x0 ∈ X such

that for all y ∈ A,

f(x0, y) ≥ min{f(x1, y), g(x2, y)}

and for all y ∈ {y ∈ A : f(x1, y) 6= g(x2, y)},

f(x0, y) > min{f(x1, y), g(x2, y)}.

(ii) for any ε > 0, there exists δ > 0 such that for any y1, y2 ∈ Y, there exists

y0 ∈ Y such that for all x ∈ X,

g(x, y0) ≤ max{f(x, y1), g(x, y2)}

and for all x ∈ {x ∈ X : |f(x, y1) − g(x, y2)| ≥ ε},

g(x, y0) ≤ max{f(x, y1), g(x, y2)} − δ.

Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

The proof of Theorem is based on the following Propositions 1–3 and Lemma.

Proposition 1 originates from the technique that is used in [7] by Simons. We omit

the proof.

Proposition 1. Let r ∈ R, δ > 0 and φ(y) = max
x∈X

f(x, y). Suppose that

Xr
f (y) 6= ∅ for any y ∈ Y . Then for any y1 ∈ Y, there exists z1 ∈ Y such that

Xr
f(z1) ⊂ Xr

f(y1)

and for any y ∈ Y ,

Xr
f(y) ⊂ Xr

f (z1) implies φ(y) > φ(z1) − δ.

Proposition 2. Let r ∈ R such thatXr
f(y) 6= ∅ for any y ∈ Y , let y0, z1, z2 ∈ Y .

Suppose that the condition (i) of Theorem is satisfied. If Xr
f (y0) ⊂ Xr

g(y0) ⊂
Xr

f (z1) ∪ Xr
g(z2), Xr

f(z1) ∩ Xr
g(z2) = ∅ and Xr

f(y0) ⊂ Xr
g (z2), then Xr

g(y0) ⊂
Xr

g (z2).
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Proof. Suppose that Xr
g (y0) ∩ Xr

f(z1) 6= ∅. Choose x2 ∈ Xr
g(y0) ∩ Xr

f(z1),
and x1 ∈ Xr

f(y0) with f(x1, z1) = max
x∈Xr

f(y0)
f(x, z1).

Let A = {y0, z1, z2}. By (i), there exists x0 ∈ X such that for all y ∈ A,

f(x0, y) ≥ min{f(x1, y), g(x2, y)}

and for all y ∈ {y ∈ A : f(x1, y) 6= g(x2, y)},

f(x0, y) > min{f(x1, y), g(x2, y)}.

It is obvious that f(x0, y0) ≥ min{f(x1, y0), g(x2, y0)} ≥ r, i.e., x0 ∈ Xr
f (y0).

Since g(x2, z1) ≥ f(x2, z1) ≥ r > f(x1, z1), we have

f(x0, z1) > min{f(x1, z1), g(x2, z1)} = f(x1, z1).

This contradicts the maximality of f(x1, z1) in Xr
f(y0). Therefore Xr

g(y0) ⊂
Xr

g(z2).

Proposition 3. Let r ∈ R. Suppose that the condition (i) of Theorem is satisfied.
Then Xr

g(y) 6= ∅ implies Xr
f(y) 6= ∅ for any y ∈ Y .

Proof. Suppose that there exists y1 ∈ Y such thatXr
g(y1) 6= ∅ and Xr

f(y1) = ∅.
Take x2 ∈ Xr

g(y1), and x1 ∈ X with f(x1, y1) = max
x∈X

f(x, y1). Since f(x1, y1) <

r ≤ g(x2, y1), by (i), f(x0, y1) > min{f(x1, y1), g(x2, y1)} = f(x1, y1). This con-
tradicts the maximality of f(x1, y1) onX . ThereforeXr

g(y) 6= ∅ impliesXr
f(y) 6= ∅

for any y ∈ Y .

Lemma. Under the conditions of Theorem, for any r < inf
y∈Y

sup
x∈X

f(x, y) and

any y1, y2 ∈ Y , we have
Xr

f(y1) ∩Xr
g(y2) 6= ∅.

Proof. Suppose that there exist y1, y2 ∈ Y and r < inf
y∈Y

sup
x∈X

f(x, y) such that

Xr
f(y1) ∩Xr

g(y2) = ∅.(1)

Let ε > 0 with r < r + ε < inf
y∈Y

sup
x∈X

f(x, y), and δ > 0 as in (ii). By Proposition

1, there exist z1, z2 ∈ Y such that

{
Xr

f (z1) ⊂ Xr
f(y1)

∀y ∈ Y,Xr
f(y) ⊂ Xr

f(z1) =⇒ φ(y) > φ(z1) − δ
(2)



A Minimax Theorem Involving Two Functions 651

and
{
Xr

g(z2) ⊂ Xr
g(y2)

∀y ∈ Y,Xr
g(y) ⊂ Xr

g(z2) =⇒ ψ(y) > ψ(z2) − δ,
(3)

where φ(y) = max
x∈X

f(x, y) and ψ(y) = max
x∈X

g(x, y). It follows from (1) that

Xr
f (z1) ∩Xr

g (z2) = ∅.(4)

By (ii), for z1 and z2, there exists y0 ∈ Y such that for all x ∈ X ,

g(x, y0) ≤ max{f(x, z1), g(x, z2)}(5)

and for all x ∈ {x ∈ X : |f(x, z1)− g(x, z2)| ≥ ε},

g(x, y0) ≤ max{f(x, z1), g(x, z2)} − δ.(6)

Hence

Xr
f(y0) ⊂ Xr

g(y0) ⊂ Xr
f (z1) ∪Xr

g (z2).(7)

Next, we prove

Xr
f(y0) ∩Xr

f (z1) 6= ∅ 6= Xr
f(y0) ∩Xr

g(z2).(8)

Suppose that Xr
f(y0) ∩ Xr

g(z2) = ∅. Then Xr
f (y0) ⊂ Xr

f(z1) by (7). Take x ∈
Xr+ε

f (y0) ⊂ Xr
f (y0) ⊂ Xr

f(z1). By (5),

r + ε ≤ f(x, y0) ≤ g(x, y0) ≤ max{f(x, z1), g(x, z2)}.

Since g(x, z2) < r by (4), we have f(x, z1) ≥ r + ε. By (6),

f(x, y0)≤ g(x, y0) ≤ max{f(x, z1), g(x, z2)} − δ

≤ f(x, z1) − δ ≤ φ(z1) − δ.

It follows that φ(y0) ≤ φ(z1) − δ. This contradicts (2).
Suppose that Xr

f(y0)∩Xr
f (z1) = ∅. Then Xr

f(y0) ⊂ Xr
g(z2) by (7). It follows

from (4), (7) and Proposition 2 that Xr
g(y0) ⊂ Xr

g(z2). Take x ∈ Xr+ε
g (y0) ⊂

Xr
g (y0) ⊂ Xr

g(z2). By (5),

r + ε ≤ g(x, y0) ≤ max{f(x, z1), g(x, z2)}.

Since f(x, z1) < r by (4), we have g(x, z2) ≥ r + ε. By (6),

g(x, y0)≤ max{f(x, z1), g(x, z2)} − δ

≤ g(x, z2) − δ ≤ ψ(z2)− δ.
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It follows that ψ(y0) ≤ ψ(z2) − δ. This contradicts (3). Therefore (8) holds.

Since f(·, y) and g(·, y) are usc on the compact space X for any y ∈ Y , there
exist x1 ∈ Xr

f(y0) ∩Xr
f (z1) =: D1 and x2 ∈ Xr

f(y0)∩Xr
g(z2) =: D2 such that

f(x1, z2) = max
x∈D1

f(x, z2)(9)

and

f(x2, z1) = max
x∈D2

f(x, z1).(10)

Let A = {y0, z1, z2}. By (i), there exist x0 ∈ X such that for all y ∈ A,

f(x0, y) ≥ min{f(x1, y), g(x2, y)}

and for all y ∈ {y ∈ A : f(x1, y) 6= g(x2, y)},

f(x0, y) > min{f(x1, y), g(x2, y)}.

Thus f(x0, y0) ≥ min{f(x1, y0), g(x2, y0)} ≥ r, this is, x0 ∈ Xr
f(y0) ⊂

Xr
f(z1) ∪Xr

g(z2).
Suppose that x0 ∈ D1. Since g(x2, z2) ≥ r > g(x1, z2) ≥ f(x1, z2), we have

f(x0, z2) > min{f(x1, z2), g(x2, z2)} = f(x1, z2). This contradicts (9).
Suppose that x0 ∈ D2. By (4), x0 /∈ Xr

f(z1) and so r > f(x0, z1) ≥
min{f(x1, z1), g(x2, z1)}. Since f(x1, z1) ≥ r, it follows that g(x2, z1) < r and so
f(x0, z1) > min{f(x1, z1), g(x2, z1)} = g(x2, z1) ≥ f(x2, z1). This contradicts
(10).

This completes the proof of Lemma.

Proof of Theorem. SinceX is compact and g(·, y) is usc onX for any y ∈ Y , it
is sufficient to prove that for any finite subset E of Y and any r < inf

y∈Y
sup
x∈X

f(x, y),

Xr
g(E) 6= ∅.

When Card E = 1, Xr
g(y) ⊃ Xr

f(y) 6= ∅.
When Card E = 2, let E = {y1, y2}. By Lemma,

Xr
g(E) = Xr

g(y1) ∩Xr
g(y2) ⊃ Xr

f (y1) ∩Xr
g (y2) 6= ∅.

Suppose that Xr
g(E) 6= ∅ for any subset E with Card E ≤ n and any r <

inf
y∈Y

sup
x∈X

f(x, y), and Xr0
g (E0) = ∅ for some subset E0 with Card E0 = n + 1

and some r0 < inf
y∈Y

sup
x∈X

f(x, y). Let E0 = F ∪ {y} and y /∈ F . Hence Card
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F = n. We denote X = Xr0
f (y). Then X is compact, the functions f |X×Y

and g |X×Y satisfy the conditions of Theorem, and X
r0

g (F ) =
⋂

y∈F

{x ∈ X :

g(x, y) ≥ r0} = X ∩Xr0
g (F ) = ∅. By the hypothsis of induction, it follows that

inf
y∈Y

sup
x∈X

f(x, y) ≤ r0.

Let ε > 0 with r0 < r0 + ε < inf
y∈Y

sup
x∈X

f(x, y). Then inf
y∈Y

sup
x∈X

f(x, y) < r0 + ε,

and so there exists ỹ ∈ Y such thatXr0+ε
f (ỹ) = {x ∈ X : f(x, ỹ) ≥ r0+ε} = ∅. By

Proposition 3, X
r0+ε
g (ỹ) = ∅. Thus Xr0+ε

f (y)∩Xr0+ε
g (ỹ) ⊂ Xr0

f (y)∩Xr0+ε
g (ỹ) =

X
r0+ε
g (ỹ) = ∅. This contradicts Lemma. This complete the proof of Theorem.

Remark 1) From Proposition 3, it is easy to see that the equality inf
y∈Y

sup
x∈X

f(x, y)

= inf
y∈Y

sup
x∈X

g(x, y) holds. In other words, the conclusion of Theorem can be written

“ inf
y∈Y

sup
x∈X

g(x, y) = sup
x∈X

inf
y∈Y

g(x, y)” which is a minimax theorem on g. This is

surprising since it is difficult to remark this from the conditions of Theorem.

2) Since the condition (C1) implies the condition (i) and the condition (C2)

implies the condition (ii) by taking δ = (1 − t)ε, Theorem generalizes Theorem C.
When f = g, similarly Theorem generalizes Theorem B.
3) In [1], we divide two-function minimax theorems into three types. If the

“lower” function f is “concave” and the “upper” function g is “convex”, we call
these kind of two-function minimax theorems type (A); If the “lower” function f

is “convex” and the “upper” function g is “concave”, we call these kind of two-
function minimax theorems type (B); For other two-function minimax theorems like

Theorem C or Theorem in which the “concave-convex” conditions are involved

both f and g, we call them mixed-type. In [3], an example is given to show

that Theorem B cannot be extended to two-function minimax theorems of type B.

Specifically, let X = Y = [−1, 1]. There exist functions f, g : X × Y → R with

f ≤ g on X × Y , f is upward on Y (i.e., (B2) is satisfied) and g is downward
on X (i.e., (B1) is satisfied when f is replaced by g) but inf

y∈Y
sup
x∈X

f(x, y) = 1

and sup
x∈X

inf
y∈Y

g(x, y) = −1. In [1], it is pointed out that this example also shows

that Theorem A cannot be extended to two-function minimax theorems of Type B.

In [Remark (iii), 2], the question is raised how to extend Theorem B (Simons’s

upward-downward minimax theorem) to a two-function minimax theorem of mixed

type. Theorem in this paper provides an affirmative answer to the question.
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