ON THE SHAPE OF NUMERICAL RANGES ASSOCIATED WITH LIE GROUPS

Tin-Yau Tam

Dedicated to Ky Fan on the occasion of his 85 th birthday

Abstract

A survey of some recent results on the shape of the numerical ranges associated with Lie groups, mainly convexity and star-shapedness, is given. Some questions are asked.

1. Introduction

The classical numerical range of $A \in \mathbb{C}_{n \times n}$ is defined as the following subset of \mathbb{C} :

$$
W(A):=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

The celebrated Toeplitz-Hausdorff theorem [27,13] asserts that it is convex. It is remarkable for it states that the image of the unit sphere in \mathbb{C}^{n} (a hollow object) is convex under the nonlinear map, $x \mapsto x^{*} A x$. Perhaps it is the most interesting geometric property of the set. Various generalizations have been considered in the literature and the development has been very active in the last decades [12, 20]. Our focus will be on the numerical ranges arising from Lie groups. Though the study is fruitful, it is still a new development and by no means covers all generalizations. In this note, we give a brief survey of some recent results on the shape of the numerical ranges, mainly convexity and star-shapedness. Some questions are asked. Our general references for Lie theory are [14, 18, 23].

[^0]Halmos introduced the k-numerical range of $A \in \mathbb{C}_{n \times n}$:

$$
W_{k}(A):=\left\{\sum_{i=1}^{k} x_{i}^{*} A x_{i}: x_{1}, \ldots, x_{k} \text { o.n. in } \mathbb{C}^{n}\right\}, \quad k=1, \ldots, n .
$$

He conjectured and Berger [8] proved that $W_{k}(A)$ is always convex. Then Westwick [29] considered the c-numerical range of A, where $c \in \mathbb{C}^{n}$:

$$
W_{c}(A):=\left\{\sum_{i=1}^{n} c_{i} x_{i}^{*} A x_{i}: x_{1}, \ldots, x_{n} \text { o.n. in } \mathbb{C}^{n}\right\} .
$$

By spectral decomposition, it can be formulated as

$$
W_{C}(A):=\left\{\operatorname{tr} C U A U^{-1}: U \in U(n)\right\},
$$

where $U(n)$ denotes the unitary group and C is normal with eigenvalues $c \in \mathbb{C}^{n}$. He proved that $W_{C}(A)$ is always convex for real c, i.e., C is Hermitian, and this is known as Westwick's convexity theorem, but $W_{C}(A)$ fails to be convex for complex c when $n \geq 3$. The main idea of Westwick's proof is the application of Morse theory on the homogeneous space $U(n) / \triangle(n)$ where $\triangle(n) \subset U(n)$ is the subgroup of diagonal matrices. Poon [24] gave the first elementary proof to Westwick's result. The result was later rediscovered by Ginsburg [2, p. 8].

2. Numerical Range and Compact Connected Lie Group

Let us elaborate on Westwick's setting. If $A=A_{1}+i A_{2}$ is the Hermitian decomposition of $A \in \mathbb{C}_{n \times n}$, where A_{1}, A_{2} are $n \times n$ Hermitian matrices, and C is an $n \times n$ Hermitian matrix, then $W_{C}(A)$ may be identified as the following subset of \mathbb{R}^{2} :

$$
\begin{equation*}
W_{C}\left(A_{1}, A_{2}\right):=\left\{\left(\operatorname{tr} C U A_{1} U^{-1}, \operatorname{tr} C U A_{2} U^{-1}\right): U \in U(n)\right\} . \tag{1}
\end{equation*}
$$

It is well-known that $U(n)$ is a compact connected Lie group whose Lie algebra $\mathfrak{u}(n)$ is the set of skew Hermitian matrices. Notice that

$$
\operatorname{tr} C U^{-1} B U=\operatorname{tr} B U C U^{-1}=-\operatorname{tr}(i B) U(i C) U^{-1}
$$

and thus we may assume that $A_{1}, A_{2}, C \in \mathfrak{u}(n)$ if convexity is the main concern, and (1) can be written as $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} A_{1} L, \operatorname{tr} A_{2} L\right): L \in \operatorname{Ad}(U(n)) C\right\}$, where $\operatorname{Ad}(U(n)) C:=\left\{U C U^{-1}: U \in U(n)\right\}$ is the adjoint orbit of C. This orbital point of view turns out to be very useful in our study. The consideration of

Raïs [25] is then natural: Let G be a compact Lie group with Lie algebra \mathfrak{g} which is equipped with a G-invariant inner product $\langle\cdot, \cdot\rangle$, i.e.,

$$
\langle\operatorname{Ad}(g) X, \operatorname{Ad}(g) Y\rangle=\langle X, Y\rangle, \quad X, Y \in \mathfrak{g}, \quad g \in G
$$

For $A_{1}, A_{2}, C \in \mathfrak{g}$, the C-numerical range of the pair $\left(A_{1}, A_{2}\right)$ is defined to be the following subset of \mathbb{R}^{2} :

$$
\begin{equation*}
W_{C}\left(A_{1}, A_{2}\right):=\left\{\left(\left\langle A_{1}, \operatorname{Ad}(g) C\right\rangle,\left\langle A_{2}, \operatorname{Ad}(g) C\right\rangle\right): g \in G\right\} \tag{2}
\end{equation*}
$$

It can be rewritten as

$$
\begin{equation*}
W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\left\langle A_{1}, L\right\rangle,\left\langle A_{2}, L\right\rangle\right): L \in \operatorname{Ad}(G) C\right\} \tag{3}
\end{equation*}
$$

where $\operatorname{Ad}(G) C:=\{\operatorname{Ad}(g) C: g \in G\}$ is the adjoint orbit of C in \mathfrak{g}.
By using a result of Atiyah [1] on a smooth function whose Hamiltonian vector field generates a torus action on a compact connected symplectic manifold, and the well-known result of Kirillov-Kostant-Souriau: the co-adjoint orbit of a compact connected Lie group has a natural symplectic structure [17], we have

Theorem 2.1. [26] Let G be a compact connected Lie group. For $A_{1}, A_{2}, C \in$ \mathfrak{g}, the generalized numerical range $W_{C}\left(A_{1}, A_{2}\right)$ defined by (2) is convex.

Corollary 2.2 .

(1) (Westwick [27]) Let $G=U(n)$ or $S U(n)$. The C-numerical range $W_{C}\left(A_{1}\right.$, $\left.A_{2}\right)=\left\{\left(\operatorname{tr} A_{1} U C U^{-1}, \operatorname{tr} A_{2} U C U^{-1}\right): U \in G\right\}$ is convex, where A_{1}, A_{2} and C are Hermitian matrices.
(2) The set $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} A_{1} O C O^{-1}, \operatorname{tr} A_{2} O C O^{-1}\right): O \in S O(n)\right\}$ is convex, where A_{1}, A_{2}, and C are real skew symmetric matrices.
(3) The set $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} A_{1} O C O^{-1}, \operatorname{tr} A_{2} O C O^{-1}\right): O \in O(2 n+1)\right\}$ is convex and is equal to $\left\{\left(\operatorname{tr} A_{1} O C O^{T}, \operatorname{tr} A_{2} O C O^{T}\right): O \in S O(2 n+1)\right\}$, where A_{1}, A_{2}, and C are real skew symmetric matrices.
(4) The set $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} A_{1} U C U^{-1}, \operatorname{tr} A_{2} U C U^{-1}\right): U \in S p(n)\right\}$ is convex, where $A_{1}, A_{2}, C \in \mathfrak{s p}(n)$ and the symplectic group $S p(n) \subset U(2 n)$ consists of

$$
\left[\begin{array}{cc}
A & -\bar{B} \\
B & \bar{A}
\end{array}\right] \in U(2 n)
$$

Remark 2.3. Theorem 2.1 is best possible in the sense that $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ may fail to be convex if $p \geq 3$. Indeed, when $G=U(n)$ and $C=\operatorname{diag}(1,0, \ldots, 0)$, $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ fails to be convex [3] for some choice of A 's when $p \geq 3$ or $n=2$ while $p=3$. But it is convex when $p=3$ and $n \geq 3$. Also see [6].

3. Numerical Range and Reductive Lie Algebra

Let $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{z}$ be a real reductive Lie algebra, where $\mathfrak{g}_{0}=[\mathfrak{g}, \mathfrak{g}]$ is semisimple and \mathfrak{z} is the center of \mathfrak{g}. Let $K \subset G_{0}$ (it is unique once we fix the analytic group G for \mathfrak{g} [14, p. 112]) be the analytic group of \mathfrak{k}, where $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a given Cartan decomposition of \mathfrak{g}. Here \mathfrak{p} is the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Killing form $B(\cdot, \cdot)$. For $A_{1}, \ldots, A_{p}, C \in \mathfrak{p}$, the C-numerical range of $\left(A_{1}, \ldots, A_{p}\right)$ is defined $[26,21]$ as the following subset of \mathbb{R}^{p} :

$$
\begin{equation*}
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(B\left(A_{1}, Z\right), \ldots, B\left(A_{p}, Z\right)\right): Z \in \operatorname{Ad}(K) C\right\}, \tag{4}
\end{equation*}
$$

where $\operatorname{Ad}(K) C=\{\operatorname{Ad}(k) C: k \in K\}$ is the orbit of C in \mathfrak{p} under the adjoint action of K. Once we fix the Lie algebra \mathfrak{g}, the C-numerical range is independent of the choice of analytic group G associated with it [21]. Moreover, the choice of Cartan decomposition of \mathfrak{g} does not affect the convexity or the nonconvexity of the numerical range. The above definition was motivated by a result of AuYeung and Tsing [6]: $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex when $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})(\mathfrak{g l}(n, \mathbb{H}))$ and C, A_{1}, A_{2}, A_{3} are Hermitian matrices over $\mathbb{C}(\mathbb{H})$ with $n \geq 3$.

Indeed, the setting (4) is more general than (3) if the invariant inner product is $-B(\cdot, \cdot)$. To see this, it is sufficient to consider semisimple compact connected Lie group G in (3). It is because for every compact connected Lie group G, G is the commuting product $G_{s} Z_{0}$ and $\mathfrak{g}=\mathfrak{g}_{s}+\mathfrak{z}$, where G_{s} is the analytic subgroup of G with semisimple Lie algebra [14, p. 132], $\mathfrak{g}_{s}=[\mathfrak{g}, \mathfrak{g}]$ and Z_{0} is the identity component of the center Z of G whose Lie algebra is \mathfrak{z}. Now $\operatorname{Ad}(Z)$ is trivial and $\operatorname{Ad}(G)$ acts trivially on \mathfrak{z}. So for any $C=C_{s}+C_{z}$, where $C_{s} \in \mathfrak{g}_{s}, C_{z} \in \mathfrak{z}$, we have $\operatorname{Ad}(G) C=\operatorname{Ad}\left(G_{s}\right) C_{s}+C_{z}$. So $W_{C}\left(A_{1}, A_{2}\right)$ in (3) can be written as

$$
\left\{\left(\left\langle A_{1 s}, L\right\rangle,\left\langle A_{2 s}, L\right\rangle\right): L \in \operatorname{Ad}\left(G_{s}\right) C_{s}\right\}+H,
$$

where $A_{i}=A_{i s}+A_{i z}, i=1,2$, and

$$
H:=\left(\left\langle A_{1 s}, C_{z}\right\rangle,\left\langle A_{2 s}, C_{z}\right\rangle\right)+\left(\left\langle A_{1 z}, C_{s}\right\rangle,\left\langle A_{2 z}, C_{s}\right\rangle\right)+\left(\left\langle A_{1 z}, C_{z}\right\rangle,\left\langle A_{2 z}, C_{z}\right\rangle\right)
$$

is a constant since $\langle\cdot, \cdot\rangle$ is Ad-invariant and the adjoint action is trivial on \mathfrak{z}. Thus it suffices to consider the semisimple G_{s}. Now $\mathfrak{g}=\mathfrak{g}_{s}+i \mathfrak{g}_{s}$ is complex semisimple which is viewed as a real semisimple Lie algebra. Identifying $\mathfrak{p}=i \mathfrak{g}_{s}$ with \mathfrak{g}_{s} in (4), we get (3).

It is known [21] that $\mathfrak{s l}_{2}(\mathbb{R})$ is the only one giving nonconvex $W_{C}\left(A_{1}, A_{2}\right)$ among simple classical real Lie algebras (up to isomorphism). Concerning the convexity of $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ we have the following table and the proofs involve delicate computation.

Table 3.1. [21]

$$
\begin{aligned}
\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C}), n \geq 2 & : \text { Yes if } n>2 \text { (best possible) } \\
\mathfrak{h}=\mathfrak{s l}_{n}(\mathbb{R}) & : \text { No } \\
\mathfrak{h}=\mathfrak{s l}_{m}(\mathbb{H}), n=2 m & : \text { Yes if } n>2 \text { (best possible) } \\
\mathfrak{h}=\mathfrak{s u}_{p, q}(p=0,1, \ldots,[n / 2], p+q=n) & : \text { Yes if } p \neq q(\text { best possible); } \\
& \text { No if } p=q \\
\mathfrak{g}=\mathfrak{s o}_{2 n+1}(\mathbb{C}), n \geq 2 & : \\
\mathfrak{h}=\mathfrak{s o}_{p, q}(p=0,1, \ldots, n, p+q=2 n+1) & : \\
& \text { Yes if } n>2 \text { (best possible) } \\
\mathfrak{g}=\mathfrak{s p}_{n}(\mathbb{C}), n=2 m, m \geq 3 & : \text { Yes (best possible) } \\
\mathfrak{h}=\mathfrak{s p}_{n}(\mathbb{R}), n=2 m & : \text { No } \\
\mathfrak{h}=\mathfrak{s p}_{p, q},(p=0,1, \ldots,[m / 2], p+q=m) & : \text { No } \\
& \\
\mathfrak{g}=\mathfrak{s o}_{2 n}(\mathbb{C}), n \geq 4 & : \text { Yes (best possible) } \\
\mathfrak{h}=\mathfrak{s o}_{p, q},(p=0,1, \ldots, n, p+q=2 n) & : \text { No } \\
\mathfrak{h}=\mathfrak{s o}^{*}(2 n) & : \text { No if } n \text { is even. Yes if } n \text { is odd. }
\end{aligned}
$$

The following is the only case in the above list without an answer.
Problem 3.2 [21]. For the case $\mathfrak{5 o}^{*}(2 n)$ with an odd integer n, what is the largest $m \geq 3$ so that $W_{C}\left(A_{1}, \ldots, A_{m}\right)$ is always convex? It is known that $m \leq 5$.

Remark 3.2 [21]. The exceptional simple Lie algebras are [23]: 3 for $\mathfrak{g}_{2} ; 4$ for $\mathfrak{f}_{4} ; 6$ for $\mathfrak{e}_{6} ; 5$ for \mathfrak{e}_{7} and 4 for \mathfrak{e}_{8}. The total number of cases is 22 . Among them 5 are compact Lie algebras and the corresponding numerical ranges are trivial. For those 5 complex simple Lie algebras of exceptional type, when we consider them as real Lie algebras, Theorem 2.1 yields the convexity of $W_{C}\left(A_{1}, A_{2}\right)$. Hence 12 cases are left open.

4. Generalized Numerical Range and Normality

Westwick's convexity result asserts (after a suitable translation and rotation) that $W_{C}(A)$ is convex if C is normal and has collinear eigenvalues, for all $A \in \mathbb{C}_{n \times n}$. Given a normal C, Marcus [22] further conjectured that if $W_{C}(A)$ is convex for all $A \in \mathbb{C}_{n \times n}$, then the eigenvalues of C are collinear. Au-Yeung and Tsing [7] proved Marcus' conjecture affirmatively and their result is even stronger: $W_{c}\left([c]^{*}\right)=\left\{\operatorname{tr}[c] U[c]^{*} U^{-1}: U \in U(n)\right\}$ is not convex if the entries of c are not collinear, where $[c]=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$. Also see $[9,10]$.

Now we have the following setting. Let $\mathfrak{g}=\mathfrak{k}+i \mathfrak{k}$ be the Cartan decomposition of a complex semisimple Lie algebra and let $B(\cdot, \cdot)$ be the Killing form on \mathfrak{g}. Let
θ be the Cartan involution, i.e., $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $x+y \mapsto x-y$ if $x \in \mathfrak{k}$ and $\mathfrak{p}=i \mathfrak{k}$. Then θ and the Killing form induce an inner product on \mathfrak{g} :

$$
(x, y)_{\theta}=-B(x, \theta y), \quad x, y \in \mathfrak{g}
$$

Given $x, y \in \mathfrak{g}$, we define the x-numerical range of y as the following subset of \mathbb{C} :

$$
W_{x}(y):=\left\{(x, z)_{\theta}: z \in \operatorname{Ad}(K) y\right\}
$$

The numerical range for the complex reductive case is similarly defined. When $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, the Cartan decomposition is the usual Hermitian decomposition, $K=S U(n)$ and $\theta(A)=-A^{*}, A \in \mathfrak{g l}(n, \mathbb{C})$. Thus if $A, C \in \mathfrak{g l}(n, \mathbb{C})$, then $W_{C}(A)=\left\{\operatorname{tr} C U A^{*} U^{-1}: U \in S U(n)\right\}$. The only difference between this setting and the usual setting in the literature is that A is replaced by A^{*} and this yields no difficulty.

Let \mathfrak{a} be a maximal abelian subalgebra in $\mathfrak{p}=i \mathfrak{k}$ and thus $i \mathfrak{a}+\mathfrak{a}$ is a Cartan subalgebra of \mathfrak{g}. Now an element $x \in \mathfrak{g}$ is said to be normal if $\operatorname{Ad}(k) x \in i \mathfrak{a}+\mathfrak{a}$ for some $k \in K$. Motivated by the result of Au-Yeung and Tsing [7] and some computer generated figures, we have

Conjecture 4.1. Let \mathfrak{g} be a complex simple Lie algebra. If $x \in \mathfrak{g}$ is normal and there does not exist a $\xi \in \mathbb{C}$ such that $\xi x \in \mathfrak{a}$, then $W_{x}(x)$ is not convex.

For example, if $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{C})$, then the conjecture is that the set

$$
\left\{\operatorname{tr} C O C^{*} O^{-1}: O \in S O(n)\right\}
$$

is not convex, where

$$
\begin{aligned}
C= & {\left[\begin{array}{cc}
0 & a_{1}+i b_{1} \\
-\left(a_{1}+i b_{1}\right) & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & a_{m}+i b_{m} \\
-\left(a_{m}+i b_{m}\right) & 0
\end{array}\right](\oplus 0) } \\
& \in \mathbb{C}_{n \times n}, m=[n / 2],
\end{aligned}
$$

if $a_{1}+i b_{1}, \ldots, a_{m}+i b_{m}$ are not collinear. We remark that

$$
\begin{aligned}
\left|(x, \operatorname{Ad}(k) x)_{\theta}\right|^{2} & \leq(x, x)_{\theta}(\operatorname{Ad}(k) x, \operatorname{Ad}(k) x)_{\theta} \quad(\text { by Cauchy-Schwarz inequality }) \\
& =-(x, x)_{\theta} B(\operatorname{Ad}(k) x, \theta \operatorname{Ad}(k) x) \\
& =-(x, x)_{\theta} B(\operatorname{Ad}(k) x, \operatorname{Ad}(k) \theta x) \quad(\text { by } \theta \operatorname{Ad}(k)=\operatorname{Ad}(k) \theta) \\
& =-(x, x)_{\theta} B(x, \theta x) \quad(\text { since } B(\cdot, \cdot) \text { is } \operatorname{Ad}(K) \text {-invariant }) \\
& =(x, x)_{\theta}^{2} .
\end{aligned}
$$

Note that θ and $\operatorname{Ad}(k)$ commute since $\operatorname{Ad}(K)$ leaves \mathfrak{k} and $\mathfrak{p}=i \mathfrak{k}$ invariant. So $(x, x)_{\theta} \in W_{x}(x)$ is positive and has the largest magnitude. (The boundary of $W_{c}(c)$
near this point is concave as shown in the proof of Au-Yeung and Tsing [7] when $c^{\prime} s$ are not collinear for the $\mathfrak{g l}_{n}(\mathbb{C})$ case). Moreover $W_{x}(x)$ is symmetric about the origin for if $w \in W_{x}(x)$, then $w=(x, \operatorname{Ad}(k) x)_{\theta}$ and $\bar{w}=\overline{(x, \operatorname{Ad}(k) x)_{\theta}}=$ $(\operatorname{Ad}(k) x, x)_{\theta}=\left(x, \operatorname{Ad}\left(k^{-1}\right) x\right) \in W_{x}(x)$.

A related problem is concerning Kostant's convexity theorem [19] for complex reductive Lie algebras. Kostants's result claims that if \mathfrak{g} is a real reductive Lie algebra, then

$$
\pi(\operatorname{Ad}(K) x)=\operatorname{conv} W x, \quad x \in \mathfrak{a}
$$

where $\mathfrak{a} \subset \mathfrak{p}$ is a maximal abelian subalgebra in \mathfrak{p} and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}, W is the Weyl group of $(\mathfrak{g}, \mathfrak{a}), \pi: \mathfrak{p} \rightarrow \mathfrak{a}$ is the orthogonal projection with respect to the Killing form and conv S denotes the convex hull of the set S. This generalizes a classical result of Schur and Horn, namely,

$$
\mathcal{W}(\lambda):=\left\{\operatorname{diag} U \Lambda U^{-1}: U \in U(n)\right\}=\operatorname{conv} S_{n} \lambda
$$

where $\Lambda=\operatorname{diag}(\lambda), \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ and S_{n} is the symmetric group. Au-Yeung and Sing [4] proved that if $\lambda \in \mathbb{C}^{n}$ with $\lambda^{\prime} s$ not collinear, then $\mathcal{W}(\lambda)$ is not convex. Neverthesless, Tsing [26] proved that $\mathcal{W}(\lambda)$ is star-shaped with respect to the star center $\left(\sum_{i=1}^{n} \lambda_{i}\right) e$, where $e=(1,1, \ldots, 1)$. Here we say that a nonempty subset X of a vector space is star-shaped with respect to a star center s if $t x+(1-t) s \in X$ whenever $x \in X$ and $t \in[0,1]$. Thus it is natural to ask the following questions.

Question 4.2. Let \mathfrak{g} be a complex simple Lie algebra. If $x \in \mathfrak{g}$ is normal and there does not exist a $\xi \in \mathbb{C}$ such that $\xi x \in \mathfrak{a}$, is it true that $\mathcal{W}(x):=\pi(\operatorname{Ad}(K) x)$ is not convex, where $\pi: \mathfrak{g} \rightarrow i \mathfrak{a}+\mathfrak{a}$ is the orthogonal projection with respect to the inner product $(\cdot, \cdot)_{\theta}$?

For example, if $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{C})$, then the question is whether the set

$$
\mathcal{W}(C):=\left\{\left(a_{12}, a_{34}, a_{56}, \ldots, a_{2 m+1,2 m}\right): A=O C O^{-1}, O \in S O(n)\right\} \subset \mathbb{R}^{m}
$$

is not convex where

$$
\begin{aligned}
C= & {\left[\begin{array}{cc}
0 & a_{1}+i b_{1} \\
-\left(a_{1}+i b_{1}\right) & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & a_{m}+i b_{m} \\
-\left(a_{m}+i b_{m}\right) & 0
\end{array}\right](\oplus 0) } \\
& \in \mathbb{C}_{n \times n}, m=[n / 2],
\end{aligned}
$$

if $a_{1}+i b_{1}, \ldots, a_{m}+i b_{m}$ are not collinear with the origin. We remark that if Conjecture 4.1 is true, then the answer to Question 4.2 is positive.

Question 4.3. Let \mathfrak{g} be a complex reductive Lie algebra. If $x \in \mathfrak{g}$ is normal, is it true that $\mathcal{W}(x):=\pi(\operatorname{Ad}(K) x)$ is star-shaped with respect to the star center $\pi\left(x_{z}\right)$, where $x=x_{s}+x_{z}, x_{z} \in \mathfrak{z}$ and $x_{s} \in[\mathfrak{g}, \mathfrak{g}]$?

For the case $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{C})$, the question is whether the set $\mathcal{W}(C)$ is star-shaped or not for the above C with general $a_{1}+i b_{1}, \ldots, a_{m}+i b_{m}$?

5. Star-Shapedness

When $C, A \in \mathbb{C}_{n \times n}$ with C normal, Straus conjectured and Tsing [28] proved that the C-numerical range

$$
W_{C}(A)=\left\{\operatorname{tr} C U A U^{-1}: U \in U(n)\right\}
$$

is star-shaped with star center $(1 / n) \operatorname{tr} A \operatorname{tr} C$, a very interesting result on the shape of the numerical range. Later Hughes [15] proved an infinite-dimensional analog of Tsing's result: the closure of the set

$$
W_{C}(T):=\left\{\sum_{i, j=1}^{n} c_{i j}\left\langle T e_{i}, e_{j}\right\rangle: e_{1}, \ldots, e_{n} \text { is o.n. in } H\right\}
$$

is star-shaped with respect to the set $(\operatorname{tr} C) W_{e}(T)$, where H is an infinite-dimensional Hilbert space with inner product $\langle\cdot, \cdot\rangle, T$ is a bounded linear operator on H, and $W_{e}(T)=\left\{\lambda: \lambda=\lim _{m \rightarrow \infty}\left\langle T f_{m}, f_{m}\right\rangle,\left\{f_{m}\right\}\right.$ is o.n. in $\left.H\right\}$. Jones [16] proved the same result without assuming that C is normal. However, as pointed out in [11], Hughes' proof could not be applied to prove the finite-dimensional result of Tsing and it seems that the proof of Jones cannot be modified to prove the star-shapedness of $W_{C}(T)$ when H is finite-dimensional. Recently, Cheung and Tsing [11] proved that $W_{C}(A)$ is star-shaped with the star center $\frac{1}{n} \operatorname{tr} A \operatorname{tr} C$. With the notations as before, we make the following

Conjecture 5.1. Let \mathfrak{g} be a complex reductive Lie algebra. If $x, y \in \mathfrak{g}$, then the x-numerical range of $y, W_{x}(y):=\left\{(x, w)_{\theta}: w \in \operatorname{Ad}(K) y\right\}$ is star-shaped with respect to the star center $\left(x_{z}, y_{z}\right)_{\theta}$, where $x=x_{s}+x_{z} \in \mathfrak{g}, x_{z} \in \mathfrak{z}$ and $x_{s} \in[\mathfrak{g}, \mathfrak{g}]$.

References

1. M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 308 (1982), 1-15.
2. M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics 93, Birkäuser, Boston, 1991
3. Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definitness concerning Hermitian matrices, Southeast Asian Bull. Math. 3 (1979), 85-92.
4. Y. H. Au-Yeung and F. Y. Sing, A remark on the generalized numerical range of a normal matrix, Glasgow Math. J. 18 (1977), 179-180.
5. Y. H. Au-Yeung and N. K. Tsing, Some theorems on the numerical range, Linear and Multilinear Algebra 15 (1984), 3-11.
6. Y. H. Au-Yeung and N. K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), 215-218.
7. Y. H. Au-Yeung and N. K. Tsing, A conjecture of Marcus on the generalized numerical range, Linear and Multilinear Algebra 14 (1983), 235-239.
8. C. A. Berger, Normal Dilations, Ph.D. Dissertation Cornell University, 1963.
9. N. Bebiano and J. D. Providéncia, Some geometric properties of the c-numerical range of a normal matrix, Linear and Multilinear Algebra 37 (1994), 83-92.
10. N. Bebiano and J. D. Providencia, Another proof of a conjecture of Mancus on the c-numerical range, Linear and Multilinear Algebra 41 (1996), 35-40.
11. W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245-250.
12. K. E. Gustafson and D. K. M. Rao, Numerical Range: the Field of Values of Linear Operators and Matrices, Springer-Verlag, New York, 1997.
13. F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314-316.
14. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
15. G. Hugnes, A note on the shape of the generalized numerical range, Linear and Multilinear Algebra 26 (1990), 43-47.
16. M. S. Jones, A note on the shape of the generalized C-numerical range, Linear and Multilinear Algebra 31 (1992), 81-84.
17. A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.
18. A. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics 140, Birkhäuser, Boston, 1996.
19. B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-460.
20. C. K. Li, C-Numerical ranges and C-numerical radii, Linear and Multilinear Algebra 37 (1994), 51-82.
21. C. K. Li and T. Y. Tam, Numerical ranges arising from simple Lie algebras, Canad. J. Math. to appear.
22. M. Marcus, Some combinatorial aspects of numerical range, Ann. New York Acad. Sci. 319 (1979), 368-376.
23. A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, SpringerVerlag, Berlin, 1990.
24. Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), 35-37.
25. M. Raïs, Remarques sur un theoreme de R. Westwick, unpublished manuscript.
26. T. Y. Tam, Convexity of generalized numerical range associated with a compact Lie group, J. Austral. Math. Soc. Ser. A., to appear.
27. O. Toeplitz, Das algebraishe Analogon zu einem Satze von Fejé, Math. Z. 2 (1918), 187-197.
28. N. K. Tsing, On the shape of the generalized numerical range, Linear and Multilinear Algebra 10 (1981), 173-182.
29. R. Westwick, A theorem on numerical range, Linear and Multilinear Algebra 2 (1975), 311-315.

Department of Mathematics, Auburn University, AL 36849-5310, USA
E-mail: tamtiny@auburn.edu

[^0]: Received February 9, 2000; revised October 16, 2000.
 Communicated by P. Y. Wu.
 2000 Mathematics Subject Classification: Primary 15A60, 22E99.
 Key words and phrases: Numerical range, convexity, star-shaped, Lie group, reductive Lie algebra. The author thanks Professor Bit-Shun Tam for the arrangement of his visit in Taiwan, which is made possible by a grant from NSC of Taiwan and also thanks the Department of Mathematics of Tamkang University for the support and warm hospitality. The paper is based on a talk of the author given in ICMAA 2000, Taiwan, ROC, Jan. 17-21 2000. He also thanks Professor Pei-Yuan Wu for inviting him to the session of Numerical Ranges and Radii of the conference.

