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REMARKS ON POINCARÉ INEQUALITY AND ITS APPLICATIONS TO

ELLIPTIC BOUNDARY VALUE PROBLEMS

Shyuh-yaur Tzeng†

Abstract. We study Poincaré inequality on unbounded domains and its appli-

cations to the semilinear elliptic equation−4u = up.

1. INTRODUCTION

In the study of elliptic boundary value problems, the Poincaré inequality has

frequently been used to obtain various estimates for the solutions. Such kinds of

inequalities are usually more difficult to obtain for unbounded domains. Our aim in

this note is to investigate under what conditions the Poincaré inequality holds, that

is, there is a constat C = C(Ω) such that
∫

Ω
|u(x)|2dx ≤ C

∫

Ω
|∇u(x)|2dx(1)

for all u ∈ H1
0(Ω), where Ω is an open subset of RN .

The detailed analysis is given in the next section. Some applications to elliptic

boundary value problems will be discussed in Section 3.

2. POINCARÉ INEQUALITY

Definition 1. An open subset of RN is called a P-domain if (1) holds. For any

open subset of RN , define

C(Ω) = sup
u∈H1

0(Ω),u 6=0

∫
Ω |u(x)|2dx∫

Ω |∇u(x)|2dx
.(2)
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It is known that RN is not a P-domain. On the other hand, any bounded open

set in RN is a P-domain. For unbounded domains, it has been shown [9] that

{(x1, x
′
N) ∈ RN : x1 ∈ R, |x′

N | < 1} is a P-domain. Nevertheless, for a general
unbounded set, it is no easy matter to verify if such a set is a P-domain. The first

result of this paper is to give a criterion for an unbounded set to be a P-domain.

Theorem 1. Let Ω1 and Ω2 be two P-domains. If Ω1 ∩ Ω2 is bounded, then

Ω = Ω1 ∪ Ω2 is a P-domain.

Proof. Since Ω1 ∩ Ω2 is bounded, Ω1 ∩ Ω2 is contained in an open ball B of

radius r with center at 0. Consider a smooth function φ which satisfies

φ(t) =
{

1, |x| ≤ r,

0, |x| ≥ 2r.

Let C0 = C(B), C1 = C(Ω1) and C2 = C(Ω2). A straightforward calculation
yields

∫

Ω
u2dx ≤ 2

(∫

Ω
(φu)2dx +

∫

Ω
[(1− φ)u]2dx

)
(3)

and
∫

Ω
(φu)2dx =

∫

B
(φu)2dx ≤ C0

∫

B
|∇(φu)|2dx

≤ 5C0

∫

B
|∇u|2dx +

8C0

r

∫

B
u2 ≤ 5C0

∫

Ω
|∇u|2dx +

8C0

r

∫

Ω
u2.

(4)

Similarly, we obtain
∫

Ω

[(1 − φ)u]2dx =
∫

Ω1

[(1− φ)u]2dx +
∫

Ω2

[(1− φ)u]2dx

≤ C(Ω1)
∫

Ω1

|∇[(1− φ)u]|2dx + C(Ω2)
∫

Ω2

|∇[(1− φ)u]|2dx

≤ 5(C1 + C2)
∫

Ω
|∇u|2dx +

8(C1 + C2)
r

∫

Ω
u2.

(5)

Putting (3)-(5) together yields

∫

Ω
u2dx ≤ 5(C0 + C1 + C2)

∫

Ω
|∇u|2dx +

8(C0 + C1 + C2)
r

∫

Ω
u2.

If r is large enough, then
∫

Ω
u2dx ≤ 5(C0 + C1 + C2)

∫

Ω
|∇u|2dx,
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which completes the proof.

Next, we give a criterion for sets which are not P-domains.

Definition 2. An open subset Ω in RN is called a B-domain if for any r > 0,
there exists an open ball of radius r contained in Ω.

Theorem 2. Any B-domain is not a P-domain.

In the proof of Theorem 2, we will use the following lemma.

Lemma 1. Let Br be an open ball of radius r. Then C(Br) → ∞ as r → ∞.

Proof. By change of variables, we get C(Br) = r2C(B1), from which the

result follows.

Proof of Theorem 2. For any r > 0, Ω contains an open ball Br. Since

H1
0 (Br) ⊆ H1

0(Ω), it follows from Lemma 1 that C(Ω) = ∞. Thus the proof is
complete.

Let Br(0) be the open ball of radius r with center at 0. As more concrete
examples of P-domains, we have

Example 1. Let

D1 = {(x1, x
′
N) ∈ RN : |x′

N | < 1, x1 > 0}.(6)

Then by Theorem 1, D1 ∪ Br(0) is a P-domain.

Example 2. Let

D2 = {(x1, · · · , xN) ∈ RN : x2
1 + · · ·+ x2

N−1 < 1, xN > 0}.(7)

Then D1 ∪ D2 is a P-domain.

3. APPLICATIONS TO ELLIPTIC BOUNDARY VALUE PROBLEMS

As an application of our previous results, we now study the existence of positive

solutions of

−4u = up, u> 0 in Ω,

u∈ H1
0(Ω),

(E)
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where p > 1 if N = 1, 2 and p ∈ (1, (N +2)/(N −2)) if N > 2. To seek solutions
of (E), we define

J(u) =
1
2

∫

Ω

|∇u|2dx − 1
p + 1

∫

Ω

|u|p+1dx

and look for the minimizers of J on the manifold:

M = M(Ω) = {u ∈ H1
0(Ω)\{0} : J ′(u)u = 0}.

Set

α = α(Ω) = inf
u∈M

J(u).

It has been shown [2, 3, 14] that if u is a minimizer of J on M , then |u| is a
positive solution of (E). We are going to investigate under what conditions there is

a minimizer of J on M .

Definition 3. A P-domain Ω is periodic if there exist a partition {Qm} and a
set {ym} in RN which satisfy the following conditions:

(a) {ym} forms a subgroup of RN ,

(b) Q0 is bounded,

(c) Qm = Q0 + ym, and

(d) there exists a constant C = C(Ω, Qm) such that

∫

Qm

|u(x)|2dx ≤ C

∫

Qm

|∇u(x)|2dx

for all u ∈ H1
0(Ω) and m ∈ Z.

Theorem 3. If Ω is a periodic P-domain, then J has a minimizer on M .

Proof. Let {un} ⊂ M(Ω) be a sequence which satisfies

lim
n→∞

J(un) = α(Ω).(8)

Let

dn = max
m

(∫

Qm

|un|p+1dx

)1/(p+1)

.(9)
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Then

α(Ω) + o(1)= J(un) =
(

1
2
− 1

p + 1

) ∫

Ω
|un|p+1dx

=
(

1
2
− 1

p + 1

) ∑

m

∫

Qm

|un|p+1dx

≤ dp−1
n

(
1
2
− 1

p + 1

) ∑

m

(∫

Qm

|un|p+1dx

) 2
p+1

≤ cdp−1
n

(
1
2
− 1

p + 1

) ∑

m

∫

Qm

|∇un|2dx

= cdp−1
n

(
1
2
− 1

p + 1

) ∫

Ω

|∇un|2dx = cdp−1
n α(Ω) + o(1)

(10)

for some positive constant c which is independent of m. Therefore, there is a δ > 0
such that dn > δ for all n.

Next, we claim that there exists a u ∈ M(Ω) such that

J ′(u) = 0 and J(u) = α(Ω).(11)

For each n, find a Qn such that

∫

Qn

|un|p+1dx >
δ

2
.(12)

Let νn(x) = un(x + yn). It follows from (8) that

lim
n→∞

J(νn) = α(Ω).(13)

Using the standard deformation theory [2, 8] yields

J ′(νn) → 0 as n → ∞.(14)

Along a subsequence, νn → u weakly in H1
0(Ω). Then using (12) and Sobolev

compact imbedding theorem yields

∫

Q0

|u|p+1dx ≥ δ

2
.

Consequently, u 6≡ 0. Moreover, by (14),

J ′(u) = 0,
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which shows u ∈ M(Ω). Now (13) together with Fatou’s Lemma gives

α(Ω)≤ J(u) =
(

1
2
− 1

p + 1

) ∫

Ω
|u|p+1dx

≤ lim inf
(

1
2
− 1

p + 1

) ∫

Ω

|νn|p+1dx = α(Ω),

which completes the proof.

Example 3. The following are some simple examples of periodic P-domains.

D3 = O × Rm, where O is a bounded domain in Rp, m ≥ 1, p ≥ 1,

D4 = {(x, y) ∈ R2 : sin x < y < 1 + sin x},

D5 = {(x, y, z) ∈ R3 : x = (cos θ)(2 + sin z), y = (sin θ)(2 + sin z), z ∈ R, θ ∈ R}.

Remark 1. As proved in [10], the only solution of (E) is u ≡ 0 if Ω = D1,

where D1 was defined in Example 1. Thus we cannot expect that (E) has positive

solutions on all P-domains.

Theorem 4. Let Ω1 and Ω2 be two P-domains such that Ω1∩Ω2 is bounded. If

α(Ω1) ≤ α(Ω2) and J has minimizers on M(Ω1), then there is a positive solution
on Ω.

Proof. Let α1 = α(Ω1) and α2 = α(Ω2). It is not difficult to show, by using
the Maximum Principle, that

α(Ω) < α1.(18)

Let {un} ⊂ M(Ω) be a sequence which satisfies

J(un) → α(Ω) as n → ∞.(19)

Since Ω1 ∩ Ω2 is bounded, there is an r > 0 such that Ω1 ∩ Ω2 ⊂ Br(0).
We now claim there is a d > 0 such that

∫

|x|≤2r
u2

ndx ≥ d(20)

for all n. For otherwise, there exists a subsequence {un} such that

lim
n→∞

∫

|x|≤2r

u2
ndx = 0.(21)
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Let Ω′
1 = Ω1\Br(0) and Ω′

2 = Ω2\Br(0). Then by (21), there exist {un,1} ⊂
H1

0 (Ω′
1) and {un,2} ⊂ H1

0 (Ω′
2) such that

lim
n→∞

‖un − un,1 − un,2‖ = 0

and

un,1 + un,2 ∈ M(Ω)

for all n. Consequently, α(Ω) ≥ min(α1, α2), which contradicts (18). The rest of
the proof is essentially the same as that of (11).

The proof of Theorem 4 also yields

Corollary 1. If Ω1 and Ω2 are two periodic P-domains and Ω1∩Ω2 is bounded,

then there is a positive solution on Ω1 ∪ Ω2.

A consequence of Theorem 4 is the following:

Example 4. Let Ω = D1∪Br(0). If r is large enough, then J has a minimizer

on M(Ω).

Proof. It suffices to show that

lim
r→∞

α(Br) = 0.

For any r > 1, take ur ∈ M(Br) such that

sup
r>1

∫

Br

u2
rdx < ∞

and

C(Br) <
2

∫
Br

|ur(x)|2dx∫
Br

|∇ur(x)|2dx
.

Applying the Hölder inequality and the Sobolev inequality yields

α(Br)≤
1
2

∫

Br

|∇ur|2dx − 1
p + 1

∫

Br

|ur|p+1dx

=
(

1
2
− 1

p + 1

) ∫

Br

|∇ur|2dx ≤ c

C(Br)

for some constant c. Then using Lemma 1 yields

lim
r→∞

α(Br) = 0.
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