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A TAUBERIAN THEOREM FOR UNIFORMLY WEAKLY
CONVERGENCE AND ITS APPLICATION TO FOURIER SERIES

Chang-Pao Chen and Meng-Kuang Kuo

Abstract. In 1995, S. Mercourakis introduced the concept of uniformly
weakly convergent sequences and characterized such sequences as those with
the property that any of its subsequences is Cesàro-summable. In this paper,
we present a Tauberian theorem for such kind of convergence. As a conse-
quence, we prove that the uniformly pointwise convergence and the uniform
convergence of a sequence of complex-valued functions coincide under a suit-
able Tauberian condition. This result affirmatively answers a question raised
by S. Mercourakis concerning the Fourier series of a continuous function on
the circle group T . In this paper, a result of Banach type is also established
for uniformly weakly convergent sequences. Our result generalizes the work
of Mercourakis.

1. INTRODUCTION

Let (X, ‖ · ‖) be a Banach space and fn, f ∈ X . In the theory of mathemat-
ical analysis, pointwise convergence and uniform convergence are two important
concepts in the literature (cf. [7] and [8]). They are exhaustively studied in many
aspects, e.g., in the metric theory of functions (cf. [9]) and in Fourier series (cf.
[1] and [11]). The notion of pointwise convergence was extended to the Banach
space theory in the following setting for a long time (cf. [4]). We say that fn → f

weakly in X if λ(fn) → λ(f) for every λ ∈ X∗, where X∗ denotes the dual space
of X consisting of all continuous linear functionals λ on X . This concept has
shown its importance in the study of the classical Banach spaces, e.g., in the study
of the Banach-Saks property (cf. [3, Chapter VII]). Corresponding to the uniform
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convergence, Mercourakis [6, Definition 2.1] introduced the concept of uniformly
weakly convergence, which is defined as follows. We say that fn −→ f uniformly
weakly in X if for each ε > 0 there exists a natural number N (ε) such that

(1.1) �({n : |λ(fn) − λ(f)| ≥ ε}) ≤ N (ε) (λ ∈ X∗; ‖λ‖ ≤ 1).

Here the notation � denotes the cardinality of a set. In [6, Theorem 2.6], Mercourakis
characterized uniformly weakly convergent sequences as those obeying the property
that any of its subsequences is Cesàro-summable inX . He also proved that fn −→ f
uniformly weakly in X if and only if

(1.2) lim
N→∞

{
sup

k1<···<kN

∥∥∥∥ 1
N

N∑
i=1

fki − f

∥∥∥∥
}

= 0.

These results ledMercourakis to characterize the Banach-Saks and the weak Banach-
Saks properties from the viewpoint of uniformly weakly convergence (cf. [6, The-
orems 2.9 and 2.10]).

For fn ∈ C(Ω), where Ω is a given compact Hausdorff space, we have the
following implications:

(1.3)
‖ · ‖∞ − convergence =⇒ uniformly weakly convergence

=⇒ weak convergence
=⇒ pointwise convergence.

It is known (see, for example, [3] and [6, p.91]) that the converse implications in
(1.3) are false, in general. In [3, p. 66, Theorem 1], Banach proved that fn → f
weakly in C(Ω) if and only if supn ‖fn‖∞ < ∞ and fn → f pointwise on Ω. This
result has been extended by Mercourakis to uniformly weakly convergence (see [6,
Proposition 2.2]). He proved that for a given uniformly bounded sequence, fn → f

uniformly weakly in C(Ω) if and only if fn → f uniformly pointwise on Ω, that
is, for each ε > 0 there exists a natural number N (ε) such that

(1.4) �({n : |fn(γ)− f(γ)| ≥ ε}) ≤ N (ε) (γ ∈ Ω).

Mercourakis’s result only deals with uniformly bounded sequences. We shall prove
in Lemma 2.2 that it can be extended to the general case in a form of Banach type.
We shall see its application later. As for the implication from weak convergence
to uniformly weakly convergence, this part involves the Banach-Saks or the weak
Banach-Saks property. We refer the readers to [3, pp. 109-113] and [6, pp. 101-
103] for details.

In [6, p.103], Mercourakis asked a question of the implication from uniformly
weakly convergence to norm convergence. His question reads as follows. Let
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sn(f ; t) denote the nth partial sum of the Fourier series of f ∈ C(T ), where T =
[−π, π]. Suppose that {sn(f)}∞n=0 is uniformly bounded and converges uniformly
pointwise on T to f . Does then sn(f) converge uniformly on T to f? This question
is still open. The purpose of this paper is to answer this question affirmatively. To
do so, we first establish a Tauberian theorem for uniformly weakly convergence (see
Theorem 2.1). More precisely, we shall prove that under (1.5), uniformly weakly
convergence implies norm convergence:

(1.5) lim
n→∞ ‖fn+1 − fn‖ = 0.

Such a condition is known as a Tauberian condition and the corresponding result is
called a Tauberian theorem (see [2] and [5] for the definitions). With the help of
Lemma 2.2, we deduce the second form of the aforementioned Tauberian theorem
for X = �∞(Γ) or C(Ω), in which the concept of uniformly pointwise convergence
is involved. This result says that the ‖·‖∞ convergence coincides with the uniformly
pointwise convergence under condition (1.5) (see Theorem 2.4). For fn = sn(f ; t),
condition (1.5) is automatically satisfied and so Theorem 2.4 answers the question
of Mercourakis affirmatively.

2. MAIN RESULTS

The following result gives a Tauberian theorem for uniformly weakly conver-
gence.

Theorem 2.1. Let {fn}∞n=0 be a sequence in a Banach space (X, ‖ · ‖) and
f ∈ X . Then fn → f in X if and only if fn → f uniformly weakly in X and
(1.5) is satisfied.

Proof. The “only if” part follows from the definitions. We prove the converse.
Assume that fn → f uniformly weakly in X and (1.5) is satisfied. By the uniform
boundedness theorem (cf. [10, p.68]), we know that {‖fn‖}∞n=0 is bounded. It
follows from [6, Theorem 2.6] that (1.2) is true. We have

‖fn − f‖ ≤
∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥ +
1
N

n+N−1∑
k=n

‖fk − fn‖

≤ sup
k1<···<kN

∥∥∥∥ 1
N

N∑
i=1

fki − f

∥∥∥∥ + (N − 1)
{

sup
k≥n

‖fk+1 − fk‖
}

.

By (1.2) and (1.5), we conclude that fn → f in X . This completes the proof.
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The condition (1.5) can not be removed from Theorem 2.1. For instance, con-
sider X = c0(N) (or �2(N)) and fn = en, where N denotes the set of all nonneg-
ative integers and en is the sequence with 1 at the nth position and 0 otherwise.
We have that fn → 0 uniformly weakly in X but fn � 0 in X . Even for the case
X = C[0, 1], (1.5) is still necessary. A counterexample is given by

fn(x) =




2(n + 1)(n + 2)(x− 1
n + 2

) on (
1

n + 2
,

2n + 3
2(n + 1)(n + 2)

),

−2(n + 1)(n + 2)(x − 1
n + 1

) on [
2n + 3

2(n + 1)(n + 2)
,

1
n + 1

),

0 otherwise.
In the following, we assume that Γ is a nonempty set and Ω is a compact

Hausdorff space. In order to get the second form of Theorem 2.1, we need the
following generalization of [6, Proposition 2.2]. This is a result of Banach type.

Lemma 2.2. fn → f uniformly weakly in �∞(Γ) (respectively, C(Ω)) if and
only if supn ‖fn‖∞ < ∞ and fn → f uniformly pointwise on Γ (respectively, Ω).

Proof. We know that any uniformly weakly convergent sequence is bounded,
so we can easily deduce the “only if” part by using the fact that (1.1) =⇒ (1.4).
The if part of the case C(Ω) follows from [6, Proposition 2.2]. As for the case
�∞(Γ), by [6, Theorems 1.8 & 2.6], we find that for uniformly bounded sequences,
uniformly weakly convergence ⇐⇒ (1.2) ⇐⇒ uniformly pointwise convergence.
This leads us to the conclusion.

The condition supn ‖fn‖∞ < ∞ in Lemma 2.2 is necessary. The following
example displays this fact: let fn(γ) = n + 1 for γ = 1/(n + 1) and 0 otherwise.
Then fn → 0 uniformly pointwise on [0, 1], but fn � 0 uniformly weakly in
�∞([0, 1]).

For uniformly pointwise convergent sequences, we show below that the condition
supn ‖fn‖∞ < ∞ can be derived from (1.5).

Lemma 2.3. Let X = �∞(Γ) or C(Ω) and fn, f ∈ X . If fn → f uniformly
pointwise and (1.5) holds, then supn ‖fn‖∞ < ∞.

Proof. We prove the case X = �∞(Γ) and leave X = C(Ω) to the readers.
Without loss of generality, we assume f = 0. Since fn → 0 uniformly pointwise on
Γ, there exists a positive integerN such that �({n : |fn(γ)| ≥ 1}) ≤ N for all γ ∈ Γ.
This implies that for any n and any γ , one of |fn(γ)|, |fn+1(γ)|, · · · , |fn+N(γ)| is
less than 1, say |fm(γ)|, and so

|fn(γ)| ≤
m−1∑
k=n

|fk+1(γ)− fk(γ)|+ |fm(γ)| ≤ N (sup
k≥0

‖fk+1 − fk‖∞) + 1.
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Taking supremum over n and γ gives supn ‖fn‖∞ < ∞. This completes the
proof.

Putting Theorem 2.1 and Lemmas 2.2-2.3 together, we get the second form of
Theorem 2.1 for X = �∞(Γ) or C(Ω).

Theorem 2.4. Let X = �∞(Γ) or C(Ω) and fn, f ∈ X . Then fn → f in X

if and only if fn → f uniformly pointwise and (1.5) holds.

For f ∈ C(T ), we know that lim
n→∞ ‖sn+1(f) − sn(f)‖∞ = 0. This can be

proved by using the Riemann-Lebesgue theorem (see [11, Vol. I, p.45]). Hence,
the condition (1.5) with fn = sn(f) holds. As a consequence of Theorem 2.4,
we conclude that sn(f) → f uniformly on T if and only if sn(f) → f uniformly
pointwise on T . This answers the question of Mercourakis affirmatively. Moreover,
the condition of uniformly boundedness required there for sn(f), n ≥ 0, is not
necessary.
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