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THE REAL PART OF AN OUTER FUNCTION AND

A HELSON-SZEGÖ WEIGHT

Takahiko Nakazi∗ and Takanori Yamamoto∗

Dedicated to Professor Kôzô Yabuta on the occasion of his sixtieth birthday

Abstract. Suppose F is a nonzero function in the Hardy space H1. We

study the set {f ; f is outer and |F | ≤ Re f a.e. on ∂D}, where ∂D is the

unit circle. When F is a strongly outer function in H1 and γ is a positive
constant, we describe the set {f ; f is outer, |F | ≤ γ Re f and |F−1| ≤ γ Re
(f−1) a.e. on ∂D}. SupposeW is a Helson-Szegö weight. As an application,

we parametrize real-valued functions v in L∞(∂D) such that the difference
between log W and the harmonic conjugate function ṽ of v belongs to L∞(∂D)
and ‖v‖∞ is strictly less than π/2 using a contractive function α in H∞ such

that (1 + α)/(1− α) is equal to the Herglotz integral of W .

1. INTRODUCTION

Let D be the open unit disc in the complex plane and let ∂D be the boundary

of D. An analytic function f on D is said to be of class N if the integrals

∫ π

−π
log+ |f(reiθ)|dθ

are bounded for r < 1. If f is inN , then f(eiθ), which we define to be lim
r→1

f(reiθ),
exists almost everywhere on ∂D. If

lim
r→1

∫ π

−π
log+ |f(reiθ)|dθ =

∫ π

−π
log+ |f(eiθ)|dθ,

Received February 23, 2000; revised July 28, 2000.

Communicated by P. Y. Wu.

2000 Mathematics Subject Classification: Primary 30D55; Secondary 42B30, 47B35.

Key words and phrases: Hardy space, outer function, Helson-Szegö weight.
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then f is said to be of class N+. The set of all boundary functions in N or N+ is

denoted by N or N+, respectively. For 0 < p ≤ ∞, the Hardy space Hp is defined

by N+ ∩ Lp. Hence any function in Hp has an analytic extension to D.
A function h in N+ is called outer if h is invertible in N+. A function g in

H1 is called strongly outer if the only functions f ∈ H1 such that f/g ≥ 0 a.e. on
∂D are scalar multiples of g. If g is strongly outer then it is outer. Suppose F is a

nonzero function in H1. Define α by

1 + α(z)
1 − α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
|F (eiθ)|dθ (z ∈ D).

The right-hand side is the Herglotz integral of |F |. Then α is a contractive function
in H∞. Let f0 = (1 + α)/(1− α). Then Re f0(z) > 0 (z ∈ D),

|F | = Re f0 =
1 − |α|2

|1− α|2 a.e. on ∂D,

and f0 ∈
⋂

p<1 Hp by a theorem of Kolmogorov (c.f. [1, Theorem 4.2]). Since

Re f0(z) > 0, f0 = c eṽ−iv , where c is a positive constant, ‖v‖∞ ≤ π
2 and ṽ is a

harmonic conjugate function of v satisfying ṽ(0) = 0. By a theorem of Kolmogorov,
ṽ − iv ∈

⋂
p<∞ Hp,

|F | = eu+ṽ and eu = c cos v a.e. on ∂D,

where u is a real-valued function. In Section 2, when F is strongly outer we study

an outer function f in N+ such that |F | ≤ Re f a.e. on ∂D. We then show that
|F | ≤ γ Re F if and only if α2 is a γ-Stolz function, where γ is a positive constant.
If β is a contractive function in H∞ and |1 − β| ≤ γ(1 − |β|) a.e. on ∂D, then
we call β a γ-Stolz function. Suppose W is a Helson-Szegö weight (cf. [3]). In

Section 3, using Theorem 1 in Section 2, we parametrize real-valued functions v
such that logW − ṽ ∈ L∞ and ‖v‖∞ < π/2.

2. THE REAL PART OF AN OUTER FUNCTION

In this section, we study the inequality : |F | ≤ γ Re F a.e. on ∂D when F is

a nonzero function in H1. The first author [4] studied the inequality : |F | ≤ γ Re

f a.e. on ∂D when F is strongly outer and f is outer in N+. We give necessary

and sufficient conditions of this inequality. We study two inequalities : |F | ≤ γ Re

f and |F−1| ≤ γ Re (f−1) a.e. on ∂D when F is strongly outer and f is in N+.

Results in this section will be used in the later section.

Proposition 1. Suppose F is a nonzero function in H1 and γ is a constant
satisfying γ ≥ 1. Then the following (1) ∼ (3) are equivalent:
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(1) |F | ≤ γ Re F a.e. on ∂D.
(2) F = (1 + α)/(1 − α) a.e. on ∂D for a contractive function α in H∞ such

that α2 is a γ-Stolz function.

(3) F = c eṽ−iv a.e. on ∂D, where c is a positive constant and v is a real
function in L∞ satisfying ‖v‖∞ ≤ cos−1(1/γ) < π/2.

Proof. (1) ⇔ (2): Since F ∈ H1 and Re F ≥ 0 a.e. on ∂D, it follows that

Re F (z) =
1
2π

∫ 2π

0

1 − |z|2

|eiθ − z|2Re F (eiθ)dθ ≥ 0 (z ∈ D).

Hence F = (1 + α)/(1 − α) for a contractive function α in H∞. Since |F | ≤ γ

Re F a.e. on ∂D,
∣∣∣∣
1 + α

1 − α

∣∣∣∣ ≤ γ Re

(
1 + α

1 − α

)
= γ

1 − |α|2

|1− α|2
a.e. on ∂D.

Hence |1 − α2| ≤ γ(1 − |α|2) and so α2 is a γ-Stolz function. The converse is

clear.

(2) ⇒ (3): Since ‖α‖∞ ≤ 1, Re F = 1−|α|2
|1−α|2 ≥ 0 a.e. on ∂D. Since F ∈ H1, this

implies that Re F (z) ≥ 0 (z ∈ D). Hence F = c eṽ−iv and |v| ≤ π/2 a.e. on
∂D. Since α2 is a γ-Stolz function, it follows that

|F | =
∣∣∣∣
1 + α

1 − α

∣∣∣∣ =
|1 − α2|
|1 − α|2 ≤ γ

1− |α|2

|1− α|2 = γ Re F a.e. on ∂D.

Hence 1 ≤ γ cos v. Since |v| ≤ π/2, this implies that ‖v‖∞ ≤ cos−1(1/γ) < π/2.
(3) ⇒ (1): By (3), |F | = c eṽ ≤ γc eṽ cos v = γ Re F . This implies (1).

By Proposition 1 (3) and [2, Corollary III. 2.6], if |F | ≤ γ Re F a.e. on ∂D
then both F and F−1 belong to Hp for some p > 1.

Proposition 2. Suppose F is a strongly outer function in H1. Define α by

1 + α(z)
1 − α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
|F (eiθ)|dθ (z ∈ D).

For f in N+, (1) ∼ (3) are equivalent:
(1) |F | ≤ Re f a.e. on ∂D and f is an outer function.

(2) f = [(1 + α)/(1− α)] + [(1 + β)/(1− β)] a.e. on ∂D for some contractive

function β in H∞.

(3) |F | = eu+ṽ , |v| < π/2, eu ≤ c cos v and f = c eṽ−iv a.e. on ∂D where c is

a positive constant and u and v are real functions.
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The following proof is similar to the one of Theorem 6 in the first author’s

paper [4].

Proof. (1) ⇒ (3): Let Arg f denote the argument of f restricted to −π <
Arg f ≤ π. Let v = −Arg f . Then |v| ≤ π and f = |f |e−iv . Since 0 <

|F | ≤ Re f , |v| < π/2. By the proof of [2, Lemma IV. 5.4], if |v| ≤ π/2
then eṽ cos v ∈ L1. Let g = eiv−ṽ . Then fg = |f |e−ṽ > 0. Since f is outer,
F/fg ∈ N+. Since

∣∣∣∣
F

fg

∣∣∣∣ ≤
Re f

|fg| =
cos v

|g| = eṽ cos v ∈ L1,

it follows that F/fg ∈ H1. Since F is strongly outer, F/fg is a scalar multiple
of F . Hence fg = c for some positive constant c. Hence f = c eṽ−iv , and hence

|F | ≤ c eṽ cos v. Define u by |F | = eu+ṽ . Then eu ≤ c cos v. This implies (3).
(3) ⇒ (2): In the following we do not assume that F is strongly outer. We assume

that F is a nonzero function in H1. By (3), |F | ≤ Re f and Re f ∈ L1. Let

(ṽ − iv)(z) denote the Poisson transform of (ṽ − iv)(eiθ). Let g(z) = c e(ṽ−iv)(z).

Then Re g(z) ≥ 0 (z ∈ D), lim
r→1

g(reiθ) = f(eiθ) a.e. on ∂D, and

sup
0≤r<1

1
2π

∫ 2π

0
Re g(reiθ)dθ = Re g(0) < ∞.

Hence

Re g(z)≥ 1
2π

∫ 2π

0

1 − |z|2

|eiθ − z|2Re f(eiθ)dθ

≥ 1
2π

∫ 2π

0

1 − |z|2

|eiθ − z|2 |F (eiθ)|dθ = Re

(
1 + α(z)
1 − α(z)

)
(z ∈ D).

Hence there exists a contractive function β in H∞ such that

g(z) =
1 + α(z)
1 − α(z)

+
1 + β(z)
1 − β(z)

(z ∈ D).

Since lim
r→1

g(reiθ) = f(eiθ) a.e. on ∂D, this implies (2).
(2) ⇒ (1): Since |β| ≤ 1, Re (1 + β)/(1− β) ≥ 0. Hence

|F | = Re
1 + α

1 − α
≤ Re

(
1 + α

1 − α
+

1 + β

1 − β

)
= Re f a.e. on ∂D.

This implies (1).
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By Proposition 2 (3) and [2, Corollary III. 2.6], if |F | ≤ Re f a.e. on ∂D and

f is an outer function then both f and f−1 belong to Hp for all p < 1.
By (1), the set of all functions f satisfying one of the conditions (1) ∼ (3) is

a convex subset of N+. If F is a nonzero function in H1, then (3) ⇒ (2) ⇒ (1)

holds in Proposition 2. But by [4, Theorem 6], (1) ⇒ (3) does not hold in general.

Theorem 1. Suppose F is a strongly outer function in H1. Define α by

1 + α(z)
1 − α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
|F (eiθ)|dθ (z ∈ D).

For f in N+, (1) ∼ (4) are equivalent. (γ1, . . . , γ5 are positive appropriate

constants.)

(1) |F | ≤ γ1 Re f and |F−1| ≤ γ1 Re(f−1) a.e. on ∂D.
(2) (1/γ2)Re f ≤ |F | ≤ γ2 Re fand |f | ≤ γ2Re f a.e. on ∂D and f is in H1.

(3) There exists a contractive function β in H∞ such that

γ3f =
1 − αβ

(1 − α)(1− β)
and

|1− αβ|
|1 − α| · |1 − β| ≤ γ4

1− |α|2

|1− α|2 a.e. on ∂D.

(4) There exists a constant c > 0 and real functions u, v in L∞ such that

|F | = eu+ṽ , ‖v‖∞ ≤ cos−1 γ5 <
π

2
and f = c eṽ−iv a.e. on ∂D.

Proof. (1) ⇒ (2): By (1),

(Re f)2 ≤ |f |2 ≤ γ1(Re f)|F | ≤ γ2
1(Re f)2.

Hence |f | ≤ γ1 Re f ≤ γ2
1|F | ∈ L1. This implies (2) with γ2 = γ1.

(2) ⇒ (1): By (2),

1
|F | ≤ γ2

1
Re f

≤ γ3
2

Re f

|f |2 = γ3
2 Re

1
f

.

This implies (1) with γ1 = γ3
2.

(2) ⇒ (3): Since f ∈ H1 and Re f ≥ 0 a.e. on ∂D, Re f(z) > 0 (z ∈ D). Hence
f is an outer function. Since |F | ≤ γ2 Re f , by Proposition 2,

γ2f =
1 + α

1 − α
+

1 + β

1 − β
=

2(1− αβ)
(1 − α)(1 − β)

for some contractive function β in H∞. Since |f | ≤ γ2 Re f ≤ γ2
2 |F |,

2|1− αβ|
|1 − α| · |1− β| =

∣∣∣∣
1 + α

1 − α
+

1 + β

1 − β

∣∣∣∣ = γ2|f | ≤ γ3
2|F | = γ3

2

1− |α|2

|1− α|2
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This implies (3) with γ3 = γ2/2 and γ4 = γ3
2/2.

(3) ⇒ (4): By (3), f is outer, since α and β are contractive. Since

|F | = Re

(
1 + α

1 − α

)
≤ 2γ3 Re f,

by Proposition 2, |F | = eu+ṽ , |v| < π/2, eu ≤ c0 cos v and 2γ3f = c0e
ṽ−iv ,

where c0 is a positive constant and u, v are real functions. Hence

c0e
ṽ = 2γ3|f | =

2|1− αβ|
|1 − α| · |1− β|

≤ 2γ4
1 − |α|2

|1 − α|2 = 2γ4|F | = 2γ4e
u+ṽ

≤ 2c0γ4 eṽ cos v ≤ 2c0γ4 eṽ .

Hence c0/2γ4 ≤ eu ≤ c0 and cos v ≥ 1/2γ4 > 0. Hence u, v ∈ L∞ and ‖v‖∞ ≤
cos−1(1/2γ4) < π/2. This implies (4) with c = c0/2γ3 and γ5 = 1/2γ4.

(4) ⇒ (1): Since cos v ≥ γ5,

|F | = eu+ṽ ≤ 1
γ5

e‖u‖∞eṽ cos v =
1

cγ5
e‖u‖∞Re f,

and
1
|F | = e−u−ṽ ≤ c

γ5
e‖u‖∞e−ṽ cos v =

c

γ5
e‖u‖∞Re

1
f

.

This implies (1) with γ1 = (1/γ5) max(c, c−1)e‖u‖∞ .

By Theorem 1 (2), the set of all functions f satisfying one of the conditions (1)
∼ (4) is a convex subset of H1.

3. HELSON-SZEGÖ WEIGHT

Let W be a positive function in L1 and log W be in L1. For each ε > 0, put

EW,ε =
{
v ∈ Re L∞; log W − ṽ ∈ L∞ and ‖v‖∞ ≤ π

2
− ε

}

and EW =
⋃

ε>0 EW,ε. EW,ε and EW are convex subsets of Re L∞. When EW is

nonempty, W is called a Helson-Szegö weight. Then for each v in EW there exists

a u ∈ Re L∞ such that log W = u + ṽ. In this section, we study two problems
about a Helson-Szegö weight. In Theorem 2 we describe EW . Theorem 3 follows

from Theorem 2 immediately.



“Helson-Szegö Weight” 581

Theorem 2. Let W be a positive function in L1. Define α by

1 + α(z)
1 − α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
W (eiθ)dθ (z ∈ D).

Then v belongs to EW if and only if

v = −Arg 1 − αβ

(1− α)(1 − β)
a.e. on ∂D,

where β is a contractive function in H∞ satisfying

|1− αβ|
|1− α| · |1 − β|

≤ γ
1 − |α|2

|1− α|2
a.e. on ∂D

for some constant γ > 0.

Proof. If v ∈ EW , then v ∈ EW,ε for some constant ε > 0. Hence W = eu+ṽ

where u ∈ L∞ and ‖v‖∞ ≤ (π/2)− ε. Hence there exists a constant γ > 0 such
that

W ≤ γ eṽ cos v and W−1 ≤ γ e−ṽ cos v,

where e‖u‖∞ ≤ γ cos v. If f = eṽ−iv, then W ≤ γ Re f , W−1 ≤ γ Re (f−1) and
f ∈ H1. Since W , W−1 ∈ L1, there exists an outer function F such that |F | = W

and F, F−1 ∈ H1. Hence F is strongly outer. By Theorem 1, there exist constants

γ3, γ4 > 0 and a contractive function β ∈ H∞ such that

γ3f =
1 − αβ

(1− α)(1− β)
and

|1− αβ|
|1− α| · |1 − β| ≤ γ4

1 − |α|2

|1− α|2 a.e. on ∂D.

Hence

v = −Arg f = −Arg 1 − αβ

(1− α)(1− β)
a.e. on ∂D.

This implies the ‘only if’ part. Conversely, suppose v satisfies the condition. Define

f by

f =
1 − αβ

(1 − α)(1 − β)
.

Then

v = −Arg f and |f | ≤ γ
1− |α|2

|1− α|2 a.e. on ∂D

for some constant γ > 0. Then f satisfies (3) of Theorem 1 and

W =
1− |α|2

|1− α|2 ≤ 1 − |α|2

|1− α|2 +
1 − |β|2

|1− β|2 = 2 Re f ≤ 2|f | ≤ 2γ
1− |α|2

|1 − α|2 = 2γW.
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Since W is a positive function in L1, Re f ≥ 0 a.e. on ∂D and f ∈ H1. Hence

f is strongly outer. Since logW ∈ L1, there exists an outer function F ∈ H1 such

that |F | = W . Let k be any function satisfying k ∈ H1 and k/F ≥ 0 a.e. on ∂D.
Since f/F ∈ H∞, kf/F ∈ H1. Since f is strongly outer, kf/F = cf for some
constant c. Hence k = cF . Therefore F is strongly outer. By Theorem 1, there

exists a constant c > 0 and real functions u, v0 ∈ L∞ such that ‖v0‖∞ < π/2,
W = eu+ṽ0 and f = c eṽ0−iv0 a.e. on ∂D. Hence

v0 = −Arg f = −Arg 1 − αβ

(1 − α)(1 − β)
= v.

Hence W = eu+ṽ a.e. on ∂D and ‖v‖∞ < π/2. Hence v belongs to EW .

By Theorem 2, if W = 1 then α = 0 and hence

E1 =
{

v ∈ Re L∞; ‖v‖∞ <
π

2
and ṽ ∈ L∞

}

=
{
−Arg 1

1 − β
; β ∈ H∞, ‖β‖ ≤ 1 and

1
1− β

∈ L∞
}

.

Theorem 3. Let W be a positive function in L1. Define α by

1 + α(z)
1− α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
W (eiθ)dθ (z ∈ D).

(1) W is a Helson-Szegö weight, that is, EW 6= ∅ if and only if there exists a
constant γ > 0 and a contractive function β in H∞ such that

|1− αβ|
|1− α| · |1 − β| ≤ γ

1− |α|2

|1− α|2 a.e. on ∂D.

(2) If α is a Stolz function, then W is a Helson-Szegö weight, and W−1 belongs

to L∞.

Proof. By Theorem 2, (1) follows immediately. By Theorem 2 with β = 0,
if α is a Stolz function, then v = −Arg (1 − α)−1 belongs to EW , and hence

EW 6= ∅. By (1), W is a Helson-Szegö weight. Since W = (1 − |α|2)/|1− α|2 =
[(1+ |α|)/|1−α|][(1−|α|)/|1−α|] a.e. on ∂D and α is a Stolz function, it follows
that W−1 ∈ L∞.

Note that if α is a Stolz function, then α2 is also a Stolz function. In fact, if α

is a γ-Stolz function, then |α| ≤ 1 and

|1− α2| ≤ |1− α| + |α(1− α)| ≤ 2|1− α| ≤ 2γ(1− |α|) ≤ 2γ(1− |α|2).
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Let W be a positive function in L1. By Proposition 1, W = c eṽ for a constant

c > 0 and a real function v with ‖v‖∞ < π/2 if and only if there exists an α ∈ H∞

such that α2 is a Stolz function and W = |1 + α|/|1− α|. Then there exists a u ∈
Re L∞ such that

W =
|1 − α2|
1 − |α|2

1 − |α|2

|1 − α|2
= eu 1 − |α|2

|1 − α|2
= eu Re F,

where F = 1+α
1−α .

4. REMARK

Put Br = {β ∈ H∞; ‖β‖∞ ≤ r} and put

Bα =
{

β ∈ B1;
|1− αβ|

|1− α| · |1 − β| ≤ γ
1− |α|2

|1 − α|2 a.e. on ∂D for some constant γ > 0
}

,

where α is a contractive function in H∞. The set Bα was important in Theorems

1, 2 and 3. Let W be a Helson-Szegö weight. Define α by

1 + α(z)
1 − α(z)

=
1
2π

∫ 2π

0

eiθ + z

eiθ − z
W (eiθ)dθ.

Then by Theorem 2,

EW =
{

v = −Arg 1 − αβ

(1 − α)(1 − β)
; β ∈ Bα

}
.

If W = 1 then α = 0 and

E1 =
{
−Arg 1

1− β
; β ∈ B0

}
.

In this section, we study such a set Bα. α is a Stolz function if and only if 0 ∈ Bα.

α2 is a Stolz function if and only if α ∈ Bα. Hence if 0 ∈ Bα then α ∈ Bα. If α

is a Stolz function and β ∈ Br, r < 1, then for some constant γ > 0

|1 − αβ|
|1 − α| · |1− β| ≤

2
(1 − r)|1− α| ≤

2γ(1− |α|2)
(1− r)|1− α|2 a.e. on ∂D,

and hence β ∈ Bα. Hence if α is a Stolz function, then Br ⊂ Bα (r < 1).
For two positive functions f and g on ∂D, if there exists a constant γ > 0 such

that (1/γ)g ≤ f ≤ γg a.e. on ∂D, then we write f ∼ g.

Lemma. Suppose α and β are contractive functions inH∞. Then the following

(1) ∼ (5) are equivalent:
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(1) ‖(α− β̄)/(1− αβ)‖∞ < 1.
(2) |1− αβ|2 ≤ γ2(1 − |α|2)(1 − |β|2) a.e. on ∂D for some constant γ2 > 0.
(3) There exists a constant γ3 > 0 such that for any function t > 0

|1 − αβ|
|1− α| · |1− β| ≤ γ3

{
t
1 − |α|2

|1 − α|2 +
1
t

1 − |β|2

|1− β|2

}
a.e. on ∂D.

(4) There exists a constant γ4 > 0 such that

|1 − αβ|
|1− α| · |1− β| ≤ γ4

1 − |α|2

|1 − α|2 a.e. on ∂D

and
|1 − αβ|

|1 − α| · |1− β| ≤ γ4
1 − |β|2

|1 − β|2 a.e. on ∂D.

(5) |1− α| ∼ |1 − β| and 1 − |α| ∼ 1 − |β| ∼ |1 − αβ|.

Proof. (1) and (2) are equivalent because

1 −
∣∣∣∣

α − β̄

1 − αβ

∣∣∣∣
2

=
(1 − |α|2)(1− |β|2)

|1 − αβ|2 .

(cf. [5, p. 58]). (2) and (3) are equivalent because if a, b > 0 then 2
√

ab ≤ a + b
and the equality holds when a = b. (1) ⇒ (5): Let f = (ᾱ − β)/(1− αβ). Then
‖f‖∞ < 1, β = (ᾱ − f)/(1− αf) and

|1 − β| =
|(1− ᾱ) + f(1− α)|

|1 − αf | ≥ |1− α| − |f | · |1 − α|
2

≥ 1 − ‖f‖∞
2

|1− α|.

Let g = (α − β̄)/(1− αβ). Then ‖g‖∞ = ‖f‖∞ < 1, α = (g + β̄)/(1 + gβ) and

|1 − α| =
|(1− β̄) − g(1− β)|

|1 + gβ| ≥ |1− β| − |g| · |1 − β|
2

≥ 1− ‖g‖∞
2

|1 − β|.

Hence |1 − α| ∼ |1− β|. Since 0 < 1− ‖f‖∞ ≤ |1 − αf | ≤ 2 and

1 − |β|2 =
(1− |α|2)(1− |f |2)

|1− αf |2
,

1− |α| ∼ 1− |β|. Since |1− αf | = (1− |α|2)/|1− αβ|, |1− αβ| ∼ 1− |α|. It is
clear that (5) implies (4). If we multiply both sides of the two inequalities in (4),

then (2) follows.

By the above lemma, Proposition 3 follows immediately.
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Proposition 3. If α ∈ B1, then

Bα ⊃
{

β ∈ B1;
∥∥∥∥

α − β̄

1− αβ

∥∥∥∥
∞

< 1
}

.
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