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ON THE SHAPE OF NUMERICAL RANGES

ASSOCIATED WITH LIE GROUPS

Tin-Yau Tam

Dedicated to Ky Fan on the occasion of his 85th birthday

Abstract. A survey of some recent results on the shape of the numerical

ranges associated with Lie groups, mainly convexity and star-shapedness, is

given. Some questions are asked.

1. INTRODUCTION

The classical numerical range of A ∈ Cn×n is defined as the following subset

of C:
W (A) := {x∗Ax : x ∈ Cn, x∗x = 1}.

The celebrated Toeplitz-Hausdorff theorem [27, 13] asserts that it is convex. It is

remarkable for it states that the image of the unit sphere in Cn (a hollow object)

is convex under the nonlinear map, x 7→ x∗Ax. Perhaps it is the most interesting

geometric property of the set. Various generalizations have been considered in the

literature and the development has been very active in the last decades [12, 20]. Our

focus will be on the numerical ranges arising from Lie groups. Though the study

is fruitful, it is still a new development and by no means covers all generalizations.

In this note, we give a brief survey of some recent results on the shape of the

numerical ranges, mainly convexity and star-shapedness. Some questions are asked.

Our general references for Lie theory are [14, 18, 23].
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Halmos introduced the k-numerical range of A ∈ Cn×n:

Wk(A) :=

{
k∑

i=1

x∗
i Axi : x1, . . . , xk o.n. in Cn

}
, k = 1, . . . , n.

He conjectured and Berger [8] proved thatWk(A) is always convex. Then Westwick
[29] considered the c-numerical range of A, where c ∈ Cn:

Wc(A) :=

{
n∑

i=1

cix
∗
i Axi : x1, . . . , xn o.n. in Cn

}
.

By spectral decomposition, it can be formulated as

WC(A) := {trCUAU−1 : U ∈ U(n)},

where U(n) denotes the unitary group and C is normal with eigenvalues c ∈ Cn.

He proved that WC(A) is always convex for real c, i.e., C is Hermitian, and this is

known as Westwick’s convexity theorem, butWC(A) fails to be convex for complex
c when n ≥ 3. The main idea of Westwick’s proof is the application of Morse theory
on the homogeneous space U(n)/4(n) where 4(n) ⊂ U(n) is the subgroup of
diagonal matrices. Poon [24] gave the first elementary proof to Westwick’s result.

The result was later rediscovered by Ginsburg [2, p. 8].

2. NUMERICAL RANGE AND COMPACT CONNECTED LIE GROUP

Let us elaborate on Westwick’s setting. If A = A1 + iA2 is the Hermitian

decomposition of A ∈ Cn×n, where A1, A2 are n×n Hermitian matrices, and C is

an n × n Hermitian matrix, then WC(A) may be identified as the following subset
of R2:

WC(A1, A2) := {(trCUA1U
−1, trCUA2U

−1) : U ∈ U(n)}.(1)

It is well-known that U(n) is a compact connected Lie group whose Lie algebra
u(n) is the set of skew Hermitian matrices. Notice that

trCU−1BU = trBUCU−1 = −tr (iB)U(iC)U−1

and thus we may assume that A1, A2, C ∈ u(n) if convexity is the main concern,
and (1) can be written as WC(A1, A2) = {(trA1L, trA2L) : L ∈ Ad (U(n))C},
where Ad (U(n))C := {UCU−1 : U ∈ U(n)} is the adjoint orbit of C. This

orbital point of view turns out to be very useful in our study. The consideration of
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Raïs [25] is then natural: Let G be a compact Lie group with Lie algebra g which

is equipped with a G-invariant inner product 〈·, ·〉, i.e.,

〈Ad (g)X,Ad(g)Y 〉 = 〈X, Y 〉, X, Y ∈ g, g ∈ G.

For A1, A2, C ∈ g, the C-numerical range of the pair (A1, A2) is defined to be the
following subset of R2:

WC(A1, A2) := {(〈A1,Ad (g)C〉, 〈A2,Ad (g)C〉) : g ∈ G}.(2)

It can be rewritten as

WC(A1, A2) = {(〈A1, L〉, 〈A2, L〉) : L ∈ Ad (G)C},(3)

where Ad (G)C := {Ad (g)C : g ∈ G} is the adjoint orbit of C in g.

By using a result of Atiyah [1] on a smooth function whose Hamiltonian vector

field generates a torus action on a compact connected symplectic manifold, and the

well-known result of Kirillov-Kostant-Souriau: the co-adjoint orbit of a compact

connected Lie group has a natural symplectic structure [17], we have

Theorem 2.1. [26] Let G be a compact connected Lie group. For A1, A2, C ∈
g, the generalized numerical range WC(A1, A2) defined by (2) is convex.

Corollary 2.2.

(1) (Westwick [27]) Let G = U(n) or SU(n). The C-numerical range WC(A1,

A2) = {(trA1UCU−1, trA2UCU−1) : U ∈ G} is convex, where A1, A2 and

C are Hermitian matrices.

(2) The set WC(A1, A2) = {(trA1OCO−1, trA2OCO−1) : O ∈ SO(n)} is
convex, where A1, A2, and C are real skew symmetric matrices.

(3) The set WC(A1, A2) = {(trA1OCO−1, trA2OCO−1) : O ∈ O(2n + 1)}
is convex and is equal to {(trA1OCOT , trA2OCOT ) : O ∈ SO(2n + 1)},
where A1, A2, and C are real skew symmetric matrices.

(4) The set WC(A1, A2) = {(trA1UCU−1, trA2UCU−1) : U ∈ Sp(n)} is
convex, where A1, A2, C ∈ sp(n) and the symplectic group Sp(n) ⊂ U(2n)
consists of

[
A −B

B A

]
∈ U(2n).

Remark 2.3. Theorem 2.1 is best possible in the sense that WC(A1, . . . , Ap)
may fail to be convex if p ≥ 3. Indeed, when G = U(n) and C = diag (1, 0, . . . , 0),
WC(A1, . . . , Ap) fails to be convex [3] for some choice of A’s when p ≥ 3 or n = 2
while p = 3. But it is convex when p = 3 and n ≥ 3. Also see [6].
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3. NUMERICAL RANGE AND REDUCTIVE LIE ALGEBRA

Let g = g0 + z be a real reductive Lie algebra, where g0 = [g, g] is semisimple
and z is the center of g. Let K ⊂ G0 (it is unique once we fix the analytic group

G for g [14, p. 112]) be the analytic group of k, where g = k + p is a given

Cartan decomposition of g. Here p is the orthogonal complement of k in g with

respect to the Killing form B(·, ·). For A1, . . . , Ap, C ∈ p, the C-numerical range

of (A1, . . . , Ap) is defined [26, 21] as the following subset of Rp:

WC(A1, . . . , Ap) = {(B(A1, Z), . . . , B(Ap, Z)) : Z ∈ Ad (K)C},(4)

where Ad (K)C = {Ad (k)C : k ∈ K} is the orbit of C in p under the adjoint

action of K. Once we fix the Lie algebra g, the C-numerical range is independent
of the choice of analytic group G associated with it [21]. Moreover, the choice

of Cartan decomposition of g does not affect the convexity or the nonconvexity

of the numerical range. The above definition was motivated by a result of Au-

Yeung and Tsing [6]: WC(A1, A2, A3) is convex when g = gl(n, C) (gl(n, H)) and
C, A1, A2, A3 are Hermitian matrices over C (H) with n ≥ 3.

Indeed, the setting (4) is more general than (3) if the invariant inner product

is −B(·, ·). To see this, it is sufficient to consider semisimple compact connected
Lie group G in (3). It is because for every compact connected Lie group G, G is

the commuting product GsZ0 and g = gs + z, where Gs is the analytic subgroup

of G with semisimple Lie algebra [14, p. 132], gs = [g, g] and Z0 is the identity

component of the center Z of G whose Lie algebra is z. Now Ad (Z) is trivial and
Ad (G) acts trivially on z. So for any C = Cs + Cz , where Cs ∈ gs, Cz ∈ z, we

have Ad (G)C = Ad (Gs)Cs + Cz . So WC(A1, A2) in (3) can be written as

{(〈A1s, L〉, 〈A2s, L〉) : L ∈ Ad (Gs)Cs}+ H,

where Ai = Ais + Aiz , i = 1, 2, and

H := (〈A1s, Cz〉, 〈A2s, Cz〉) + (〈A1z, Cs〉, 〈A2z, Cs〉) + (〈A1z, Cz〉, 〈A2z, Cz〉)

is a constant since 〈·, ·〉 is Ad -invariant and the adjoint action is trivial on z. Thus

it suffices to consider the semisimpleGs. Now g = gs + igs is complex semisimple

which is viewed as a real semisimple Lie algebra. Identifying p = igs with gs in

(4), we get (3).

It is known [21] that sl2(R) is the only one giving nonconvex WC(A1, A2)
among simple classical real Lie algebras (up to isomorphism). Concerning the

convexity of WC(A1, A2, A3) we have the following table and the proofs involve
delicate computation.
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Table 3.1. [21]

g = sln(C), n ≥ 2 : Yes if n > 2 (best possible)
h = sln(R) : No

h = slm(H), n = 2m : Yes if n > 2 (best possible)
h = sup,q (p = 0, 1, . . . , [n/2], p + q = n) : Yes if p 6= q (best possible);

No if p = q

g = so2n+1(C), n ≥ 2 : Yes if n > 2 (best possible)
h = sop,q (p = 0, 1, . . . , n, p + q = 2n + 1) : No

g = spn(C), n = 2m, m ≥ 3 : Yes (best possible)

h = spn(R), n = 2m : No

h = spp,q, (p = 0, 1, . . . , [m/2], p + q = m) : No

g = so2n(C), n ≥ 4 : Yes (best possible)

h = sop,q, (p = 0, 1, . . . , n, p + q = 2n) : No

h = so∗(2n) : No if n is even. Yes if n is odd.

The following is the only case in the above list without an answer.

Problem 3.2 [21]. For the case so∗(2n) with an odd integer n, what is the
largest m ≥ 3 so thatWC(A1, . . . , Am) is always convex? It is known that m ≤ 5.

Remark 3.2 [21]. The exceptional simple Lie algebras are [23]: 3 for g2; 4 for

f4; 6 for e6; 5 for e7 and 4 for e8. The total number of cases is 22. Among them

5 are compact Lie algebras and the corresponding numerical ranges are trivial. For

those 5 complex simple Lie algebras of exceptional type, when we consider them

as real Lie algebras, Theorem 2.1 yields the convexity of WC(A1, A2). Hence 12
cases are left open.

4. GENERALIZED NUMERICAL RANGE AND NORMALITY

Westwick’s convexity result asserts (after a suitable translation and rotation) that

WC(A) is convex if C is normal and has collinear eigenvalues, for all A ∈ Cn×n.

Given a normal C, Marcus [22] further conjectured that if WC(A) is convex
for all A ∈ Cn×n, then the eigenvalues of C are collinear. Au-Yeung and Ts-

ing [7] proved Marcus’ conjecture affirmatively and their result is even stronger:

Wc([c]∗) = {tr [c]U [c]∗U−1 : U ∈ U(n)} is not convex if the entries of c are not
collinear, where [c] = diag (c1, . . . , cn). Also see [9, 10].

Now we have the following setting. Let g = k+ ik be the Cartan decomposition

of a complex semisimple Lie algebra and let B(·, ·) be the Killing form on g. Let
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θ be the Cartan involution, i.e., θ : g → g such that x + y 7→ x − y if x ∈ k and

p = ik. Then θ and the Killing form induce an inner product on g:

(x, y)θ = −B(x, θy), x, y ∈ g.

Given x, y ∈ g, we define the x-numerical range of y as the following subset of C:

Wx(y) := {(x, z)θ : z ∈ Ad (K)y}.

The numerical range for the complex reductive case is similarly defined. When

g = gl(n, C), the Cartan decomposition is the usual Hermitian decomposition,
K = SU(n) and θ(A) = −A∗, A ∈ gl(n, C). Thus if A, C ∈ gl(n, C), then
WC(A) = {trCUA∗U−1 : U ∈ SU(n)}. The only difference between this setting
and the usual setting in the literature is that A is replaced by A∗ and this yields no

difficulty.

Let a be a maximal abelian subalgebra in p = ik and thus ia + a is a Cartan

subalgebra of g. Now an element x ∈ g is said to be normal if Ad (k)x ∈ ia + a

for some k ∈ K. Motivated by the result of Au-Yeung and Tsing [7] and some
computer generated figures, we have

Conjecture 4.1. Let g be a complex simple Lie algebra. If x ∈ g is normal

and there does not exist a ξ ∈ C such that ξx ∈ a, then Wx(x) is not convex.

For example, if g = so(n, C), then the conjecture is that the set

{trCOC∗O−1 : O ∈ SO(n)}

is not convex, where

C =
[

0 a1 + ib1

−(a1 + ib1) 0

]
⊕ · · · ⊕

[
0 am + ibm

−(am + ibm) 0

]
(⊕0)

∈ Cn×n , m = [n/2],

if a1 + ib1, . . . , am + ibm are not collinear. We remark that

|(x,Ad(k)x)θ|2≤ (x, x)θ(Ad (k)x,Ad (k)x)θ (by Cauchy-Schwarz inequality)

= −(x, x)θB(Ad (k)x, θAd (k)x)

= −(x, x)θB(Ad (k)x,Ad (k)θx) (by θAd (k) = Ad (k)θ)

= −(x, x)θB(x, θx) (since B(·, ·) is Ad (K)-invariant)

= (x, x)2θ.

Note that θ and Ad (k) commute since Ad (K) leaves k and p = ik invariant. So

(x, x)θ ∈ Wx(x) is positive and has the largest magnitude. (The boundary ofWc(c)
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near this point is concave as shown in the proof of Au-Yeung and Tsing [7] when

c′s are not collinear for the gln(C) case). Moreover Wx(x) is symmetric about
the origin for if w ∈ Wx(x), then w = (x,Ad(k)x)θ and w = (x,Ad(k)x)θ =
(Ad(k)x, x)θ = (x, Ad(k−1)x) ∈ Wx(x).

A related problem is concerning Kostant’s convexity theorem [19] for complex

reductive Lie algebras. Kostants’s result claims that if g is a real reductive Lie

algebra, then

π(Ad (K)x) = convWx, x ∈ a,

where a ⊂ p is a maximal abelian subalgebra in p and g = k + p is a Cartan

decomposition of g, W is the Weyl group of (g, a), π : p → a is the orthogonal

projection with respect to the Killing form and convS denotes the convex hull of

the set S. This generalizes a classical result of Schur and Horn, namely,

W(λ) := {diagUΛU−1 : U ∈ U(n)} = convSnλ,

where Λ = diag (λ), λ = (λ1, . . . , λn) ∈ Rn and Sn is the symmetric group.

Au-Yeung and Sing [4] proved that if λ ∈ Cn with λ′s not collinear, then W(λ)
is not convex. Neverthesless, Tsing [26] proved that W(λ) is star-shaped with
respect to the star center (

∑n
i=1 λi)e, where e = (1, 1, . . . , 1). Here we say that a

nonempty subset X of a vector space is star-shaped with respect to a star center s
if tx + (1 − t)s ∈ X whenever x ∈ X and t ∈ [0, 1]. Thus it is natural to ask the
following questions.

Question 4.2. Let g be a complex simple Lie algebra. If x ∈ g is normal and

there does not exist a ξ ∈ C such that ξx ∈ a, is it true that W(x) := π(Ad (K)x)
is not convex, where π : g → ia + a is the orthogonal projection with respect to the

inner product (·, ·)θ?

For example, if g = so(n, C), then the question is whether the set

W(C) := {(a12, a34, a56, . . . , a2m+1,2m) : A = OCO−1, O ∈ SO(n)} ⊂ Rm

is not convex where

C =
[

0 a1 + ib1

−(a1 + ib1) 0

]
⊕ · · · ⊕

[
0 am + ibm

−(am + ibm) 0

]
(⊕0)

∈ Cn×n, m = [n/2],

if a1 + ib1, . . . , am + ibm are not collinear with the origin. We remark that if

Conjecture 4.1 is true, then the answer to Question 4.2 is positive.

Question 4.3. Let g be a complex reductive Lie algebra. If x ∈ g is normal,

is it true that W(x) := π(Ad (K)x) is star-shaped with respect to the star center
π(xz), where x = xs + xz , xz ∈ z and xs ∈ [g, g]?
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For the case g = so(n, C), the question is whether the setW(C) is star-shaped
or not for the above C with general a1 + ib1, . . . , am + ibm?

5. STAR-SHAPEDNESS

When C, A ∈ Cn×n with C normal, Straus conjectured and Tsing [28] proved

that the C-numerical range

WC(A) = {trCUAU−1 : U ∈ U(n)}

is star-shaped with star center (1/n)trA trC, a very interesting result on the shape
of the numerical range. Later Hughes [15] proved an infinite-dimensional analog

of Tsing’s result: the closure of the set

WC(T ) :=





n∑

i,j=1

cij〈Tei, ej〉 : e1, . . . , en is o.n. in H





is star-shapedwith respect to the set (trC)We(T ), whereH is an infinite-dimensional

Hilbert space with inner product 〈·, ·〉, T is a bounded linear operator on H , and
We(T ) = {λ : λ = limm→∞〈Tfm, fm〉, {fm} is o.n. in H}. Jones [16] proved the
same result without assuming that C is normal. However, as pointed out in [11],

Hughes’ proof could not be applied to prove the finite-dimensional result of Tsing

and it seems that the proof of Jones cannot be modified to prove the star-shapedness

of WC(T ) when H is finite-dimensional. Recently, Cheung and Tsing [11] proved

that WC(A) is star-shaped with the star center 1
n trA trC. With the notations as

before, we make the following

Conjecture 5.1. Let g be a complex reductive Lie algebra. If x, y ∈ g, then the

x-numerical range of y, Wx(y) := {(x, w)θ : w ∈ Ad (K)y} is star-shaped with
respect to the star center (xz, yz)θ, where x = xs + xz ∈ g, xz ∈ z and xs ∈ [g, g].
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