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FIXED POINT AND NON-RETRACT THEOREMS

– CLASSICAL CIRCULAR TOURS

Sehie Park and Kwang Sik Jeong

Dedicated to the memory of Dr. Ming-Po Chen

Abstract. We show that the Brouwer fixed point theorem is equivalent to a

number of results closely related to the Euclidean spaces or n-simplexes or
n-balls. Among them are the Sperner lemma, the KKM theorem, some inter-

section theorems, various fixed point theorems, an intermediate value theorem,

various non-retract theorems, the non-contractibility of spheres, and others.

1. INTRODUCTION

It is well-known that the Brouwer fixed point theorem has numerous equivalent

formulations in various fields of mathematics such as topology, nonlinear analysis,

equilibrium theory in economics, game theory, and others. In this article, we collect

such formulations closely related to Euclidean spaces or n-simplexes or n-balls. For
some other equivalent formulations of the Brouwer theorem, see [24, 25].

Originally, some of the results covered in this paper were treated as consequences

of the Sperner lemma and the Knaster-Kuratowski-Mazurkiewicz (simply, KKM)

theorem; see [1, 2]. Nowadays, however, under the strong influence of [9], many

of them might be seen as essential applications of the homology theory. Our aim in

this paper is to show that these results are easily accessible to any reader if he or

she could understand the proofs of the Sperner lemma and the KKM theorem.

In Section 2, we introduce three classical results – the Brouwer theorem, the

Sperner lemma, and the KKM theorem – as well as some variants of the KKM
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theorem due to Sperner and Alexandroff-Pasynkoff. And we give a simple proof

of the Brouwer theorem based on a variant of the KKM theorem. Actually these

statements in Section 2 are all equivalent to each other, and hence we would have

our first classical circular tour.

Section 3 deals with fixed point theorems, intermediate value theorems, various

non-retract theorems, and the non-contractibility of a sphere. We will deduce one

after another by giving transparent proofs. This would be our second classical

circular tour which starts and ends with the Brouwer theorem.

2. THE MATHEMATICAL TRINITY AND

A SIMPLE PROOF OF THE BROUWER THEOREM

In this section, first, we indicate that the three classical results – the Brouwer

theorem, the Sperner lemma, and the KKM theorem – are mutually equivalent in

the sense that each one can be deduced from another with or without aid of some

minor results. Second, a particular form of the Knaster-Kuratowski-Mazurkiewicz

theorem is used to give a simple proof of the Brouwer fixed point theorem.

Let ∆n = v0v1 · · ·vn be an n-simplex and ∂∆n =
⋃n

i=0 v0v1 · · · v̂i · · ·vn its

boundary, that is, the union of (n − 1)-faces of ∆n.

The Brouwer fixed point theorem [6] as follows is one of the most well-known

and useful theorems in topology:

Theorem (Brouwer). A continuous map f : ∆n → ∆n has a fixed point

x0 = f(x0) ∈ ∆n.

There are a large number of different proofs of the Brouwer theorem; for the

literature, see [24, 25].

One of the earlier proofs of the Brouwer theorem was given by Knaster, Kura-

towski, and Mazurkiewicz (simply, KKM) [19] based on the following [28]:

Lemma (Sperner). LetK be a simplicial subdivision of an n-simplex v0v1 · · ·vn.

To each vertex ofK, let an integer be assigned in such a way that whenever a vertex
u of K lies on a face vi0vi1 · · ·vik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), the
number assigned to u is one of the integers i0, i1, · · · , ik. Then the total number
of those n-simplexes of K whose vertices receive all n + 1 integers 0, 1, · · · , n, is

odd. In particular, there is at least one such n-simplex.

For proofs of the Sperner lemma, see [10, 17, 28, 31]. The lemma was first

applied to new proofs of the invariance theorems on dimensions and domains in

[28] and, subsequently, to obtain the “closed” version of the following in [19]:
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Theorem (KKM). Let Fi (0 ≤ i ≤ n) be n + 1 closed [resp. open] subsets of
an n-simplex v0v1 · · ·vn. If the inclusion relation

vi0vi1 · · ·vik ⊂ Fi0 ∪ Fi1 ∪ · · · ∪ Fik

holds for all faces vi0vi1 · · ·vik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), then⋂n
i=0 Fi 6= ∅.

For proofs of the closed version using the Sperner lemma, see [10, 17, 19, 31].

The KKM theorem was used in [19] to obtain one of the most direct proofs of the

Brouwer theorem. Therefore, it was conjectured that those three theorems are mu-

tually equivalent. This was clarified by Yoseloff [30]. In fact, those three theorems

are regarded as a sort of mathematical trinity. All are extremely important and have

many applications.

Brouwer

1974↙ ↖ 1929

Sperner − −→ KKM
1929

The “open” version of the KKM theorem was due to Kim [18] and Shih and

Tan [27], and later, Lassonde [22] showed that the closed and open versions of the

KKM theorem can be derived from each other.

We give here a simple proof of the equivalency of the closed and the open

versions:

The open version follows from the closed version. In fact, by Shih [26, Theorem

1], if Gi (0 ≤ i ≤ n) are open sets satisfyng the inclusion relation in the KKM
theorem with Gi = Fi, then there exist n + 1 closed sets Fi ⊂ Gi (0 ≤ i ≤ n)
satisfying the hypothesis of the KKM theorem.

Conversely, for any ε > 0, let Gε
i be the open ε-neighborhood of Fi (0 ≤ i ≤ n)

with respect to the Euclidean metric on the n-simplex. Then, by the open version,
there exists an xε ∈

⋂n
i=0 Gε

i 6= ∅. We may assume that the net {xε} converges to
a limit x0. Note that x0 ∈

⋂n
i=0 Fi. This completes our proof.

In [19], it was noted that the closed version of the following particular form

of the KKM theorem was used by Sperner [28] in order to prove the invariance of

dimension:

Theorem 1 (Sperner). Let Fi (0 ≤ i ≤ n) be n + 1 closed [resp. open] sets
covering an n-simplex ∆n = v0v1 · · ·vn. If, for each i, Fi is disjoint from the

(n − 1)-face v0v1 · · · v̂i · · ·vn, then
⋂n

i=0 Fi 6= ∅.
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The open valued version is due to Stromquist [29]. For reader’s convenience,

we show that Theorem 1 follows from the KKM theorem as in [19]:

Proof. It suffices to show that Fi (0 ≤ i ≤ n) satisfy the requirement of the KKM
theorem. For any face vi0vi1 · · ·vik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), we
have

vi0vi1 · · ·vik ⊂ Fi0 ∪ Fi1 ∪ · · · ∪ Fik

since vj /∈ {vi0 , vi1 , · · · , vik} implies

Fj ∩ vi0vi1 · · ·vik ⊂ Fj ∩ v0v1 · · · v̂j · · ·vn = ∅.

This completes our proof.

In ∆n = v0v1 · · ·vn, the (n − 1)-faces are denoted as follows:

A0 := v0v1 · · ·vn−1 and Ai := vi · · ·vnv0 · · ·vi−2 for 1 ≤ i ≤ n.

The closed version of the following is due to Alexandroff and Pasynkoff [3]

and noted by Fan [11-13]:

Theorem 2 (Alexandroff and Pasynkoff). Let Xi (0 ≤ i ≤ n) be n + 1 closed
[resp. open] sets covering an n-simplex ∆n = v0v1 · · ·vn such that Ai ⊂ Xi for

each i. Then
⋂n

i=0 Xi 6= ∅.

Proof. Suppose that X0 ∩ X1 ∩ · · · ∩ Xn = ∅. Set

Fi−1 := ∆n\Xi for i = 1, · · · , n; and Fn := ∆n\X0.

Then {F0, · · · , Fn} is an open [resp. closed] cover of ∆n, and

v0 · · · v̂i−1 · · ·vn = Ai ⊂ Xi = ∆n\Fi−1 for i = 1, · · · , n;

v0 · · ·vn−1v̂n = A0 ⊂ X0 = ∆n\Fn.

Since Fi ∩ v0 · · · v̂i · · ·vn = ∅ for i = 0, 1, · · · , n, we have by Theorem 1 that

∅ 6= F0 ∩ · · · ∩ Fn = ∆n\(X0 ∪ · · · ∪ Xn),

contrary to ∆n = X0 ∪ · · · ∪ Xn. Therefore,
⋂n

i=0 Xi 6= ∅.

The closed version of Theorem 2 was first applied to the essentiality of the

identity map of the boundary of a simplex in [3]; see also [8]. The open version of

Theorem 2 was noted by Lassonde [22].
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Fan [11, 12] noted that each of Theorems 1 and 2 can be easily derived from

the other, and obtained generalizations of Theorems 1 and 2 with some applications

in [11-13].

For completeness we give the following:

Proof of Theorem 1 using Theorem 2. Suppose that F0 ∩ · · · ∩ Fn = ∅. Set

Xi+1 := ∆n\Fi for i = 0, 1, · · · , n − 1; and X0 := ∆n\Fn.

Then {X0, · · · , Xn} is a cover of ∆n. Since

Ai+1 = v0 · · · v̂i · · ·vn ⊂ ∆n\Fi = Xi+1 for i = 0, 1, · · · , n− 1;

A0 = v0 · · ·vn−1v̂n ⊂ ∆n\Fn = X0,

we have ∅ 6= X0∩· · ·∩Xn = ∆n\(F0∪· · ·∪Fn), contrary to ∆n = F0∪· · ·∪Fn.

Therefore,
⋂n

i=0 Fi 6= ∅.

From Theorem 2, we can easily deduce the Brouwer fixed point theorem:

Proof of the Brouwer theorem. Suppose that a continuous map f : ∆n → ∆n

has no fixed point. For each x ∈ ∆n, let g(x) be defined by either g(x) = x if

x ∈ ∂∆n, or the point of ∂∆n such that x lies on the line segment from f(x) to g(x),
if x /∈ ∂∆n. Then g : ∆n → ∂∆n is a continuous map such that g|∂∆n = id∂∆n .

Let Xi := g−1(Ai) for each (n − 1)-face Ai in ∂∆n. Then Xi (0 ≤ i ≤ n) are
n + 1 closed sets covering ∆n such that Ai ⊂ Xi. In fact, Ai = g(Ai) implies

Xi = g−1(Ai) = g−1g(Ai) ⊃ Ai.

Therefore, by Theorem 2, we have
⋂n

i=0 Xi 6= ∅. However,

n⋂

i=0

Xi =
n⋂

i=0

g−1(Ai) = g−1(
n⋂

i=0

Ai) = g−1(∅) = ∅.

This is a contradiction.

Consequently, we conclude that each of Theorems 1 and 2 is also equivalent

to each of the mathematical trinity. More precisely, in this section, we proved or

indicated the following implications:

The Brouwer theorem ⇐⇒ the Sperner lemma ⇐⇒ the KKM theorem

(closed) ⇐⇒ the KKM theorem (open) =⇒ Theorem 1 ⇐⇒ Theorem 2 =⇒ the

Brouwer theorem.
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3. FIXED POINT AND NON-RETRACT THEOREMS

EQUIVALENT TO THE BROUWER THEOREM

In this section, we deduce various fixed point theorems, intermediate value the-

orems, various non-retract theorems, and the non-contractibility of a sphere. Those

are shown to be all equivalent to the Brouwer theorem and, consequently, we would

have our second classical circular tour which starts and ends with the Brouwer

theorem.

Let Rn be the Euclidean n-space, Bn the n-ball ‖x‖ ≤ 1, and Sn−1 the

(n − 1)-sphere, where we always assume that Rn has the Euclidean norm ‖x‖ =
(
∑n

i=1 x2
i )

1/2 for x = (x1, · · · , xn) ∈ Rn. These spaces appear in all of the theo-

rems in this section, and the theorems are still valid whenever Rn, Bn, and Sn−1

are replaced by their homeomorphic images, respectively.

We begin, in this section, with the following form of the Brouwer theorem:

Theorem 3. A continuous map f : Bn → Bn has a fixed point x0 = f(x0).

Proof. Since Bn is homeomorphic to an n-simplex ∆n, let h : Bn → ∆n be a

homeomorphism. Then g = hfh−1 : ∆n → ∆n is a continuous map and hence

has a fixed point y0 = g(y0) = (hfh−1)(y0) ∈ ∆n. Then x0 = h−1(y0) ∈ Bn is a

fixed point of f : Bn → Bn, since h−1(y0) = f(h−1(y0)).

For a topological space X and A ⊂ X , a continuous map r : X → A with

r|A = idA is called a retraction of X onto A, and A is called a retract of X .
From the Brouwer Theorem 3, we have the following consequence of a result

of Bohl [4]:

Theorem 4 (Bohl). Every continuous map f : Bn → Rn has at least one of

the following properties:

(a) f has a fixed point; or
(b) there is an x ∈ Sn−1 such that x = λf(x) for some λ ∈ (0, 1).

Proof. Consider a retraction r : Rn → Bn defined by

r(x) =

{
x if x ∈ Bn,

x/‖x‖ if x ∈ Rn\Bn.

Then rf : Bn → Bn has a fixed point x0 = (rf)(x0) ∈ Bn by Theorem 3.

If f(x0) ∈ Bn, then x0 = r(f(x0)) = f(x0) and hence we have case (a).
If f(x0) ∈ Rn\Bn, then x0 = f(x0)/‖f(x0)‖ ∈ Sn−1 and ‖f(x0)‖ > 1. By

putting λ = 1/‖f(x0)‖ ∈ (0, 1), we have case (b).
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Recall that Halpern [14-16] first introduced the outward and, later, inward sets

as follows:

Let E be a topological vector space and X ⊂ E. The inward and outward sets

of X at x ∈ E, IX(x) and OX(x), are defined as follows:

IX(x) = x +
⋃

r>0

r(X − x), OX(x) = x +
⋃

r<0

r(X − x).

From now on, the closures of inward and outward sets of Bn at x ∈ Rn are

denoted by I(x) and O(x), respectively.
From Theorem 4, we have the following particular form of a result of Halpern

and Bergman [16]:

Theorem 5. Any continuous map f : Bn → Rn such that f(x) ∈ I(x) for
x ∈ Sn−1 has a fixed point x0 = f(x0) ∈ Bn.

Proof. This follows from the fact that

I(x)∩ {λx : λ > 1} = ∅

for any x ∈ Sn−1.

From Theorem 5, we have the following particular form of another result of

Halpern and Bergman [16]:

Theorem 6. Any continuous map f : Bn → Rn such that f(x) ∈ O(x) for
x ∈ Sn−1 has a fixed point. Moreover, we have Bn ⊂ f(Bn).

Proof. Let g : Bn → Rn be a map given by g(x) = 2x − f(x) for x ∈ Bn.

Then x− g(x) = −(x− f(x)), so that f and g have the same fixed point. We note

that f(x) ∈ O(x) if and only if g(x) ∈ I(x). Therefore, by Theorem 5, g has a
fixed point x0 = g(x0) and hence x0 = f(x0).

To show Bn ⊂ f(Bn), let us suppose the contrary. Clearly, we can assume that
0 is a point of Bn\f(Bn). The complement U of f(Bn) is a neighborhood of 0, so
we can choose c > 1 such that cU ⊃ Bn. Then cf(Bn) is disjoint from Bn, and

so the map cf can have no fixed point. However, it is clear that cf(x) ∈ O(x) for
x ∈ Sn−1. This is a contradiction.

Note that each of Theorems 4-6 is a generalized (but equivalent) form of the

Brouwer fixed point theorem. The following is recently due to Lax [23]:

Theorem 7 (Intermediate value theorem). Let f : Bn → Rn be a continuous

map such that f |Sn−1 = idSn−1 ( that is, f(x) = x for ‖x‖ = 1). Then Bn ⊂ f(Bn).
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Since x = f(x) ∈ O(x) for x ∈ Sn−1, Theorem 7 follows immediately from

Theorem 6.

A well-known argument applies to deduce the Brouwer theorem from Theorem

7 as in [23].

There have appeared many forms of non-retract theorems, that is, Sn−1 cannot

be a retract of Bn. The following is taken from Kulpa [20, 21]:

Theorem 8 (Borsuk’s non-retract theorem). Let f : X → Rn be a continuous

map from a compact set X ⊂ Rn. If f(x) = x for each x ∈ ∂X, then X ⊂ f(X).

Proof. We may assume that X ⊂ Bn and extend the map f to a continuous map
h : Bn → Rn such that h(x) = x for each x ∈ Bn\X . Then h|Sn−1 = idSn−1 and

hence Bn ⊂ h(Bn) by Theorem 7. Since X ⊂ Bn ⊂ h(Bn) = h(X ∪ (Bn\X)) =
h(X) ∪ h(Bn\X) = h(X)∪ (Bn\X), we should have X ⊂ h(X) = f(X).

For X = Bn, Theorem 8 reduces to Theorem 7.

From Theorem 8, we have the following:

Theorem 9. Let X be a compact subset of Rn with nonempty interior. Then

∂X is not a retract of X .

Proof. If f : X → ∂X is a retraction, then X ⊂ f(X) by Theorem 8. Note
that f(X) = ∂X ⊃ X which contradicts Int X 6= ∅.

The following immediate consequence of Theorem 9 is taken from Dugundji [7,

p. 341]:

Theorem 10. If U is a bounded open subset of Rn, then ∂U is not a retract of

U .

From Theorem 10, we have immediately the following which originated from

Bohl [4]:

Theorem 11. Sn−1 is not a retract of Bn.

This can also follow immediately from Theorem 2 by considering a map g :
∆n → ∂∆n as in the proof of the Brouwer theorem in Section 2.

The following two theorems are due to Borsuk [5, p. 12]:

Theorem 12 (Borsuk). If X is a closed subset of Rn and G is one of the

bounded components of Rn\X, then there is no continuous map f : G → X such

that f(x) = x for every x ∈ G\G.
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Proof. We may assume that 0 ∈ G and diamG ≤ 1. Then G ⊂ Bn. If there

is a continuous map f : G → X such that f = id on G\G, then we can define a
continuous map φ : Bn → Sn−1 by

φ(x) =
{

x/‖x‖ for x ∈ Bn\G,

f(x)/‖f(x)‖ for x ∈ G.

This contradicts Theorem 11.

Theorem 13 (Borsuk). If G is a nonempty open bounded subset of Rn, then

the set X = Rn\G is not a retract of Rn.

Proof. We may assume that G is one of the bounded components of Rn\X .
Suppose the contrary that there is a continuous map f : Rn → X such that f |X =
idX . Since G ⊂ Rn and G\G ⊂ Rn\G = X , we have a continuous map f |G :
G → X such that f(x) = x for x ∈ G\G. This contradicts Theorem 12.

A topological space is said to be contractible if its identity map is homotopic

to a constant map to a point in that space, or its identity map is inessential.

Theorem 14. Sn−1 is not contractible.

Proof. Suppose the contrary that Sn−1 is contractible, that is, there exists a

homotopy H : c ' id such that H(x, 0) = c(x) = x0 ∈ Sn−1 and H(x, 1) = x for
all x ∈ Sn−1. Define a map r : Rn → Rn\(Int Bn) by

r(x) =





x0 if ‖x‖ ≤ 1/2,

H(x/‖x‖, 2‖x‖− 1) if 1/2 ≤ ‖x‖ ≤ 1,
x if ‖x‖ ≥ 1.

Then r is continuous and r =id on Rn\(Int Bn). Therefore r is a retraction. This

contradicts Theorem 13 with G =Int Bn.

From Theorem 14, we can deduce the Brouwer theorem:

Proof of Theorem 3 using Theorem 14. Assume f(x) 6= x for all x ∈ Bn. Let

r(x) be the point of Sn−1 such that x lies on the line segment from f(x) to r(x).
The continuity of r can be shown by that of f and some elementary geometry. Since
r(x) = x for x ∈ Sn−1, r : Bn → Sn−1 is a retraction. [This contradicts Theorem

11 and hence we may stop here. However, our aim is to use Theorem 14.] Then

H(x, t) = r((1− t)x) for x ∈ Sn−1 and t ∈ [0, 1]

yields a homotopy contracting Sn−1 to a point. This contradicts Theorem 14.
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We note that, in [9], Theorem 14 was proved using homology theory and applied

to obtain the non-retract theorem, the Brouwer theorem, the invariance of dimension,

Borsuk’s separation criterion, Borsuk’s theorem on connectedness of open subsets

of Sn, the invariance of domain, and some results on locally Euclidean spaces. All

of these follow from Theorem 14 using some lemmas (the results of [9, Chap. XI,

§2]) and other simple geometric arguments. See also [7].
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