AN ANSWER TO A CONJECTURE ON MULTIPLICATIVE MAPS ON $C(X, I)$

Zafer Ercan and Süleyman Önal

Abstract

An answer to the conjecture in [1] is given.

The closed interval $[0,1]$ (under the usual topology) is denoted by I. For a given topological space $X, C(X, I)$ denotes the set of continuous functions from X into I. The multiplication operation on $C(X, I)$ is defined pointwise, that is, $f g(x):=f(x) g(x)$. For each $c \in I, \mathbf{c} \in C(X, I)$ is defined by $\mathbf{c}(x)=c$. A map π from $C(X, I)$ into $C(X, I)$ is called multiplicative if

$$
\pi(f g)=\pi(f) \pi(g)
$$

for each $f, g \in C(X, I)$. The following conjecture is given in [1]. The answer of this conjecture is positive whenever X is first countable, which is the main result of [1].

The Conjecture. Let X be compact Hausdorff space and $\pi: C(X, I) \rightarrow$ $C(X, I)$ be a bijective multiplicative map. Then there exists a homeomorphism $\sigma: X \rightarrow X$ and a continuous map $k: X \rightarrow(0, \infty)$ such that for $x \in X$

$$
\pi(f)(x)=(f(\sigma(x)))^{k(x)}
$$

for each $f \in C(X, I)$.
As usual the Stone - \breve{C} ech compactification of a completely regular Hausdorff space X is denoted by βX. The following example shows that the answer to the question is negative.

Example. For each $f \in C(\beta(0,1), I)$, let $\alpha_{f}:(0,1) \rightarrow I$ be defined by

$$
\alpha_{f}(x)=(f(x))^{\frac{1}{x}}
$$

[^0]and let $\alpha_{f}^{e} \in C(\beta(0,1), I)$ be the extension of α_{f}. Then
$$
T: C(\beta(0,1), I) \rightarrow C(\beta(0,1), I), \quad T(f)=\alpha_{f}^{e}
$$
is bijective and multiplicative. We claim that there is no homeomorphism σ : $\beta(0,1) \rightarrow \beta(0,1)$ and a continuous function $k: \beta(0,1) \rightarrow(0, \infty)$ such that $T(f)(x)=(f(\sigma(x)))^{k(x)}$ for each $f \in C(\beta(0,1), I)$ and $x \in \beta(0,1)$. Indeed if such σ and k exist then for each $x, c \in(0,1)$ we have
$$
c^{\frac{1}{x}}=T(\mathbf{c})(x)=c^{k(x)},
$$
so $k(x)=\frac{1}{x}$. This is a contradiction to $k(\beta(0,1))$ being bounded.

References

[1] J. Marovt, Multiplicative bijections of $C(X, I)$, Proc. Amer. Math. Soc., 134 (2006), 1065-1075.

Zafer Ercan
Middle East Technical University,
Department of Mathematics,
06531 Ankara
Turkey
E-mail: zercan@metu.edu.tr
Süleyman Önal
Department of Mathematics,
Middle East Technical University,
06531 Ankara,
Turkey
E-mail: osul@metu.edu.tr

[^0]: Received February 16, 2006, accepted June 9, 2006.
 Communicated by Bor-Luh Lin.
 2000 Mathematics Subject Classification: Primary 46, Secondary 46B42, 54B42.
 Key words and phrases: Riesz homomorphism, Banach lattices, Support.

