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A SPACE OF MEROMORPHIC MAPPINGS AND

AN ELIMINATION OF DEFECTS

Seiki Mori∗

Abstract. This is a summary report of my recent articles. Nevanlinna theory

asserts that each meromorphic mapping f of Cm into Pn(C) has few defects.
However, it seems that meromorphic mappings with defects are very few.

In this report, we shall show that for any given transcendental meromorphic

mapping of Cm into Pn(C), there is a small deformation of f which has no
Nevanlinna deficient hyperplanes in Pn(C), and also in the case m = 1, there
is a small deformation of f which has no Nevanlinna deficient hypersurfaces
of degree ≤ d for each given positive integer d, or deficient rational moving
targets. Furthermore, we shall show that mappings without Nevanlinna defects

are dense in a space of transcendental meromorphic mappings.

1. INTRODUCTION

Nevanlinna defect relations were established for various cases, for example,

holomorphic (or meromorphic) mappings of Cm into a complex projective space

Pn(C) for constant targets of hyperplanes or moving targets of hyperplanes (arbitrary
m ≥ 1 and n ≥ 1), or holomorphic mappings of an affine variety A of dimensionm
into a projective algebraic variety V of dimension n for divisors on V (m ≥ n ≥ 1),
and so on. On the other hand, the size of a set of Valiron deficient hyperplanes or

deficient divisors are investigated (e.g., Sadullaev [8], Mori [4]). Nevanlinna theory

asserts that for each holomorphic (or meromorphic) mapping, Nevanlinna defects

or Valiron defects of the mapping are very few. Until now, there are few results

on defects of a family of mappings. Recently, the author [4, 5, 6] proved that for

a transcendental meromorphic mapping f of Cm into Pn(C), we can eliminate all
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deficient hyperplanes (m ≥ 1), all deficient hypersurfaces of degree at most a given
integer d or rational moving targets (m = 1) in Pn(C) by a small deformation of
the mapping. The class of meromorphic mappings which does not have a Valiron

deficiency is important, because these functions have a counting functionN(r,D) ∼
Tf(r), r→ ∞, for every target D.

We shall now discuss an elimination theorem of defects of a meromorphic map-

ping or a holomorphic curve by its small deformation, and also discuss a space of

meromorphic mappings without defects. Here a small deformation f̃ of f means
that their order functions Tf(r) and Tf̃(r) satisfy |Tf(r)− Tf̃(r)| ≤ o(Tf(r)) as r
tends to infinity.

2. PRELIMINARIES

2-1. Notation and Terminology

Let z = (z1, ..., zm) be the natural coordinate system in Cm. Set

〈z, ξ〉 =
m∑

j=1

zjξj for ξ = (ξ1, ..., ξm), ‖z‖2 = 〈z, z̄〉, B(r) = {z ∈ Cm | ‖z‖ < r},

∂B(r) = {z ∈ Cm | ‖z‖ = r}, ψ = ddc log ‖z‖2 and σ = dc log ‖z‖2 ∧ ψm−1,

where dc = (
√
−1/4π)(∂̄ − ∂), and ψk = ψ ∧ · · · ∧ ψ (k-times).

Let f be a meromorphic mapping of Cm into Pn(C). Then f has a reduced
representation (f0 : ... : fn), where f0, ..., fn are holomorphic functions on Cm with

codim{z ∈ Cm | f0(z) = · · · = fn(z) = 0} ≥ 2. We write f = (f0, ..., fn) as
the same letter of the meromorphic mapping f. Denote Dαf = (Dαf0, ..., D

αfn)
for a multi-index α, where Dαφ = ∂ |α|φ/∂zα1

1 · · ·∂zαm
m , α = (α1, ..., αm), |α| =

α1 + · · ·+ αm and a function φ.
Definition (see Fujimoto [2, §4]). We define the generalized Wronskian of f by

Wα0,...,αn(f) = det (Dαk
f : 0 ≤ k ≤ n),

for n+ 1 multi-indices αk = (αk
1 , ..., α

k
m)(0 ≤ k ≤ n).

By Fujimoto [2, §4], for every linearly nondegenerate meromorphic mapping f of
Cm into Pn(C), there are n+1 multi-indicesα0, ..., αn such that {Dα0

f, ..., Dαn
f}

is an admissible basis with |αk| ≤ n+1. ThenWα0,...,αn(φf) = φn+1Wα0,...,αn(f)6≡
0 holds for any nonzero holomorphic function φ on Cm, where φf = (φf0, ..., φfn).

Let f be a nonconstant meromorphic mapping f of Cm into Pn(C), and let
L = [Hd] be the line bundle over Pn(C) which is determined by the dth tensor
power of the hyperplane bundle [H ]. A hypersurface D of degree d in Pn(C)
is given by the divisor of a holomorphic section δ ∈ H0(Pn(C),O(L)) which is
determined by a homogeneous polynomial P (w) of degree d. A metric a = {aα}



A Space of Meromorphic Mappings and an Elimination of Defects 521

on the line bundle L is given by aα = (
∑n

j=0 |wj/wα|2)d in a neighborhood

Uα = {wα 6= 0}.
The Nevanlinna order function Tf(r,L) of f for the line bundle L is given by:

Tf(r,L) :=
∫ r

r0

dt

t

∫

B(t)

f∗ω∧ψm−1,

where ω = {ωα} = ddc log
∑n

j=0(|wj/wα|2)d in a neighborhood Uα := {wα 6= 0}.
We say that a meromorphic mapping f is transcendental if

lim
r→+∞

Tf(r,L)
log r

= +∞.

A meromorphic mapping f is rational if and only if Tf(r,L) = O(log r) (r →
+∞). The norm of a section δ is given by

‖δ‖2 :=
|δα|2

aα
=

|P (w)|2

(
∑n

j=0 |wj|2)d
.

We may assume ‖δ‖ ≤ 1. The proximity function mf(r,D) of D is defined by

mf(r,D) :=
∫

∂B

log
1

‖δf‖
σ =

∫

∂B

log
‖f‖d

|P (f)|
σ.

The Nevanlinna deficiency δf (D) and the Valiron deficiency ∆f(D) of D for f is
defined by

δf (D) := lim inf
r→∞

mf(r,D)
Tf (r,L)

and δf (D) := lim sup
r→∞

mf (r,D)
Tf(r,L)

.

In particular, if L is the hyperplane bundle [H ] and D is a hyperplane H which is

given by a vector a = (a0, ..., an) ∈ Cn+1 \ {0}, the proximity function mf (r,H)
and the counting function Nf(r,H) of a hyperplane H in Pn(C) are given by:

mf (r,H) :=
∫

∂B(r)
log

‖f‖ ‖a‖
|〈f, a〉| σ and Nf(r,H) :=

∫ r

r0

dt

t

∫

(f∗H)∩B(t)
ψm−1,

for some fixed r0 > 0, whereH = {w = (w0, ..., wn) ∈ Cn+1\{0} |
∑n

j=0 ajwj =
0} and f∗H denotes the pullback ofH under f . Also, the Nevanlinna order function
Tf (r) ≡ Tf (r, [H ]) of f for the hyperplane bundle [H ] is written as:

Tf(r) =
∫

∂B(r)
log

( n∑

j=0

|fj |2
)1/2

σ + O(1) =
∫

∂B(r)
log

n∑

j=0

|fj |σ + O(1)
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by using Stoke’s theorem. We write

N(r, (φ)) :=
∫ r

r0

dt

t

∫

(φ)∩B(t)

ψm−1,

where (φ) denotes the divisor determined by a meromorphic function φ on Cm.

Let f : Cm → Pn(C) be a meromorphic mapping with a reduced representation
(f0 : ... : fn). Let φ : Cm → Pn(C)∗ be a meromorphic mapping with a reduced
representation (φ0 : ... : φn), which is called a moving target for f . Then the
proximity function mf(r, φ) and the counting function Nf(r, φ) of a moving target
φ into Pn(C)∗ are given by:

mf (r, φ) :=
∫

∂B

log
‖f‖ ‖φ‖
|〈f, φ〉| (reiθ)dθ and Nf(r, φ) :=

∫

B(r)∩(A)0

ψm−1,

where ‖f‖2 =
∑n

j=0 |fj |2 and (A)0 denotes the divisor determined by the zeros
of A := 〈f, φ〉 =

∑n
j=0 φjfj . The Nevanlinna deficiency δf (φ) and the Valiron

deficiency ∆f (φ) of a moving target φ for f are given by:

δf (φ) := lim inf
r→+∞

mf (r, φ)
Tf (r) + Tφ(r)

and ∆f (φ) := lim sup
r→+∞

mf (r, φ)
Tf(r) + Tφ(r)

.

We now define the projective logarithmic capacity of a set in the projective space

Pn(C). (see, Molzon-Shiffman-Sibony [7, p. 46]). Let E be a compact subset of

Pn(C), and P(E) denotes the set of probability measures supported on E. We set

Vµ(x) :=
∫

w∈Pn(C)

log
‖x‖ ‖w‖
|〈x, w〉|

dµ(w) (µ ∈ P(E)) and

V (E) := inf
µ∈P(E)

sup
x∈Pn(C)

Vµ(x).

Define the projective logarithmic capacity C(E) of E by

C(E) :=
1

V (E)
.

If V (E) = + ∞, we say that the set E is of projective logarithmic capacity zero.

For an arbitrary subset K of Pn(C), we put

C(K) = sup
E⊂K

C(E),

where the supremum is taken over all compact subsets E of K.
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2-2. Some Results

A.Vitter [9] proved the following theorem:

Theorem A (Lemma of the logarithmic derivatives). Let f = (f0 : f1) be a
reduced representation of a meromorphic mapping f : Cm → P1(C). Set F =
f1/f0. Then there exist positive constants a1, a2, a3 such that

∫

∂B(r)
log+ |Fzj/F |σ ≤ a1 + a2 log r + a3 logTf(r), (j = 1, ..., m). //.

Here the notation “A(r) ≤ B(r) //” means that the inequality A(r) ≤ B(r)
holds for r outside a Borel set with finite Lebesgue measure.

Molzon-Shiffman-Sibony proved the following result on the projective logarith-

mic capacity.

Theorem B [7, p. 47]. Let ϕ : [0, 1] → Pn(C) be a real smooth nondegenerate
arc in Pn(C), and K a compact subset of the interval [0, 1] ⊂ C. Then the
projective logarithmic capacity C(ϕ(K)) is positive if and only if K has a positive

logarithmic capacity in C.

Here “smooth nondegenerate arc ϕ” means that there exists a lift ϕ̃ : [0, 1] →
Cn+1 \{0} such that the kth derivatives {ϕ̃(k)(t)}k≥0 of ϕ̃(t) spans Cn+1 for every

t ∈ [0, 1].

Theorem C [4]. Let f be a meromorphic mapping of Cm into Pn(C) such that
limr→+∞ Tf(r) = +∞. Then there exist a sequence r1 < r2 < . . . < rn → +∞
and sets En : En+1 ⊂ En (n = 1, 2, ...) in Pn(C)∗ with V (En) ≥ 2 logTf(rn)
such that, if H does not belong to En, then

mf (r,H)≤ 4
√
Tf(r) logTf(r)

for r > rn. Hence

lim
r→+∞

mf (r,H)
Tf (r)

= 0

outside a set E ⊂ Pn(C)∗ of projective logarithmic capacity zero. Here Pn(C)∗

denotes the dual projective space of Pn(C).

Theorem D [1]. Set Λ(r) : =
∫ r
r0
ψ(t)/dt t, where ψ(r) is nonnegative,

nondecreasing and unbounded. If Λ(r) < rK for some K > 0 and all suffi-
ciently large r, then there exists an entire function g(z) of finite order such that
Tg(r) ∼ Λ(r)(r→ ∞).
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3. ELIMINATION OF DEFECTS OF MEROMORPHIC MAPPINGS

3-1. Elimination of deficient hyperplanes of a meromorphic mapping

For a transcendental meromorphic mapping g of Cm into Pn(C), we can elim-
inate all deficient hyperplanes by a small deformation of g.

Lemma 1 [4]. There are monomials ζ1, ..., ζn in z1, ..., zm such that any n

derivatives in {Dαζ : = (Dαζ1, ..., D
αζn) | |α| ≤ n+ 1} are linearly independent

over the fieldM of meromorphic functions on Cm, where α = (α1, ..., αm) ∈ Z≥0

is a multi-index.

Lemma 2 [4]. Let h = (h0 : h1 : · · · : hn) be a reduced representation
of a meromorphic mapping of Cm into Pn(C) and ζ1, ..., ζn linearly independent
monomiales in z1, ..., zm as in Lemma 1. Then there exists (ã1, ..., ãn) such that
ãj = αkj (j = 1, ..., n) with k1 = 1, km =

∑m−1
l=1 kl +1 (m = 2, 3, ..., n) (α ∈ C),

and

f : = (h0 : h1 + ã1ζ1h0 : h2 + ã2ζ2h0 : · · · : hn + ãnζnh0)

is a reduced representation of a linearly nondegenerate meromorphic mapping of

Cm into Pn(C).

Lemma 3 [4]. Let f = (f0 : · · · : fn) and h = (h0 : · · · , hn) be as in Lemma
2. Then we have

|Tf(r)− Th(r)| ≤ O(log r) (r→ ∞).

Lemma 4 [4]. The set of vectors

A :=
{(

1, a1, ...,
n∏

k=1

ak

)
|aj ∈ C

}

is of positive projective logarithmic capacity in PN(C), where N = 2n − 1.

Theorem 1 [4]. Let g : Cm → Pn(C) be a given transcendental meromorphic
mapping. Then there exists a regular matrix L = (lij)0≤i,j≤n of the form li,j =
cijζi+dij , (cij, dij ∈ C : 0 ≤ i, j ≤ n), such that detL 6= 0 and f : = L·g : Cm →
Pn(C) is a meromorphic mapping without Nevanlinna deficient hyperplanes, where
ζ1, ..., ζn are some monomials in z1, ..., zm which are linearly independent over C.

Here the mapping f := L · g : Cm → Pn(C) means a product of the matrix
L = (lij) and a vector of a reduced representation g̃ =t (g0 : ... : gn) of g which
does not depend on a choice of g̃, and also a Nevanlinna deficient hyperplane H

for f means a hyperplane with δf (H) > 0.
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Remark 1. For the mappings as in Theorem 1, the inequality |Tf(r)−Tg(r)| ≤
O(log r) (r→ +∞) holds, and also the mapping g may be linearly degenarate or
of infinite order.

Remark 2. A rational mapping g always has a Nevanlinna deficient hyperplane
if m = 1 or there is a regular linear change L0 such that L0 · g has a reduced repre-
sentation which consists of polynomials including different degrees. But otherwise

g does not have Nevanlinna deficient hyperplanes.

Remark 3. If g is of finite order, we can replace “Nevanlinna deficiency” by
“Valiron deficiency” in the conclusion of Theorem 1.

Remark 4. If m = 1, we can take ζk = zk (k = 1, ..., n).

Outline of the proof of Theorem 1 (see [4]).

1st step. There is a regular linear change L1 of Pn(C) such that

h : = L1 · g = (h0 : · · · : hn) : Cm −→ Pn(C)

and a reduced representation of the meromorphic mapping h which satisfies

N(r, (hj)) = (1 − o(1))Th(r), (r→ +∞), (j = 0, 1, .., n).

2nd step. Using Theorems B and C, and Lemmas 1 and 2, there are f = (h0 :
h1 + a1ζ1h0 : ... : hn + anζnh0) and multi-indices β0, ..., βn such that f is linearly

nondegenerate and its generalized Wronskian satisfies Wβ : = Wβ0,...,βn(f) 6≡ 0.
Note that there are many such {a1, ..., an}. Then it can be written as

Wβ = hn+1
0

(
W0 + a1W1 + · · ·+

n∏

i=1

aiWN

)
6≡ 0,

where Wk is a generalized Wronskian of some of 1, h1/h0, a1ζ1, ..., hn/h0, anζn
(0 ≤ k ≤ N = 2n − 1).

3rd step. Consider the auxiliary meromorphic mapping F of the form

F : = (W0/d : W1/d : · · · : WN/d) : Cm −→ PN(C),

where d = d(z) is a meromorphic function which consists of common factors
among W0, ...,WN such that W0/d, ...,WN/d are holomorphic functions without

common factors up to unit. Then we observe that the meromorphic mapping F is
not constant. Therefore, there exists an a0 = (1, ã1, ..., ãn, ã1ã2, ...,

∏n
j=1 ãj) such

that

lim sup
r→∞

mF (r,Ha0)
TF (r)

= 0,
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since the set of Valiron deficient hyperplanes of a nonconstant meromorphic mapping

is of projective logarithmic capacity zero in PN(C)∗.

4th step. Consider the meromorphic mapping given by the following reduced

representation by using the vector a0 in the 3rd step:

f : = L2 · h = (f0 : · · · : fn) : Cm −→ Pn(C),

where

L2 =




1 0 · · · 0
ã1 ζ1 1 · · · 0
ã2 ζ2 0 · · · 0

· · · · · ·
ãn ζn 0 · · · 1



, (det L2 = 1 6= 0).

Hence f0 = h0 and fk = hk + ãkζkh0 (k = 1, ..., n). Then we observe that

Tf(r) = Tg(r) + O (log r) = (1 + o(1))Tg(r), (r→ +∞),

if g is not rational.

Claim 1. Let F and f be as above. Then there exists a positive constant K
such that

TF (r) ≤ KTf(r).

5th step. Take an arbitrary vector b = (b0, ..., bn) ∈ Cn+1 \ {0}, which de-
termines the hyperplane H = {w ∈ Cn+1 \ {0}| 〈w,b〉 = 0} in Pn(C). We may
assume that bn 6= 0. Then f0, f1, ..., fn−1, A = 〈f,b〉 are linearly independent over
C. Thus we have

mf(r,Hb) =
∫

∂B(r)
log

‖f‖
|A| σ

=
∫

∂B(r)
log

|Wβ0,..,βn(f0, .., fn)|
|A| |f0| · · · |fn−1|

σ +
∫

∂B(r)
log

‖f‖ |f0| · · · |fn−1|
|Wβ0,..,βn(f0, .., fn)|σ

≤
∫

∂B(r)
log

|b−1
n | |Wβ0,..,βn(f0, .., fn−1, A)|

|A||f0| · · · |fn−1|
σ +

∫

∂B(r)
log

‖f‖n+1

|f0|n+1
σ

+
∫

∂B(r)
log

1
|W0 + a1W1 + · · ·+

∏n
j=1 ajWN |σ + O(1),

≤ o(Tf(r)) + (n+ 1)mf(r,H(1,0,..,0))

+
∫

∂B(r)
log

(|W0| + |W1| + · · ·+ |WN |)(1/|d|)
|W0 + a1W1 + · · ·+

∏n
j=1 ajWN |(1/|d|)σ +O(1)
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= o(Tf(r)) +
∫

∂B(r)

log
‖F‖

|〈F, a0〉|
σ = o(Tf(r)) + o(TF (r)) = o(Tf(r)) //.

Therefore, we obtain

δf (Hb) = lim inf
r→+∞

mf(r,Hb)
Tf (r)

= 0,

that is, δf(H) = 0 for any H ∈ Pn(C)∗. This proves Theorem 1.

Note that we can take the norm ‖α̃‖ of a vector α̃ : = (ã1, ..., ãn) as small as
possible in the proof of Theorem 1.

Problem. Is the conclusion of Theorem 1 true if “Nevanlinna deficiency” is

replaced by “Valiron deficiency”?

3-2. Elimination of defect hypersurfaces of a holomorphic mapping of C into

Pn(C)
We shall discuss an elimination theorem on defects of hypersurfaces.

Theorem 2 [5]. Let g be a given transcendental holomorphic mapping of C
into Pn(C), and d ∈ N be given. Then there exists a regular matrix L = (lij) of
the form lij = cijz

mj + dij , (cij, dij ∈ C), |L| 6= 0 and f := L · g : C → Pn(C) is
a holomorphic mapping without Nevanlinna deficient hypersurfaces of degree ≤ d,

where mj (j = 1, ..., n) are some integers such that m1 < d m1 < m2 < · · · <
d mn−1 < mn.

Outline of the proof of Theorem 2. There is a regular linear change L1 such

that the holomorphic mapping h := L1 · g = (h0 : · · · : hn) : C → Pn(C) satisfies
N(r, (hj)) = (1 − o(1))Th(r), (r → ∞), (j = 0, ..., n). Consider the Veronese
embedding vd : Pn(C) → Ps(C), which is defined by homogeneous monomials
of degree d in (w0 : · · · : wn) ∈ Pn(C). Let h̃ = (h̃0 : · · · : h̃n) := (h0 :
h1+a1z

m1h0 : · · · : hn+anz
mnh0). Consider the composed mapping f̂ := vd◦h̃ =

(f̂0 : · · · : f̂s) = (h̃d
0 : h̃d−1

0 h̃1 : · · · : h̃0h̃
d−1
1 : h̃d

1 : h̃d−1
0 h̃2 : · · · : h̃d−1

n h̃n−1 : h̃d
n).

Here s = (n+ d)!/d! n!− 1. We can prove the following Lemma 5 using a similar
method for the proof of Theorem 1.

Lemma 5 [5]. There is a vector (a1, ..., an) ∈ Cn \ {0} such that f̂ is linearly
nondegenerate.

Set

W = W(f̂0, ..., f̂s) = W(h̃d
0, h̃

d−1
0 h̃1, h̃

d−2
0 h̃2

1, ......, h̃
d
n)

= h̃
d(s+1)
0 W(1, H̃1, H̃

2
1 , ......, H̃

k1
1 H̃

k2
2 · · · H̃kn

n , ......, H̃d
s)

= h̃
d(s+1)
0

(
W0 + a1W1 + · · ·+

n∏

k=1

ad
kWN

)
, (H̃j = Hj + ajz

mj),
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where Wj(j = 0, ..., N) are some sums of Wronskians. Consider the auxiliary
holomorphic mapping:

F := (W0/d(z) : W1/d(z) : · · · : WN/d(z)) : C −→ PN(C).

Here d = d(z) is a holomorphic function such thatW0/d, ...,WN/d are holomor-
phic functions without common zeros. Then there is a vector

a ∈ A : =
{(

1, a1, ...,

n∏

k=1

ad
k

)
| aj ∈ C

}

such that mF (r,Ha) = o(TF (r)), (r → ∞), since A has a positive projective

logarithmic capacity by Theorem B. Consider the holomorphic mapping given by

the following reduced representation which is determined by the vector (a1, ..., an)
corresponding to above a:

f : = L2 · h : C −→ Pn(C),

where L2 = (sij) and sij = 1 (i = j), sij = aiz
mi (j = 1, i 6= 1), sij = 0

(otherwise). Then det(sij) 6= 0.

Claim 2. There is a positive constant K such that TF (r) ≤ KTh(r), and also
(1 + o(1))Tf(r) = Tg(r) = (1 + o(1))Th(r), (r → ∞), hold by a similar method
in Section 3-1.

Now we take an arbitrary hypersurface D = Db in Pn(C) which is determined
by a homogeneous polymonial:

P (w) : = b0w
d
0 + b1w

d−1
0 w1 + · · ·+ bkw

j0
0 w

j1
1 · · ·wjn

n + · · ·+ bsw
d
n = 0},

w = (w0, ..., wn) ∈ Cn+1 \ {0}. Then D corresponds to the vector b = (b0, ..., bs).
We may assume that bs 6= 0. We set f̃ := vd ◦ f. Consider the function

Ab =
s∑

k=0

bkf
jk
0

0 · · ·f jk
n

n ,

where Jk := (jk
0 , ..., j

k
n) with |Jk| := jk

0 + · · ·+ jk
n = d. Then f̂0, ..., f̂s−1, Ab are

linearly independent over C, since f̂ := (f̂0 : · · · : f̂s) is linearly nondegenerate.
Then, using Theorem A, Claim 2 and the similar method to the proof of Theorem

1, we obtain

mf(r,Db) =
∫

∂B(r)
log

‖f‖d

|Ab|
σ = o(Tf(r)).
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Therefore, we obtain

δf (Db) = lim inf
r→∞

mf(r,Db)
d Tf(r)

= 0.

In case where hypersurfaces of degree ≤ d, for each d′ (≤ d), we can take a vector
a = ad′ in a subset of A of positive projective logarithmic capacity. Hence we can

take a common vector a ∈ A for each d′. This proves Theorem 2.

Note that Theorem 2 can be extended to the case where meromorphic mappings

of Cm into Pn(C) by using the similar method to Section 3-1.

3-3. Elimination of defects of holomorphic curves for rational moving targets

For a transcendental holomorphic curve f of C into Pn(C), we can eliminate
all defects of rational moving targets by a small deformation of f .

Theorem 3 [6]. Let f : C → Pn(C) be a given transcendental holomorphic
curve. Then there exists a regular matrix

L = (lij)0≤i,j≤n of the form li,j =ij gj + dij, (cij, dij ∈ C : 0 ≤ i, j ≤ n),

such that detL 6= 0 and f̃ = L · f : C → Pn(C) is a holomorphic curve without
Nevanlinna defects of rational moving targets and satisfies

|Tf(r)− Tf̃(r)| = o(Tf(r)), (r→ ∞),

where gj (j = 1, ..., n) are some transcendental entire functions satisfying Tgj(r) =
o(Tgj+1(r)), (j = 1, ..., n− 1), and Tgn = o(Tf(r)) (r→ ∞).

Note that we cannot replace transcendental entire functions gj by any rational

functions.

Problem: Can we extend Theorem 3 to the case of several complex variables?

Outline of the proof of Theorem 3. Let h be a transcendental holomorphic

curve and (h0, ..., hn) its reduced representation. Then there are indices i, j such that
hj/hi is transcendental, say i = 0, j = n. By Theorem D, there are n transcendental

entire functions g1, ..., gn on C such that Tgj(r) = o(Tgj+1), (j = 1, ..., n− 1) and
Tgn(r) = o(Tf(r)) as r → ∞. Then g1, ..., gn are linearly independent over C.
There is a regular linear change L1 such that

h = L1 · f = (h0 : · · · : hn) : C −→ Pn(C),

and a reduced representation of the holomorphic curve h satisfying

N(r, 0, hj) ∼ Th(r), (r→ +∞), (j = 0, ..., n).
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We put h̄k = hk + akgkh0 (k = 1, ..., n) and h̄0 = h0. Consider the reduced

representation of a holomorphic curve

h̄ := (h̄0 : h̄1 : · · · : h̄n) : C −→ Pn(C).

Then there exist complex numbers a1, ..., an such that

{h̄0, zh̄0, ..., z
mh̄0, h̄1, ..., z

mh̄1, ......, h̄n, ..., z
mh̄n}

is linearly independent over C, as in previous theorems.
We now consider the Wronskian

W := W (h̄0, zh̄0, ..., z
mh̄0, h̄1, ..., z

mh̄1, ......., h̄n, ..., z
mh̄n),

and we write it as

W :=W0(h0, zh0, ..., z
mh0, h1, ..., z

mh1, ..., hn, ..., z
mhn)

+a1(W11 + · · ·+W1s1) + · · ·+ an(Wn1 + · · ·+Wnsn)

+a2
1(W121 + · · ·+W12s2

1
) + · · ·+ am+1

1 (W1m+11 + · · ·+W1m+1sm+1
1

)

+a1a2(W1121 + · · ·+W112s12
) + · · ·

+
n∏

j=1

am+1
j WN (1, ..., zm, g1, ..., z

mg1, ..., gn, ..., z
mgn) · h(m+1)(n+1)

0 .

We now rewrite it in an inhomogeneous form as

W = h
(m+1)(n+1)
0

{
W0 + a1W1 + · · ·+

n∏

j=1

am+1
j WN

}
,

where Wk (k = 0, ..., N) are sums of some Wronskian determinants, and N =
(m + 2)n − 1. For any fixed m ∈ N, we consider an auxiliary holomorphic curve
of the form

Fm := (W0/d : W1/d : · · · : WN/d) : C −→ PN (C),

where d = d(z) is a meromorphic function whose zeros and poles consist of common
factors among W0, ...,WN. Then Fm is a reduced representation of nonconstant

holomorphic curve in PN (C).

Lemma 6 [cf. 6]. Let

A :=
{(

1, a1, ..., a
m+1
1 , a2, ..., a

i1
1 a

i2
2 · · ·ain

n , .....,
n∏

j=1

am+1
j

)
|aj ∈ C,

0 ≤ i1, ..., in ≤ m+ 1
}
.
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Then there is a vector a = (1, a1, ...,
∏n

j=1 a
m+1
j ) such that

lim sup
r→∞

mFm(r,Ha)
TFm(r)

= 0.

This holds for any positive integerm, because a countable union of sets of projective
logarithmic capacity zero is of projective logarithmic capacity zero. Here

Ha ={ζ = (ζ0, ..., ζN)|〈ζ, a〉 = 0} and

〈F, a〉 =
{
W0 + a1W1 + · · ·+

n∏

j=1

am+1
j WN

}
/d.

Lemma 7 [6]. Let Fm and h be as above. Then there exists a positive constant

K such that

TFm(r) ≤ KTh(r).

For this (a1, .., an), we consider the holomorphic curve given by the following
reduced representation:

f̃ := L2 · h ≡ (f̃0, ..., f̃n) : C −→ Pn(C),

where L2 : = (sij) and sij = 1 (i = j), sij = aigi (j = 1, i 6= 1), sij = 0
(otherwise). Hence f̃0 = h0, f̃k = hk + akgkh0 (k = 1, ..., n), and det(sij) 6= 0.
Then we see

Tf̃ (r) = Tf (r) + o(Th̄(r)) = (1 + o(1))Tf(r) (r → +∞).

Now we take a given integer m and an arbitrary rational target φ of degree m :

φ = (φ0(z), ..., φn(z)) : C −→ Pn(C)∗.

Then we can choose a reduced representation of φ such that each φj is a poly-

nomial of degree ≤ m and some φi0 is of degree m. Put Am := 〈f̃ , φ〉 =∑n
k=0 φk f̃k. We may assume that φn = bn0 + bn1z + · · ·+ bnmz

m 6≡ 0. We note that
f̃0, zf̃0, ..., z

mf̃0, ......, f̃n−1, zf̃n−1, ..., z
mf̃n−1, f̃n, ..., z

m−1f̃n, Am are linearly in-

dependent over C. Thus we have

mf̃ (r, φ) =
1
2π

∫ 2π

0

log
‖f̃‖
|Am|

dθ = o(Tf̃(r)), //

by Lemma 7 and using a similar method to the proof of Theorem 1. Here s =
m(m+ 1)(n+ 1)/2. Therefore, we obtain

δf̃ (φ) = lim inf
r→+∞

mf̃(r, φ)

Tf̃(r)
= 0.

We note that f̂ := L−1
1 · f̃ is also a small deformation of f.
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4. SPACE OF MEROMORPHIC MAPPINGS INTO Pn(C)

We shall introduce a distance on the space of meromorphic mappings into Pn(C).

For points a = (a0 : ... : an) and b = (b0 : ... : bn) in Pn(C), we define the
distance d(a,b) by

d1(a,b) := inf
θ

∥∥ a
‖a‖ − eiθ

b
‖a‖

∥∥.

Then d1(a,b) satisfies the condition of a distance. Let f = (f0 : ... : fn) and let
g = (g0 : ... : gn) be reduced representations of meromorphic mappings of Cm into

Pn(C). Then the distance d(f(z), g(z)) at z ∈ Cm is given by

d1(f(z), g(z)) = inf
θ

∥∥ f(z)
‖f(z)‖ − eiθ

g(z)
‖g(z)‖

∥∥ ≤ 2.

Define the distance d(f, g) by d(f, g) := d1(f, g) + d2(f, g). Here

d1(f, g) :=
∞∑

n=1

1
2n+1

∫ n+1

n
dt

∫

∂B(t)
d1(f(z), g(z)) σ ≤ 1,

which is a distance but does not distinguish rational and transcendental mappings,

and

d2(f, g) := lim inf
α→+1

lim sup
r→∞

{∣∣ Tf(r)
(log r)1/2 + Tf(r)

− Tg(r)
(log r)1/2 + Tg(r)

∣∣

+
∣∣ Tf(r)
(log r)α + Tf(r)

− Tg(r)
(log r)α + Tg(r)

∣∣

+
∞∑

n=1

∣∣ Tf(r)
rn + Tf (r)

− Tg(r)
rn + Tg(r)

∣∣
}
,

which is a pseudodistance and distinguishes rational and transcendental mappings.

Then d(f, g) satisfies the distance conditions on the space of meromorphic mappings
into Pn(C). Here ∂B(r) denotes the boundary of a ball of radius r and σ denotes
the normalized surface element as

∫
∂B(r) σ = 1 on ∂B(r).

Note that if f is constant, then 0 ≤ d1(f, O) < 1 and d2(f, O) = 0. Hence
0 ≤ d(f, O) < 1. If f is rational, then 0 ≤ d1(f, O) < 1 and d2(f, O) = 1.
Hence 1 ≤ d(f, O) < 2. If f is transcendental, then 0 ≤ d1(f, O) < 1, while
d2(f, O) ≥ 2. Hence d(f, O) ≥ 2. Here O denotes a representation (1, 0, ..., 0).
Therefore we can distinguish constant, rational and transcendental mmappings by

this distance.
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Now,we consider a space of meromorphic mappings

F := {f : Cm → Pn(C)| f is meromorphic}.

In [4, 5, 6] and this note, a small deformation f̃ := L2 · h of f is represented as

f̃ = (h0 : h1 + a1ζ1h0 :, ....., : hn + anζnh0),

where h = (h0 : · · · : hn) := L1 · f. Also, we can choose (a1, ..., an) such that
‖a‖ := |a1| + · · ·+ |an| is as small as possible. So,we can choose f̂ := L−1

1 · f̃
which is a small deformation without Nevanlinna defects of f such that d(f̂ , f) is as
small as possible. Hence transcendental meromorphic mappings without Nevanlinna

defects are dense in the space of transcendental meromorphic mappings F0.
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