TAIWANESE JOURNAL OF MATHEMATICS Vol. 5, No. 3, pp. 497-506, September 2001 This paper is available online at http://www.math.nthu.edu.tw/tjm

ON THE SHAPE OF NUMERICAL RANGES ASSOCIATED WITH LIE GROUPS

Tin-Yau Tam

Dedicated to Ky Fan on the occasion of his 85th birthday

Abstract. A survey of some recent results on the shape of the numerical ranges associated with Lie groups, mainly convexity and star-shapedness, is given. Some questions are asked.

1. INTRODUCTION

The classical numerical range of $A \in \mathbb{C}_{n \times n}$ is defined as the following subset of \mathbb{C} :

$$W(A) := \{ x^* A x : x \in \mathbb{C}^n, x^* x = 1 \}.$$

The celebrated Toeplitz-Hausdorff theorem [27, 13] asserts that it is convex. It is remarkable for it states that the image of the unit sphere in \mathbb{C}^n (a hollow object) is convex under the nonlinear map, $x \mapsto x^*Ax$. Perhaps it is the most interesting geometric property of the set. Various generalizations have been considered in the literature and the development has been very active in the last decades [12, 20]. Our focus will be on the numerical ranges arising from Lie groups. Though the study is fruitful, it is still a new development and by no means covers all generalizations. In this note, we give a brief survey of some recent results on the shape of the numerical ranges, mainly convexity and star-shapedness. Some questions are asked. Our general references for Lie theory are [14, 18, 23].

Received February 9, 2000; revised October 16, 2000.

Communicated by P. Y. Wu.

²⁰⁰⁰ Mathematics Subject Classification: Primary 15A60, 22E99.

Key words and phrases: Numerical range, convexity, star-shaped, Lie group, reductive Lie algebra.

The author thanks Professor Bit-Shun Tam for the arrangement of his visit in Taiwan, which is made possible by a grant from NSC of Taiwan and also thanks the Department of Mathematics of Tamkang University for the support and warm hospitality. The paper is based on a talk of the author given in ICMAA 2000, Taiwan, ROC, Jan. 17-21 2000. He also thanks Professor Pei-Yuan Wu for inviting him to the session of Numerical Ranges and Radii of the conference.

Halmos introduced the k-numerical range of $A \in \mathbb{C}_{n \times n}$:

$$W_k(A) := \left\{ \sum_{i=1}^k x_i^* A x_i : x_1, \dots, x_k \text{ o.n. in } \mathbb{C}^n \right\}, \quad k = 1, \dots, n.$$

He conjectured and Berger [8] proved that $W_k(A)$ is always convex. Then Westwick [29] considered the *c*-numerical range of *A*, where $c \in \mathbb{C}^n$:

$$W_c(A) := \left\{ \sum_{i=1}^n c_i x_i^* A x_i : x_1, \dots, x_n \text{ o.n. in } \mathbb{C}^n \right\}.$$

By spectral decomposition, it can be formulated as

$$W_C(A) := \{ \operatorname{tr} CUAU^{-1} : U \in U(n) \},\$$

where U(n) denotes the unitary group and C is normal with eigenvalues $c \in \mathbb{C}^n$. He proved that $W_C(A)$ is always convex for real c, i.e., C is Hermitian, and this is known as Westwick's convexity theorem, but $W_C(A)$ fails to be convex for complex c when $n \ge 3$. The main idea of Westwick's proof is the application of Morse theory on the homogeneous space $U(n)/\triangle(n)$ where $\triangle(n) \subset U(n)$ is the subgroup of diagonal matrices. Poon [24] gave the first elementary proof to Westwick's result. The result was later rediscovered by Ginsburg [2, p. 8].

2. NUMERICAL RANGE AND COMPACT CONNECTED LIE GROUP

Let us elaborate on Westwick's setting. If $A = A_1 + iA_2$ is the Hermitian decomposition of $A \in \mathbb{C}_{n \times n}$, where A_1, A_2 are $n \times n$ Hermitian matrices, and C is an $n \times n$ Hermitian matrix, then $W_C(A)$ may be identified as the following subset of \mathbb{R}^2 :

(1)
$$W_C(A_1, A_2) := \{(\operatorname{tr} CUA_1U^{-1}, \operatorname{tr} CUA_2U^{-1}) : U \in U(n)\}.$$

It is well-known that U(n) is a compact connected Lie group whose Lie algebra $\mathfrak{u}(n)$ is the set of skew Hermitian matrices. Notice that

$$\operatorname{tr} CU^{-1}BU = \operatorname{tr} BUCU^{-1} = -\operatorname{tr} (iB)U(iC)U^{-1}$$

and thus we may assume that $A_1, A_2, C \in \mathfrak{u}(n)$ if convexity is the main concern, and (1) can be written as $W_C(A_1, A_2) = \{(\operatorname{tr} A_1L, \operatorname{tr} A_2L) : L \in \operatorname{Ad}(U(n))C\}$, where $\operatorname{Ad}(U(n))C := \{UCU^{-1} : U \in U(n)\}$ is the adjoint orbit of C. This orbital point of view turns out to be very useful in our study. The consideration of

498

Raïs [25] is then natural: Let G be a compact Lie group with Lie algebra \mathfrak{g} which is equipped with a G-invariant inner product $\langle \cdot, \cdot \rangle$, i.e.,

$$\langle \operatorname{Ad}\,(g)X,\operatorname{Ad}\,(g)Y\rangle=\langle X,Y\rangle,\qquad X,Y\in\mathfrak{g},\quad g\in G.$$

For $A_1, A_2, C \in \mathfrak{g}$, the C-numerical range of the pair (A_1, A_2) is defined to be the following subset of \mathbb{R}^2 :

(2)
$$W_C(A_1, A_2) := \{ (\langle A_1, \operatorname{Ad}(g)C \rangle, \langle A_2, \operatorname{Ad}(g)C \rangle) : g \in G \}.$$

It can be rewritten as

(3)
$$W_C(A_1, A_2) = \{ (\langle A_1, L \rangle, \langle A_2, L \rangle) : L \in \operatorname{Ad}(G)C \},$$

where $\operatorname{Ad}(G)C := {\operatorname{Ad}(g)C : g \in G}$ is the adjoint orbit of C in \mathfrak{g} .

By using a result of Atiyah [1] on a smooth function whose Hamiltonian vector field generates a torus action on a compact connected symplectic manifold, and the well-known result of Kirillov-Kostant-Souriau: the co-adjoint orbit of a compact connected Lie group has a natural symplectic structure [17], we have

Theorem 2.1. [26] Let G be a compact connected Lie group. For $A_1, A_2, C \in \mathfrak{g}$, the generalized numerical range $W_C(A_1, A_2)$ defined by (2) is convex.

Corollary 2.2.

- (1) (Westwick [27]) Let G = U(n) or SU(n). The C-numerical range $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 U C U^{-1}, \operatorname{tr} A_2 U C U^{-1}) : U \in G\}$ is convex, where A_1, A_2 and C are Hermitian matrices.
- (2) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 O C O^{-1}, \operatorname{tr} A_2 O C O^{-1}) : O \in SO(n)\}$ is convex, where A_1, A_2 , and C are real skew symmetric matrices.
- (3) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 O C O^{-1}, \operatorname{tr} A_2 O C O^{-1}) : O \in O(2n+1)\}$ is convex and is equal to $\{(\operatorname{tr} A_1 O C O^T, \operatorname{tr} A_2 O C O^T) : O \in SO(2n+1)\},$ where A_1, A_2 , and C are real skew symmetric matrices.
- (4) The set $W_C(A_1, A_2) = \{(\operatorname{tr} A_1 U C U^{-1}, \operatorname{tr} A_2 U C U^{-1}) : U \in Sp(n)\}$ is convex, where $A_1, A_2, C \in \mathfrak{sp}(n)$ and the symplectic group $Sp(n) \subset U(2n)$ consists of

$$\begin{bmatrix} A & -\overline{B} \\ B & \overline{A} \end{bmatrix} \in U(2n).$$

Remark 2.3. Theorem 2.1 is best possible in the sense that $W_C(A_1, \ldots, A_p)$ may fail to be convex if $p \ge 3$. Indeed, when G = U(n) and $C = \text{diag}(1, 0, \ldots, 0)$, $W_C(A_1, \ldots, A_p)$ fails to be convex [3] for some choice of A's when $p \ge 3$ or n = 2 while p = 3. But it is convex when p = 3 and $n \ge 3$. Also see [6].

3. NUMERICAL RANGE AND REDUCTIVE LIE ALGEBRA

Let $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{z}$ be a real reductive Lie algebra, where $\mathfrak{g}_0 = [\mathfrak{g}, \mathfrak{g}]$ is semisimple and \mathfrak{z} is the center of \mathfrak{g} . Let $K \subset G_0$ (it is unique once we fix the analytic group G for \mathfrak{g} [14, p. 112]) be the analytic group of \mathfrak{k} , where $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is a given Cartan decomposition of \mathfrak{g} . Here \mathfrak{p} is the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Killing form $B(\cdot, \cdot)$. For $A_1, \ldots, A_p, C \in \mathfrak{p}$, the C-numerical range of (A_1, \ldots, A_p) is defined [26, 21] as the following subset of \mathbb{R}^p :

(4)
$$W_C(A_1, \ldots, A_p) = \{ (B(A_1, Z), \ldots, B(A_p, Z)) : Z \in \operatorname{Ad}(K)C \},\$$

where $\operatorname{Ad}(K)C = {\operatorname{Ad}(k)C : k \in K}$ is the orbit of C in \mathfrak{p} under the adjoint action of K. Once we fix the Lie algebra \mathfrak{g} , the C-numerical range is independent of the choice of analytic group G associated with it [21]. Moreover, the choice of Cartan decomposition of \mathfrak{g} does not affect the convexity or the nonconvexity of the numerical range. The above definition was motivated by a result of Au-Yeung and Tsing [6]: $W_C(A_1, A_2, A_3)$ is convex when $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$ ($\mathfrak{gl}(n, \mathbb{H})$) and C, A_1, A_2, A_3 are Hermitian matrices over \mathbb{C} (\mathbb{H}) with $n \geq 3$.

Indeed, the setting (4) is more general than (3) if the invariant inner product is $-B(\cdot, \cdot)$. To see this, it is sufficient to consider semisimple compact connected Lie group G in (3). It is because for every compact connected Lie group G, G is the commuting product G_sZ_0 and $\mathfrak{g} = \mathfrak{g}_s + \mathfrak{z}$, where G_s is the analytic subgroup of G with semisimple Lie algebra [14, p. 132], $\mathfrak{g}_s = [\mathfrak{g}, \mathfrak{g}]$ and Z_0 is the identity component of the center Z of G whose Lie algebra is \mathfrak{z} . Now Ad (Z) is trivial and Ad (G) acts trivially on \mathfrak{z} . So for any $C = C_s + C_z$, where $C_s \in \mathfrak{g}_s$, $C_z \in \mathfrak{z}$, we have Ad $(G)C = \operatorname{Ad}(G_s)C_s + C_z$. So $W_C(A_1, A_2)$ in (3) can be written as

$$\{(\langle A_{1s}, L \rangle, \langle A_{2s}, L \rangle) : L \in \operatorname{Ad}(G_s)C_s\} + H,$$

where $A_i = A_{is} + A_{iz}$, i = 1, 2, and

$$H := (\langle A_{1s}, C_z \rangle, \langle A_{2s}, C_z \rangle) + (\langle A_{1z}, C_s \rangle, \langle A_{2z}, C_s \rangle) + (\langle A_{1z}, C_z \rangle, \langle A_{2z}, C_z \rangle)$$

is a constant since $\langle \cdot, \cdot \rangle$ is Ad-invariant and the adjoint action is trivial on \mathfrak{z} . Thus it suffices to consider the semisimple G_s . Now $\mathfrak{g} = \mathfrak{g}_s + i\mathfrak{g}_s$ is complex semisimple which is viewed as a real semisimple Lie algebra. Identifying $\mathfrak{p} = i\mathfrak{g}_s$ with \mathfrak{g}_s in (4), we get (3).

It is known [21] that $\mathfrak{sl}_2(\mathbb{R})$ is the only one giving nonconvex $W_C(A_1, A_2)$ among simple classical real Lie algebras (up to isomorphism). Concerning the convexity of $W_C(A_1, A_2, A_3)$ we have the following table and the proofs involve delicate computation. Table 3.1. [21]

$$\begin{split} \mathfrak{g} &= \mathfrak{sl}_n(\mathbb{C}), \, n \geq 2 \quad : \quad \text{Yes if } n > 2 \text{ (best possible)} \\ \mathfrak{h} &= \mathfrak{sl}_n(\mathbb{R}) \quad : \quad \text{No} \\ \mathfrak{h} &= \mathfrak{sl}_m(\mathbb{H}), \, n = 2m \quad : \quad \text{Yes if } n > 2 \text{ (best possible)} \\ \mathfrak{h} &= \mathfrak{su}_{p,q} \left(p = 0, 1, \dots, [n/2], \, p + q = n \right) \quad : \quad \text{Yes if } p \neq q \text{ (best possible)}; \\ \text{No if } p = q \end{split}$$

 $\mathfrak{g}=\mathfrak{so}_{2n+1}(\mathbb{C}),\,n\geq 2\quad:\quad \text{Yes if }n>2 \text{ (best possible)}\\ \mathfrak{h}=\mathfrak{so}_{p,q}\,(p=0,1,\ldots,n,\,p+q=2n+1)\quad:\quad \text{No}$

$$\begin{split} \mathfrak{g} &= \mathfrak{sp}_n(\mathbb{C}), \, n = 2m, \, m \geq 3 \quad : \quad \text{Yes (best possible)} \\ \mathfrak{h} &= \mathfrak{sp}_n(\mathbb{R}), \, n = 2m \quad : \quad \text{No} \\ \mathfrak{h} &= \mathfrak{sp}_{p,q}, \, (p = 0, 1, \dots, [m/2], \, p + q = m) \quad : \quad \text{No} \end{split}$$

$$\begin{split} \mathfrak{g} &= \mathfrak{so}_{2n}(\mathbb{C}), n \geq 4 \quad : \quad \text{Yes (best possible)} \\ \mathfrak{h} &= \mathfrak{so}_{p,q}, \ (p = 0, 1, \dots, n, \ p + q = 2n) \quad : \quad \text{No} \\ \mathfrak{h} &= \mathfrak{so}^*(2n) \quad : \quad \text{No if } n \text{ is even. Yes if } n \text{ is odd} \end{split}$$

The following is the only case in the above list without an answer.

Problem 3.2 [21]. For the case $\mathfrak{so}^*(2n)$ with an odd integer n, what is the largest $m \geq 3$ so that $W_C(A_1, \ldots, A_m)$ is always convex? It is known that $m \leq 5$.

Remark 3.2 [21]. The exceptional simple Lie algebras are [23]: 3 for \mathfrak{g}_2 ; 4 for \mathfrak{f}_4 ; 6 for \mathfrak{e}_6 ; 5 for \mathfrak{e}_7 and 4 for \mathfrak{e}_8 . The total number of cases is 22. Among them 5 are compact Lie algebras and the corresponding numerical ranges are trivial. For those 5 complex simple Lie algebras of exceptional type, when we consider them as real Lie algebras, Theorem 2.1 yields the convexity of $W_C(A_1, A_2)$. Hence 12 cases are left open.

4. GENERALIZED NUMERICAL RANGE AND NORMALITY

Westwick's convexity result asserts (after a suitable translation and rotation) that $W_C(A)$ is convex if C is normal and has collinear eigenvalues, for all $A \in \mathbb{C}_{n \times n}$. Given a normal C, Marcus [22] further conjectured that if $W_C(A)$ is convex for all $A \in \mathbb{C}_{n \times n}$, then the eigenvalues of C are collinear. Au-Yeung and Tsing [7] proved Marcus' conjecture affirmatively and their result is even stronger: $W_c([c]^*) = \{ \operatorname{tr} [c]U[c]^*U^{-1} : U \in U(n) \}$ is not convex if the entries of c are not collinear, where $[c] = \operatorname{diag}(c_1, \ldots, c_n)$. Also see [9, 10].

Now we have the following setting. Let $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$ be the Cartan decomposition of a *complex* semisimple Lie algebra and let $B(\cdot, \cdot)$ be the Killing form on \mathfrak{g} . Let

 θ be the Cartan involution, i.e., $\theta : \mathfrak{g} \to \mathfrak{g}$ such that $x + y \mapsto x - y$ if $x \in \mathfrak{k}$ and $\mathfrak{p} = i\mathfrak{k}$. Then θ and the Killing form induce an inner product on \mathfrak{g} :

$$(x,y)_{\theta} = -B(x,\theta y), \qquad x,y \in \mathfrak{g}.$$

Given $x, y \in \mathfrak{g}$, we define the x-numerical range of y as the following subset of \mathbb{C} :

$$W_x(y) := \{(x, z)_\theta : z \in \operatorname{Ad}(K)y\}.$$

The numerical range for the complex reductive case is similarly defined. When $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, the Cartan decomposition is the usual Hermitian decomposition, K = SU(n) and $\theta(A) = -A^*$, $A \in \mathfrak{gl}(n, \mathbb{C})$. Thus if $A, C \in \mathfrak{gl}(n, \mathbb{C})$, then $W_C(A) = \{ \operatorname{tr} CUA^*U^{-1} : U \in SU(n) \}$. The only difference between this setting and the usual setting in the literature is that A is replaced by A^* and this yields no difficulty.

Let a be a maximal abelian subalgebra in $\mathfrak{p} = i\mathfrak{k}$ and thus $i\mathfrak{a} + \mathfrak{a}$ is a Cartan subalgebra of \mathfrak{g} . Now an element $x \in \mathfrak{g}$ is said to be *normal* if $\mathrm{Ad}(k)x \in i\mathfrak{a} + \mathfrak{a}$ for some $k \in K$. Motivated by the result of Au-Yeung and Tsing [7] and some computer generated figures, we have

Conjecture 4.1. Let \mathfrak{g} be a complex simple Lie algebra. If $x \in \mathfrak{g}$ is normal and there does not exist a $\xi \in \mathbb{C}$ such that $\xi x \in \mathfrak{a}$, then $W_x(x)$ is not convex.

For example, if $\mathfrak{g} = \mathfrak{so}(n, \mathbb{C})$, then the conjecture is that the set

$$\{\operatorname{tr} COC^*O^{-1}: O \in SO(n)\}$$

is not convex, where

$$C = \begin{bmatrix} 0 & a_1 + ib_1 \\ -(a_1 + ib_1) & 0 \end{bmatrix} \oplus \dots \oplus \begin{bmatrix} 0 & a_m + ib_m \\ -(a_m + ib_m) & 0 \end{bmatrix} (\oplus 0)$$
$$\in \mathbb{C}_{n \times n}, \ m = [n/2],$$

if $a_1 + ib_1, \ldots, a_m + ib_m$ are not collinear. We remark that

$$\begin{split} |(x, \operatorname{Ad}(k)x)_{\theta}|^{2} &\leq (x, x)_{\theta}(\operatorname{Ad}(k)x, \operatorname{Ad}(k)x)_{\theta} \quad (\text{by Cauchy-Schwarz inequality}) \\ &= -(x, x)_{\theta}B(\operatorname{Ad}(k)x, \theta\operatorname{Ad}(k)x) \\ &= -(x, x)_{\theta}B(\operatorname{Ad}(k)x, \operatorname{Ad}(k)\theta x) \quad (\text{by } \theta\operatorname{Ad}(k) = \operatorname{Ad}(k)\theta) \\ &= -(x, x)_{\theta}B(x, \theta x) \quad (\text{since } B(\cdot, \cdot) \text{ is } \operatorname{Ad}(K)\text{-invariant}) \\ &= (x, x)_{\theta}^{2}. \end{split}$$

Note that θ and Ad (k) commute since Ad (K) leaves \mathfrak{k} and $\mathfrak{p} = i\mathfrak{k}$ invariant. So $(x, x)_{\theta} \in W_x(x)$ is positive and has the largest magnitude. (The boundary of $W_c(c)$

near this point is concave as shown in the proof of Au-Yeung and Tsing [7] when c's are not collinear for the $\mathfrak{gl}_n(\mathbb{C})$ case). Moreover $W_x(x)$ is symmetric about the origin for if $w \in W_x(x)$, then $w = (x, \operatorname{Ad}(k)x)_{\theta}$ and $\overline{w} = \overline{(x, \operatorname{Ad}(k)x)_{\theta}} = (\operatorname{Ad}(k)x, x)_{\theta} = (x, \operatorname{Ad}(k^{-1})x) \in W_x(x)$.

A related problem is concerning Kostant's convexity theorem [19] for complex reductive Lie algebras. Kostants's result claims that if \mathfrak{g} is a real reductive Lie algebra, then

$$\pi(\operatorname{Ad}(K)x) = \operatorname{conv} Wx, \qquad x \in \mathfrak{a},$$

where $\mathfrak{a} \subset \mathfrak{p}$ is a maximal abelian subalgebra in \mathfrak{p} and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} , W is the Weyl group of $(\mathfrak{g}, \mathfrak{a}), \pi : \mathfrak{p} \to \mathfrak{a}$ is the orthogonal projection with respect to the Killing form and conv S denotes the convex hull of the set S. This generalizes a classical result of Schur and Horn, namely,

$$\mathcal{W}(\lambda) := \{ \operatorname{diag} U \Lambda U^{-1} : U \in U(n) \} = \operatorname{conv} S_n \lambda,$$

where $\Lambda = \text{diag}(\lambda)$, $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ and S_n is the symmetric group. Au-Yeung and Sing [4] proved that if $\lambda \in \mathbb{C}^n$ with $\lambda's$ not collinear, then $\mathcal{W}(\lambda)$ is not convex. Neverthesless, Tsing [26] proved that $\mathcal{W}(\lambda)$ is star-shaped with respect to the star center $(\sum_{i=1}^n \lambda_i)e_i$, where $e = (1, 1, \dots, 1)$. Here we say that a nonempty subset X of a vector space is star-shaped with respect to a star center s if $tx + (1-t)s \in X$ whenever $x \in X$ and $t \in [0, 1]$. Thus it is natural to ask the following questions.

Question 4.2. Let \mathfrak{g} be a complex simple Lie algebra. If $x \in \mathfrak{g}$ is normal and there does not exist a $\xi \in \mathbb{C}$ such that $\xi x \in \mathfrak{a}$, is it true that $\mathcal{W}(x) := \pi(\operatorname{Ad}(K)x)$ is not convex, where $\pi : \mathfrak{g} \to i\mathfrak{a} + \mathfrak{a}$ is the orthogonal projection with respect to the inner product $(\cdot, \cdot)_{\theta}$?

For example, if $\mathfrak{g} = \mathfrak{so}(n, \mathbb{C})$, then the question is whether the set

 $\mathcal{W}(C) := \{ (a_{12}, a_{34}, a_{56}, \dots, a_{2m+1, 2m}) : A = OCO^{-1}, \ O \in SO(n) \} \subset \mathbb{R}^m$

is not convex where

$$C = \begin{bmatrix} 0 & a_1 + ib_1 \\ -(a_1 + ib_1) & 0 \end{bmatrix} \oplus \dots \oplus \begin{bmatrix} 0 & a_m + ib_m \\ -(a_m + ib_m) & 0 \end{bmatrix} (\oplus 0)$$
$$\in \mathbb{C}_{n \times n}, \ m = [n/2],$$

if $a_1 + ib_1, \ldots, a_m + ib_m$ are not collinear with the origin. We remark that if Conjecture 4.1 is true, then the answer to Question 4.2 is positive.

Question 4.3. Let \mathfrak{g} be a complex reductive Lie algebra. If $x \in \mathfrak{g}$ is normal, is it true that $\mathcal{W}(x) := \pi(\operatorname{Ad}(K)x)$ is star-shaped with respect to the star center $\pi(x_z)$, where $x = x_s + x_z$, $x_z \in \mathfrak{z}$ and $x_s \in [\mathfrak{g}, \mathfrak{g}]$?

For the case $\mathfrak{g} = \mathfrak{so}(n, \mathbb{C})$, the question is whether the set $\mathcal{W}(C)$ is star-shaped or not for the above C with general $a_1 + ib_1, \ldots, a_m + ib_m$?

5. STAR-SHAPEDNESS

When $C, A \in \mathbb{C}_{n \times n}$ with C normal, Straus conjectured and Tsing [28] proved that the C-numerical range

$$W_C(A) = \{\operatorname{tr} CUAU^{-1} : U \in U(n)\}$$

is star-shaped with star center (1/n)tr A tr C, a very interesting result on the shape of the numerical range. Later Hughes [15] proved an infinite-dimensional analog of Tsing's result: the closure of the set

$$W_C(T) := \left\{ \sum_{i,j=1}^n c_{ij} \langle Te_i, e_j \rangle : e_1, \dots, e_n \text{ is o.n. in } H \right\}$$

is star-shaped with respect to the set $(\operatorname{tr} C)W_e(T)$, where H is an infinite-dimensional Hilbert space with inner product $\langle \cdot, \cdot \rangle$, T is a bounded linear operator on H, and $W_e(T) = \{\lambda : \lambda = \lim_{m \to \infty} \langle Tf_m, f_m \rangle, \{f_m\}$ is o.n. in $H\}$. Jones [16] proved the same result without assuming that C is normal. However, as pointed out in [11], Hughes' proof could not be applied to prove the finite-dimensional result of Tsing and it seems that the proof of Jones cannot be modified to prove the star-shapedness of $W_C(T)$ when H is finite-dimensional. Recently, Cheung and Tsing [11] proved that $W_C(A)$ is star-shaped with the star center $\frac{1}{n} \operatorname{tr} A \operatorname{tr} C$. With the notations as before, we make the following

Conjecture 5.1. Let \mathfrak{g} be a complex reductive Lie algebra. If $x, y \in \mathfrak{g}$, then the *x*-numerical range of y, $W_x(y) := \{(x, w)_\theta : w \in \operatorname{Ad}(K)y\}$ is star-shaped with respect to the star center $(x_z, y_z)_\theta$, where $x = x_s + x_z \in \mathfrak{g}$, $x_z \in \mathfrak{z}$ and $x_s \in [\mathfrak{g}, \mathfrak{g}]$.

REFERENCES

- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 308 (1982), 1-15.
- M. Audin, *The Topology of Torus Actions on Symplectic Manifolds*, Progress in Mathematics 93, Birkäuser, Boston, 1991
- 3. Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definitness concerning Hermitian matrices, Southeast Asian Bull. Math. 3 (1979), 85-92.
- 4. Y. H. Au-Yeung and F. Y. Sing, A remark on the generalized numerical range of a normal matrix, *Glasgow Math. J.* **18** (1977), 179-180.

- 5. Y. H. Au-Yeung and N. K. Tsing, Some theorems on the numerical range, *Linear and Multilinear Algebra* **15** (1984), 3-11.
- 6. Y. H. Au-Yeung and N. K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, *Proc. Amer. Math. Soc.* **89** (1983), 215-218.
- Y. H. Au-Yeung and N. K. Tsing, A conjecture of Marcus on the generalized numerical range, *Linear and Multilinear Algebra* 14 (1983), 235-239.
- 8. C. A. Berger, Normal Dilations, Ph.D. Dissertation Cornell University, 1963.
- 9. N. Bebiano and J. D. Providéncia, Some geometric properties of the c-numerical range of a normal matrix, *Linear and Multilinear Algebra* **37** (1994), 83-92.
- 10. N. Bebiano and J. D. Providéncia, Another proof of a conjecture of Mancus on the c-numerical range, *Linear and Multilinear Algebra* **41** (1996), 35-40.
- 11. W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245-250.
- K. E. Gustafson and D. K. M. Rao, Numerical Range: the Field of Values of Linear Operators and Matrices, Springer-Verlag, New York, 1997.
- 13. F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314-316.
- 14. S. Helgason, *Differential Geometry, Lie Groups and Symmetric Spaces*, Academic Press, New York, 1978.
- 15. G. Hugnes, A note on the shape of the generalized numerical range, *Linear and Multilinear Algebra* **26** (1990), 43-47.
- 16. M. S. Jones, A note on the shape of the generalized *C*-numerical range, *Linear and Multilinear Algebra* **31** (1992), 81-84.
- 17. A. A. Kirillov, *Elements of the Theory of Representations*, Springer-Verlag, Berlin, 1976.
- 18. A. Knapp, *Lie Groups Beyond an Introduction*, Progress in Mathematics 140, Birkhäuser, Boston, 1996.
- 19. B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-460.
- C. K. Li, C-Numerical ranges and C-numerical radii, *Linear and Multilinear Algebra* 37 (1994), 51-82.
- 21. C. K. Li and T. Y. Tam, Numerical ranges arising from simple Lie algebras, *Canad. J. Math.* to appear.
- 22. M. Marcus, Some combinatorial aspects of numerical range, *Ann. New York Acad. Sci.* **319** (1979), 368-376.
- 23. A. L. Onishchik and E. B. Vinberg, *Lie Groups and Algebraic Groups*, Springer-Verlag, Berlin, 1990.

- 24. Y. T. Poon, Another proof of a result of Westwick, *Linear and Multilinear Algebra* **9** (1980), 35-37.
- 25. M. Raïs, Remarques sur un theoreme de R. Westwick, unpublished manuscript.
- 26. T. Y. Tam, Convexity of generalized numerical range associated with a compact Lie group, J. Austral. Math. Soc. Ser. A., to appear.
- 27. O. Toeplitz, Das algebraishe Analogon zu einem Satze von Fejér, *Math. Z.* **2** (1918), 187-197.
- 28. N. K. Tsing, On the shape of the generalized numerical range, *Linear and Multilinear Algebra* **10** (1981), 173-182.
- 29. R. Westwick, A theorem on numerical range, *Linear and Multilinear Algebra* **2** (1975), 311-315.

Department of Mathematics, Auburn University, AL 36849-5310, USA E-mail: tamtiny@auburn.edu