TAIWANESE JOURNAL OF MATHEMATICS Vol. 5, No. 3, pp. 575-585, September 2001 This paper is available online at http://www.math.nthu.edu.tw/tjm/

THE REAL PART OF AN OUTER FUNCTION AND A HELSON-SZEGÖ WEIGHT

Takahiko Nakazi* and Takanori Yamamoto*

Dedicated to Professor Kôzô Yabuta on the occasion of his sixtieth birthday

Abstract. Suppose F is a nonzero function in the Hardy space H^1 . We study the set $\{f; f \text{ is outer and } |F| \leq \operatorname{Re} f$ a.e. on $\partial \mathbb{D}\}$, where $\partial \mathbb{D}$ is the unit circle. When F is a strongly outer function in H^1 and γ is a positive constant, we describe the set $\{f; f \text{ is outer, } |F| \leq \gamma \operatorname{Re} f$ and $|F^{-1}| \leq \gamma \operatorname{Re} (f^{-1})$ a.e. on $\partial \mathbb{D}\}$. Suppose W is a Helson-Szegö weight. As an application, we parametrize real-valued functions v in $L^{\infty}(\partial \mathbb{D})$ such that the difference between $\log W$ and the harmonic conjugate function \tilde{v} of v belongs to $L^{\infty}(\partial \mathbb{D})$ and $\|v\|_{\infty}$ is strictly less than $\pi/2$ using a contractive function α in H^{∞} such that $(1 + \alpha)/(1 - \alpha)$ is equal to the Herglotz integral of W.

1. INTRODUCTION

Let \mathbb{D} be the open unit disc in the complex plane and let $\partial \mathbb{D}$ be the boundary of \mathbb{D} . An analytic function f on \mathbb{D} is said to be of class N if the integrals

$$\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$$

are bounded for r < 1. If f is in N, then $f(e^{i\theta})$, which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on $\partial \mathbb{D}$. If

$$\lim_{r \to 1} \int_{-\pi}^{\pi} \log^{+} |f(re^{i\theta})| d\theta = \int_{-\pi}^{\pi} \log^{+} |f(e^{i\theta})| d\theta,$$

Received February 23, 2000; revised July 28, 2000.

Communicated by P. Y. Wu.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D55; Secondary 42B30, 47B35.

Key words and phrases: Hardy space, outer function, Helson-Szegö weight.

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

then f is said to be of class N_+ . The set of all boundary functions in N or N_+ is denoted by N or N_+ , respectively. For $0 , the Hardy space <math>H^p$ is defined by $N_+ \cap L^p$. Hence any function in H^p has an analytic extension to \mathbb{D} .

A function h in N_+ is called *outer* if h is invertible in N_+ . A function g in H^1 is called *strongly outer* if the only functions $f \in H^1$ such that $f/g \ge 0$ a.e. on $\partial \mathbb{D}$ are scalar multiples of g. If g is strongly outer then it is outer. Suppose F is a nonzero function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} |F(e^{i\theta})| d\theta \quad (z \in \mathbb{D}).$$

The right-hand side is the Herglotz integral of |F|. Then α is a contractive function in H^{∞} . Let $f_0 = (1 + \alpha)/(1 - \alpha)$. Then Re $f_0(z) > 0$ $(z \in \mathbb{D})$,

$$|F| = \operatorname{Re} f_0 = \frac{1 - |\alpha|^2}{|1 - \alpha|^2}$$
 a.e. on $\partial \mathbb{D}$,

and $f_0 \in \bigcap_{p < 1} H^p$ by a theorem of Kolmogorov (c.f. [1, Theorem 4.2]). Since Re $f_0(z) > 0$, $f_0 = c \ e^{\tilde{v} - iv}$, where c is a positive constant, $||v||_{\infty} \le \frac{\pi}{2}$ and \tilde{v} is a harmonic conjugate function of v satisfying $\tilde{v}(0) = 0$. By a theorem of Kolmogorov, $\tilde{v} - iv \in \bigcap_{p < \infty} H^p$,

$$|F| = e^{u+\tilde{v}}$$
 and $e^u = c \cos v$ a.e. on $\partial \mathbb{D}$,

where u is a real-valued function. In Section 2, when F is strongly outer we study an outer function f in N_+ such that $|F| \leq \operatorname{Re} f$ a.e. on $\partial \mathbb{D}$. We then show that $|F| \leq \gamma \operatorname{Re} F$ if and only if α^2 is a γ -Stolz function, where γ is a positive constant. If β is a contractive function in H^{∞} and $|1 - \beta| \leq \gamma(1 - |\beta|)$ a.e. on $\partial \mathbb{D}$, then we call β a γ -Stolz function. Suppose W is a Helson-Szegö weight (cf. [3]). In Section 3, using Theorem 1 in Section 2, we parametrize real-valued functions vsuch that $\log W - \tilde{v} \in L^{\infty}$ and $||v||_{\infty} < \pi/2$.

2. THE REAL PART OF AN OUTER FUNCTION

In this section, we study the inequality : $|F| \leq \gamma$ Re F a.e. on $\partial \mathbb{D}$ when F is a nonzero function in H^1 . The first author [4] studied the inequality : $|F| \leq \gamma$ Re f a.e. on $\partial \mathbb{D}$ when F is strongly outer and f is outer in N_+ . We give necessary and sufficient conditions of this inequality. We study two inequalities : $|F| \leq \gamma$ Re f and $|F^{-1}| \leq \gamma$ Re (f^{-1}) a.e. on $\partial \mathbb{D}$ when F is strongly outer and f is in N_+ . Results in this section will be used in the later section.

Proposition 1. Suppose F is a nonzero function in H^1 and γ is a constant satisfying $\gamma \ge 1$. Then the following $(1) \sim (3)$ are equivalent:

- (1) $|F| \leq \gamma$ Re F a.e. on $\partial \mathbb{D}$.
- (2) $F = (1 + \alpha)/(1 \alpha)$ a.e. on $\partial \mathbb{D}$ for a contractive function α in H^{∞} such that α^2 is a γ -Stolz function.
- (3) $F = c \ e^{\tilde{v}-iv}$ a.e. on $\partial \mathbb{D}$, where c is a positive constant and v is a real function in L^{∞} satisfying $\|v\|_{\infty} \leq \cos^{-1}(1/\gamma) < \pi/2$.

Proof. (1) \Leftrightarrow (2): Since $F \in H^1$ and Re $F \ge 0$ a.e. on $\partial \mathbb{D}$, it follows that

$$\operatorname{Re}\,F(z)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z|^2}{|e^{i\theta}-z|^2}\operatorname{Re}\,F(e^{i\theta})d\theta\geq 0\quad(z\in\mathbb{D}).$$

Hence $F = (1 + \alpha)/(1 - \alpha)$ for a contractive function α in H^{∞} . Since $|F| \leq \gamma$ Re F a.e. on $\partial \mathbb{D}$,

$$\left|\frac{1+\alpha}{1-\alpha}\right| \leq \gamma \operatorname{Re}\left(\frac{1+\alpha}{1-\alpha}\right) = \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} \quad \text{a.e. on } \partial \mathbb{D}.$$

Hence $|1 - \alpha^2| \le \gamma (1 - |\alpha|^2)$ and so α^2 is a γ -Stolz function. The converse is clear.

(2) \Rightarrow (3): Since $\|\alpha\|_{\infty} \leq 1$, Re $F = \frac{1-|\alpha|^2}{|1-\alpha|^2} \geq 0$ a.e. on $\partial \mathbb{D}$. Since $F \in H^1$, this implies that Re $F(z) \geq 0$ $(z \in \mathbb{D})$. Hence $F = c \ e^{\tilde{v} - iv}$ and $|v| \leq \pi/2$ a.e. on $\partial \mathbb{D}$. Since α^2 is a γ -Stolz function, it follows that

$$|F| = \left|\frac{1+\alpha}{1-\alpha}\right| = \frac{|1-\alpha^2|}{|1-\alpha|^2} \le \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} = \gamma \text{ Re } F \quad \text{a.e. on } \partial \mathbb{D}.$$

Hence $1 \le \gamma \cos v$. Since $|v| \le \pi/2$, this implies that $||v||_{\infty} \le \cos^{-1}(1/\gamma) < \pi/2$. (3) \Rightarrow (1): By (3), $|F| = c e^{\tilde{v}} \le \gamma c e^{\tilde{v}} \cos v = \gamma \text{ Re } F$. This implies (1).

By Proposition 1 (3) and [2, Corollary III. 2.6], if $|F| \leq \gamma$ Re F a.e. on $\partial \mathbb{D}$ then both F and F^{-1} belong to H^p for some p > 1.

Proposition 2. Suppose F is a strongly outer function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} |F(e^{i\theta})| d\theta \quad (z \in \mathbb{D}).$$

For f in N_+ , (1) ~ (3) are equivalent:

- (1) $|F| \leq \text{Re } f$ a.e. on $\partial \mathbb{D}$ and f is an outer function.
- (2) $f = [(1 + \alpha)/(1 \alpha)] + [(1 + \beta)/(1 \beta)]$ a.e. on $\partial \mathbb{D}$ for some contractive function β in H^{∞} .
- (3) $|F| = e^{u+\tilde{v}}$, $|v| < \pi/2$, $e^u \le c \cos v$ and $f = c e^{\tilde{v}-iv}$ a.e. on $\partial \mathbb{D}$ where c is a positive constant and u and v are real functions.

The following proof is similar to the one of Theorem 6 in the first author's paper [4].

Proof. (1) \Rightarrow (3): Let Arg f denote the argument of f restricted to $-\pi < \operatorname{Arg} f \leq \pi$. Let $v = -\operatorname{Arg} f$. Then $|v| \leq \pi$ and $f = |f|e^{-iv}$. Since $0 < |F| \leq \operatorname{Re} f$, $|v| < \pi/2$. By the proof of [2, Lemma IV. 5.4], if $|v| \leq \pi/2$ then $e^{\tilde{v}} \cos v \in L^1$. Let $g = e^{iv-\tilde{v}}$. Then $fg = |f|e^{-\tilde{v}} > 0$. Since f is outer, $F/fg \in N_+$. Since

$$\left|\frac{F}{fg}\right| \le \frac{\operatorname{Re} f}{|fg|} = \frac{\cos v}{|g|} = e^{\tilde{v}} \cos v \in L^1,$$

it follows that $F/fg \in H^1$. Since F is strongly outer, F/fg is a scalar multiple of F. Hence fg = c for some positive constant c. Hence $f = c e^{\tilde{v} - iv}$, and hence $|F| \leq c e^{\tilde{v}} \cos v$. Define u by $|F| = e^{u+\tilde{v}}$. Then $e^u \leq c \cos v$. This implies (3). (3) \Rightarrow (2): In the following we do not assume that F is strongly outer. We assume that F is a nonzero function in H^1 . By (3), $|F| \leq \operatorname{Re} f$ and $\operatorname{Re} f \in L^1$. Let $(\tilde{v} - iv)(z)$ denote the Poisson transform of $(\tilde{v} - iv)(e^{i\theta})$. Let $g(z) = c e^{(\tilde{v} - iv)(z)}$. Then $\operatorname{Re} g(z) \geq 0$ $(z \in \mathbb{D})$, $\lim_{r \to 1} g(re^{i\theta}) = f(e^{i\theta})$ a.e. on $\partial \mathbb{D}$, and

$$\sup_{0\leq r<1}\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{Re}~g(re^{i\theta})d\theta=\mathrm{Re}~g(0)<\infty.$$

Hence

$$\begin{split} \operatorname{Re}\,g(z) &\geq \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|z|^2}{|e^{i\theta}-z|^2} \operatorname{Re}\,f(e^{i\theta})d\theta \\ &\geq \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|z|^2}{|e^{i\theta}-z|^2} |F(e^{i\theta})|d\theta = \operatorname{Re}\left(\frac{1+\alpha(z)}{1-\alpha(z)}\right) \quad (z\in\mathbb{D}). \end{split}$$

Hence there exists a contractive function β in H^{∞} such that

$$g(z) = \frac{1+\alpha(z)}{1-\alpha(z)} + \frac{1+\beta(z)}{1-\beta(z)} \quad (z \in \mathbb{D}).$$

Since $\lim_{r \to 1} g(re^{i\theta}) = f(e^{i\theta})$ a.e. on $\partial \mathbb{D}$, this implies (2). (2) \Rightarrow (1): Since $|\beta| \leq 1$, Re $(1 + \beta)/(1 - \beta) \geq 0$. Hence

$$|F| = \operatorname{Re} \frac{1+\alpha}{1-\alpha} \le \operatorname{Re} \left(\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta}\right) = \operatorname{Re} f$$
 a.e. on $\partial \mathbb{D}$.

This implies (1).

By Proposition 2 (3) and [2, Corollary III. 2.6], if $|F| \leq \text{Re } f$ a.e. on $\partial \mathbb{D}$ and f is an outer function then both f and f^{-1} belong to H^p for all p < 1.

By (1), the set of all functions f satisfying one of the conditions (1) \sim (3) is a convex subset of N_+ . If F is a nonzero function in H^1 , then (3) \Rightarrow (2) \Rightarrow (1) holds in Proposition 2. But by [4, Theorem 6], (1) \Rightarrow (3) does not hold in general.

Theorem 1. Suppose F is a strongly outer function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} |F(e^{i\theta})| d\theta \quad (z \in \mathbb{D}).$$

For f in N_+ , (1) ~ (4) are equivalent. ($\gamma_1, \ldots, \gamma_5$ are positive appropriate constants.)

- (1) $|F| \leq \gamma_1 \text{ Re } f \text{ and } |F^{-1}| \leq \gamma_1 \text{ Re}(f^{-1})$ a.e. on $\partial \mathbb{D}$.
- (2) $(1/\gamma_2)$ Re $f \leq |F| \leq \gamma_2$ Re f and $|f| \leq \gamma_2$ Re f a.e. on $\partial \mathbb{D}$ and f is in H^1 .
- (3) There exists a contractive function β in H^{∞} such that

$$\gamma_3 f = \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)} \quad and \quad \frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad a.e. \text{ on } \partial \mathbb{D}.$$

(4) There exists a constant c > 0 and real functions u, v in L^{∞} such that

$$|F| = e^{u+\tilde{v}}, \quad ||v||_{\infty} \le \cos^{-1}\gamma_5 < \frac{\pi}{2} \quad and \quad f = c \ e^{\tilde{v}-iv} \quad a.e. \ on \ \partial \mathbb{D}.$$

Proof. (1) \Rightarrow (2): By (1),

$$(\operatorname{Re} f)^2 \le |f|^2 \le \gamma_1(\operatorname{Re} f)|F| \le \gamma_1^2(\operatorname{Re} f)^2.$$

Hence $|f| \leq \gamma_1$ Re $f \leq \gamma_1^2 |F| \in L^1$. This implies (2) with $\gamma_2 = \gamma_1$. (2) \Rightarrow (1): By (2),

$$\frac{1}{|F|} \leq \gamma_2 \ \frac{1}{\operatorname{Re} \ f} \leq \gamma_2^3 \ \frac{\operatorname{Re} \ f}{|f|^2} = \gamma_2^3 \ \operatorname{Re} \ \frac{1}{f}.$$

This implies (1) with $\gamma_1 = \gamma_2^3$.

(2) \Rightarrow (3): Since $f \in H^1$ and Re $f \ge 0$ a.e. on $\partial \mathbb{D}$, Re f(z) > 0 ($z \in \mathbb{D}$). Hence f is an outer function. Since $|F| \le \gamma_2$ Re f, by Proposition 2,

$$\gamma_2 f = \frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} = \frac{2(1-\alpha\beta)}{(1-\alpha)(1-\beta)}$$

for some contractive function β in H^{∞} . Since $|f| \leq \gamma_2 \operatorname{Re} f \leq \gamma_2^2 |F|$,

$$\frac{2|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} = \left|\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta}\right| = \gamma_2|f| \le \gamma_2^3|F| = \gamma_2^3 \frac{1-|\alpha|^2}{|1-\alpha|^2}$$

This implies (3) with $\gamma_3 = \gamma_2/2$ and $\gamma_4 = \gamma_2^3/2$. (3) \Rightarrow (4): By (3), f is outer, since α and β are contractive. Since

$$|F| = \operatorname{Re}\left(\frac{1+\alpha}{1-\alpha}\right) \le 2\gamma_3 \operatorname{Re} f,$$

by Proposition 2, $|F| = e^{u+\tilde{v}}$, $|v| < \pi/2$, $e^u \le c_0 \cos v$ and $2\gamma_3 f = c_0 e^{\tilde{v}-iv}$, where c_0 is a positive constant and u, v are real functions. Hence

$$c_{0}e^{\tilde{v}} = 2\gamma_{3}|f| = \frac{2|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|}$$

$$\leq 2\gamma_{4}\frac{1 - |\alpha|^{2}}{|1 - \alpha|^{2}} = 2\gamma_{4}|F| = 2\gamma_{4}e^{u + \tilde{v}}$$

$$\leq 2c_{0}\gamma_{4}e^{\tilde{v}}\cos v \leq 2c_{0}\gamma_{4}e^{\tilde{v}}.$$

Hence $c_0/2\gamma_4 \leq e^u \leq c_0$ and $\cos v \geq 1/2\gamma_4 > 0$. Hence $u, v \in L^{\infty}$ and $||v||_{\infty} \leq \cos^{-1}(1/2\gamma_4) < \pi/2$. This implies (4) with $c = c_0/2\gamma_3$ and $\gamma_5 = 1/2\gamma_4$. (4) \Rightarrow (1): Since $\cos v \geq \gamma_5$,

$$|F| = e^{u+\tilde{v}} \leq \frac{1}{\gamma_5} e^{\|u\|_{\infty}} e^{\tilde{v}} \cos v = \frac{1}{c\gamma_5} e^{\|u\|_{\infty}} \operatorname{Re} f,$$

and

$$\frac{1}{|F|} = e^{-u-\tilde{v}} \le \frac{c}{\gamma_5} e^{\|u\|_\infty} e^{-\tilde{v}} \cos v = \frac{c}{\gamma_5} e^{\|u\|_\infty} \operatorname{Re} \frac{1}{f}.$$

This implies (1) with $\gamma_1 = (1/\gamma_5) \max(c, c^{-1}) e^{\|u\|_{\infty}}$.

By Theorem 1 (2), the set of all functions f satisfying one of the conditions (1) \sim (4) is a convex subset of H^1 .

3. Helson-Szegö Weight

Let W be a positive function in L^1 and $\log W$ be in L^1 . For each $\varepsilon > 0$, put

$$\mathcal{E}_{W,\varepsilon} = \left\{ v \in \operatorname{Re} L^{\infty}; \quad \log W - \tilde{v} \in L^{\infty} \quad \text{and} \quad \|v\|_{\infty} \le \frac{\pi}{2} - \varepsilon \right\}$$

and $\mathcal{E}_W = \bigcup_{\varepsilon > 0} \mathcal{E}_{W,\varepsilon}$. $\mathcal{E}_{W,\varepsilon}$ and \mathcal{E}_W are convex subsets of Re L^{∞} . When \mathcal{E}_W is nonempty, W is called a *Helson-Szegö weight*. Then for each v in \mathcal{E}_W there exists a $u \in \text{Re } L^{\infty}$ such that $\log W = u + \tilde{v}$. In this section, we study two problems about a Helson-Szegö weight. In Theorem 2 we describe \mathcal{E}_W . Theorem 3 follows from Theorem 2 immediately.

Theorem 2. Let W be a positive function in L^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} W(e^{i\theta}) d\theta \quad (z \in \mathbb{D})$$

Then v belongs to \mathcal{E}_W if and only if

$$v = -\operatorname{Arg} \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)} \quad a.e. \text{ on } \partial \mathbb{D},$$

where β is a contractive function in H^{∞} satisfying

$$\frac{|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad a.e. \text{ on } \partial \mathbb{D}$$

for some constant $\gamma > 0$.

Proof. If $v \in \mathcal{E}_W$, then $v \in \mathcal{E}_{W,\varepsilon}$ for some constant $\varepsilon > 0$. Hence $W = e^{u+\tilde{v}}$ where $u \in L^{\infty}$ and $||v||_{\infty} \leq (\pi/2) - \varepsilon$. Hence there exists a constant $\gamma > 0$ such that

$$W \le \gamma \ e^{\tilde{v}} \cos v \quad \text{and} \quad W^{-1} \le \gamma \ e^{-\tilde{v}} \cos v,$$

where $e^{\|u\|_{\infty}} \leq \gamma \cos v$. If $f = e^{\tilde{v} - iv}$, then $W \leq \gamma$ Re f, $W^{-1} \leq \gamma$ Re (f^{-1}) and $f \in H^1$. Since $W, W^{-1} \in L^1$, there exists an outer function F such that |F| = W and $F, F^{-1} \in H^1$. Hence F is strongly outer. By Theorem 1, there exist constants $\gamma_3, \gamma_4 > 0$ and a contractive function $\beta \in H^{\infty}$ such that

$$\gamma_3 f = \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)} \quad \text{and} \quad \frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad \text{a.e. on } \partial \mathbb{D}.$$

Hence

$$v = -\operatorname{Arg} f = -\operatorname{Arg} \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)}$$
 a.e. on $\partial \mathbb{D}$.

This implies the 'only if' part. Conversely, suppose v satisfies the condition. Define f by

$$f = \frac{1 - \alpha\beta}{(1 - \alpha)(1 - \beta)}.$$

Then

$$v = -\operatorname{Arg} f$$
 and $|f| \le \gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2}$ a.e. on $\partial \mathbb{D}$

for some constant $\gamma > 0$. Then f satisfies (3) of Theorem 1 and

$$W = \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \le \frac{1 - |\alpha|^2}{|1 - \alpha|^2} + \frac{1 - |\beta|^2}{|1 - \beta|^2} = 2 \,\operatorname{Re} f \le 2|f| \le 2\gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = 2\gamma W.$$

Since W is a positive function in L^1 , Re $f \ge 0$ a.e. on $\partial \mathbb{D}$ and $f \in H^1$. Hence f is strongly outer. Since $\log W \in L^1$, there exists an outer function $F \in H^1$ such that |F| = W. Let k be any function satisfying $k \in H^1$ and $k/F \ge 0$ a.e. on $\partial \mathbb{D}$. Since $f/F \in H^{\infty}$, $kf/F \in H^1$. Since f is strongly outer, kf/F = cf for some constant c. Hence k = cF. Therefore F is strongly outer. By Theorem 1, there exists a constant c > 0 and real functions $u, v_0 \in L^{\infty}$ such that $||v_0||_{\infty} < \pi/2$, $W = e^{u + \tilde{v}_0}$ and $f = c e^{\tilde{v}_0 - iv_0}$ a.e. on $\partial \mathbb{D}$. Hence

$$v_0 = -\operatorname{Arg} f = -\operatorname{Arg} \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)} = v.$$

Hence $W = e^{u+\tilde{v}}$ a.e. on ∂D and $||v||_{\infty} < \pi/2$. Hence v belongs to \mathcal{E}_W .

By Theorem 2, if W = 1 then $\alpha = 0$ and hence

$$\begin{aligned} \mathcal{E}_1 &= \left\{ v \in \operatorname{Re} L^{\infty}; \quad \|v\|_{\infty} < \frac{\pi}{2} \quad \text{and} \quad \tilde{v} \in L^{\infty} \right\} \\ &= \left\{ -\operatorname{Arg} \frac{1}{1-\beta}; \ \beta \in H^{\infty}, \quad \|\beta\| \le 1 \quad \text{and} \quad \frac{1}{1-\beta} \in L^{\infty} \right\}. \end{aligned}$$

Theorem 3. Let W be a positive function in L^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} W(e^{i\theta}) d\theta \quad (z \in \mathbb{D}).$$

(1) W is a Helson-Szegö weight, that is, $\mathcal{E}_W \neq \emptyset$ if and only if there exists a constant $\gamma > 0$ and a contractive function β in H^{∞} such that

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \le \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} \quad a.e. \text{ on } \partial \mathbb{D}.$$

(2) If α is a Stolz function, then W is a Helson-Szegö weight, and W⁻¹ belongs to L[∞].

Proof. By Theorem 2, (1) follows immediately. By Theorem 2 with $\beta = 0$, if α is a Stolz function, then $v = -\operatorname{Arg}(1 - \alpha)^{-1}$ belongs to \mathcal{E}_W , and hence $\mathcal{E}_W \neq \emptyset$. By (1), W is a Helson-Szegö weight. Since $W = (1 - |\alpha|^2)/|1 - \alpha|^2 = [(1 + |\alpha|)/|1 - \alpha|][(1 - |\alpha|)/|1 - \alpha|]$ a.e. on $\partial \mathbb{D}$ and α is a Stolz function, it follows that $W^{-1} \in L^{\infty}$.

Note that if α is a Stolz function, then α^2 is also a Stolz function. In fact, if α is a γ -Stolz function, then $|\alpha| \leq 1$ and

$$|1 - \alpha^{2}| \le |1 - \alpha| + |\alpha(1 - \alpha)| \le 2|1 - \alpha| \le 2\gamma(1 - |\alpha|) \le 2\gamma(1 - |\alpha|^{2}).$$

Let W be a positive function in L^1 . By Proposition 1, $W = c e^{\tilde{v}}$ for a constant c > 0 and a real function v with $||v||_{\infty} < \pi/2$ if and only if there exists an $\alpha \in H^{\infty}$ such that α^2 is a Stolz function and $W = |1 + \alpha|/|1 - \alpha|$. Then there exists a $u \in \operatorname{Re} L^{\infty}$ such that

$$W = \frac{|1 - \alpha^2|}{1 - |\alpha|^2} \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = e^u \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = e^u \operatorname{Re} F,$$

where $F = \frac{1+\alpha}{1-\alpha}$.

4. Remark

Put $B_r = \{\beta \in H^\infty; \|\beta\|_\infty \le r\}$ and put $P^{\alpha} = \begin{cases} \beta \in B, & |1 - \alpha\beta| \le r^{1 - |\alpha|^2} \\ \beta \in B, & |\alpha| \le r^{1 - |\alpha|^2} \end{cases}$ for any

$$B^{\alpha} = \left\{ \beta \in B_1; \frac{|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \text{ a.e. on } \partial \mathbb{D} \text{ for some constant } \gamma > 0 \right\}$$

where α is a contractive function in H^{∞} . The set B^{α} was important in Theorems 1, 2 and 3. Let W be a Helson-Szegö weight. Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} W(e^{i\theta}) d\theta.$$

Then by Theorem 2,

$$\mathcal{E}_W = \left\{ v = -\operatorname{Arg} \frac{1 - \alpha\beta}{(1 - \alpha)(1 - \beta)}; \ \beta \in B^{\alpha} \right\}.$$

If W = 1 then $\alpha = 0$ and

$$\mathcal{E}_1 = \left\{ -\operatorname{Arg} \frac{1}{1-\beta}; \ \beta \in B^0 \right\}.$$

In this section, we study such a set B^{α} . α is a Stolz function if and only if $0 \in B^{\alpha}$. α^2 is a Stolz function if and only if $\alpha \in B^{\alpha}$. Hence if $0 \in B^{\alpha}$ then $\alpha \in B^{\alpha}$. If α is a Stolz function and $\beta \in B_r$, r < 1, then for some constant $\gamma > 0$

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \leq \frac{2}{(1-r)|1-\alpha|} \leq \frac{2\gamma(1-|\alpha|^2)}{(1-r)|1-\alpha|^2} \quad \text{a.e. on } \partial \mathbb{D},$$

and hence $\beta \in B^{\alpha}$. Hence if α is a Stolz function, then $B_r \subset B^{\alpha}$ (r < 1).

For two positive functions f and g on $\partial \mathbb{D}$, if there exists a constant $\gamma > 0$ such that $(1/\gamma)g \leq f \leq \gamma g$ a.e. on $\partial \mathbb{D}$, then we write $f \sim g$.

Lemma. Suppose α and β are contractive functions in H^{∞} . Then the following $(1) \sim (5)$ are equivalent:

- (1) $\|(\alpha \bar{\beta})/(1 \alpha \beta)\|_{\infty} < 1.$
- (2) $|1 \alpha\beta|^2 \leq \gamma_2(1 |\alpha|^2)(1 |\beta|^2)$ a.e. on $\partial \mathbb{D}$ for some constant $\gamma_2 > 0$.
- (3) There exists a constant $\gamma_3 > 0$ such that for any function t > 0

$$\frac{|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_3 \left\{ t \frac{1 - |\alpha|^2}{|1 - \alpha|^2} + \frac{1}{t} \frac{1 - |\beta|^2}{|1 - \beta|^2} \right\} \quad a.e. \text{ on } \partial \mathbb{D}.$$

(4) There exists a constant $\gamma_4 > 0$ such that

$$\frac{|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{|1 - \alpha|^2}{|1 - \alpha|^2} \quad a.e. \text{ on } \partial \mathbb{D}$$

and

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \le \gamma_4 \frac{|1-\beta|^2}{|1-\beta|^2} \quad a.e. \text{ on } \partial \mathbb{D}.$$

(5)
$$|1 - \alpha| \sim |1 - \beta|$$
 and $1 - |\alpha| \sim 1 - |\beta| \sim |1 - \alpha\beta|$.

Proof. (1) and (2) are equivalent because

$$1 - \left| \frac{\alpha - \bar{\beta}}{1 - \alpha \beta} \right|^2 = \frac{(1 - |\alpha|^2)(1 - |\beta|^2)}{|1 - \alpha \beta|^2}$$

(cf. [5, p. 58]). (2) and (3) are equivalent because if a, b > 0 then $2\sqrt{ab} \le a + b$ and the equality holds when a = b. (1) \Rightarrow (5): Let $f = (\bar{\alpha} - \beta)/(1 - \alpha\beta)$. Then $\|f\|_{\infty} < 1, \beta = (\bar{\alpha} - f)/(1 - \alpha f)$ and

$$|1-\beta| = \frac{|(1-\bar{\alpha}) + f(1-\alpha)|}{|1-\alpha f|} \ge \frac{|1-\alpha| - |f| \cdot |1-\alpha|}{2} \ge \frac{1-\|f\|_{\infty}}{2}|1-\alpha|.$$

Let $g = (\alpha - \overline{\beta})/(1 - \alpha\beta)$. Then $\|g\|_{\infty} = \|f\|_{\infty} < 1$, $\alpha = (g + \overline{\beta})/(1 + g\beta)$ and

$$|1 - \alpha| = \frac{|(1 - \beta) - g(1 - \beta)|}{|1 + g\beta|} \ge \frac{|1 - \beta| - |g| \cdot |1 - \beta|}{2} \ge \frac{1 - ||g||_{\infty}}{2} |1 - \beta|.$$

Hence $|1 - \alpha| \sim |1 - \beta|$. Since $0 < 1 - ||f||_{\infty} \le |1 - \alpha f| \le 2$ and

$$1 - |\beta|^2 = \frac{(1 - |\alpha|^2)(1 - |f|^2)}{|1 - \alpha f|^2},$$

 $1 - |\alpha| \sim 1 - |\beta|$. Since $|1 - \alpha f| = (1 - |\alpha|^2)/|1 - \alpha\beta|$, $|1 - \alpha\beta| \sim 1 - |\alpha|$. It is clear that (5) implies (4). If we multiply both sides of the two inequalities in (4), then (2) follows.

By the above lemma, Proposition 3 follows immediately.

Proposition 3. If $\alpha \in B_1$, then

$$B^{\alpha} \supset \left\{ \beta \in B_1; \quad \left\| \frac{\alpha - \overline{\beta}}{1 - \alpha \beta} \right\|_{\infty} < 1 \right\}.$$

References

- 1. P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 2. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 3. H. Helson and G. Szegö, A problem in prediction theory, *Ann. Mat. Pura Appl.* **51** (1960), 107-138.
- T. Nakazi, Sum of two inner functions and exposed points in H¹, Proc. Edinburgh Math. Soc. 35 (1992), 349-357.
- 5. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Takahiko Nakazi Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan E-mail: nakazi@math.sci.hokudai.ac.jp

Takanori Yamamoto Department of Mathematics, Hokkai-Gakuen University Sapporo 062-8605, Japan E-mail: yamatk@hucc.hokudai.ac.jp