
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 2, pp. 513-522, April 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

COLORING SIERPIŃSKI GRAPHS AND SIERPIŃSKI GASKET GRAPHS

Sandi Klavžar

Abstract. Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi
puzzle with n disks, while Sierpiński gasket graphs Sn are the graphs naturally
defined by the finite number of iterations that lead to the Sierpiński gasket.
An explicit labeling of the vertices of Sn is introduced. It is proved that Sn

is uniquely 3-colorable, that S(n, 3) is uniquely 3-edge-colorable, and that
χ′(Sn) = 4, thus answering a question from [15]. It is also shown that Sn

contains a 1-perfect code only for n = 1 or n = 3 and that every S(n, 3)
contains a unique Hamiltonian cycle.

1. INTRODUCTION

Topological studies of the Lipscomb’s space [11, 12] led in [8] to the definition
of Sierpiński graphs S(n, k). Another motivation for the introduction of these graphs
is the fact that the graph S(n, 3) is isomorphic to the graph of the Tower of Hanoi
puzzle with n disks [8], see also [5]. Sierpi ński graphs were also independently
studied in [14], where it is shown that they arise in a natural way from regular
graphs.

The graphs S(n, k) have many appealing properties and were studied from
different points of view. They possess (essentially) unique 1-perfect codes [9], a
result proved before for S(n, 3) in [2]. Alternative arguments for the uniqueness of
1-perfect codes in S(n, k) were recently presented in [3] in order to determine their
optimal L(2, 1)-labelings. Moreover, (regularizations of) Sierpiński graphs are the
first nontrivial families of graphs of “fractal” type for which the crossing number is
known [10], while in [13] several metric invariants of these graphs are determined.
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Hinz and Schief [7] used the connection between the graphs S(n, 3) and the
Sierpiński gasket to compute the average distance of the latter, see also [1]. The
graphs that are obtained in a natural way by n iterations of the process that leads to
the Sierpiński gasket are called Sierpiński gasket graphs and denoted Sn. Teguia and
Godbole [15] studied several properties of these graphs, in particular the chromatic
number, the domination number, and the pebbling number.

In this paper we continue studies of the Sierpiński graphs S(n, 3) and the
Sierpiński gasket graphs Sn. We first introduce an explicit labeling of the ver-
tices of Sn that is obtained by “contracting” the Sierpiński labeling of S(n, 3). In
the central part of the paper–Section 3–vertex- and edge-colorings of S(n, 3) and
Sn are treated. It is in particular shown that Sn is uniquely 3-colorable (hence
strengthening a result from [15]), that S(n, 3) is uniquely 3-edge-colorable, and
that the chromatic index of Sn is 4 (hence answering a question from [15]). We
conclude the paper by observing that Sn contains a 1-perfect code only for n = 1
and n = 3 and that every S(n, 3) contains a unique Hamiltonian cycle.

As usual, χ(G), χ′(G), and γ(G) denote the chromatic number of G, the
chromatic index of G, and the domination number of G, respectively. A 1-perfect
code (also known as an efficient dominating set) in a graph G is a vertex subset of
G such that the closed neighborhoods of its elements form a partition of V (G). For
any other graph theoretic concept not defined here we refer to [16].

2. SIERPIŃSKI GRAPHS AND SIERPIŃSKI GASKET GRAPHS

The Sierpiński graphs S(n, 3), n ≥ 1, are defined in the following way:

V (S(n, 3)) = {1, 2, 3}n ,

two different vertices u = (u1, . . . , un) and v = (v1, . . . , vn) being adjacent if and
only if there exists an h ∈ {1, . . . , n} such that

(i) ut = vt, for t = 1, . . . , h− 1;
(ii) uh �= vh; and
(iii) ut = vh and vt = uh for t = h + 1, . . . , n.

We will shortly write 〈u1 . . . un〉 for (u1, . . . , un). (On figures this convention is
further shortened to u1 . . .un.) The graph S(4, 3) is shown in Fig. 1.

The vertices 〈1 . . .1〉, 〈2 . . .2〉, and 〈3 . . .3〉 are called the extreme vertices of
S(n, 3). For i = 1, 2, 3 let S(n + 1, 3)i be the subgraph of S(n + 1, 3) induced by
the vertices of the form 〈i . . .〉. Clearly, S(n + 1, 3)i is isomorphic to S(n, 3).

The Sierpiński gasket graphs Sn, n ≥ 1, are defined geometrically as the graphs
whose vertices are the intersection points of the line segments of the finite Sierpiński
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gasket σn and line segments of the gasket as edges, see [15]. The Sierpiński gasket
graph S4 is shown in Fig. 2.

Fig. 1. S(4, 3).

Fig. 2. S4 with its quotient labeling.
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We now give an alternative description of the graphs Sn that yields an explicit
labeling of the vertices of Sn. For this sake observe that Sn can be obtained from
S(n, 3) by contracting all of its edges that lie in no triangle. Let 〈u1 . . .urij . . . j〉
and 〈u1 . . . urji . . . i〉 be endvertices of such an edge, then we will denote the
corresponding vertex of Sn with 〈u1 . . . ur〉{i, j}. Note that r ≤ n − 2 for such
an edge. Then Sn is the graph with three special vertices 〈1 . . .1〉, 〈2 . . .2〉, and
〈3 . . .3〉, called extreme vertices of Sn, together with the vertices of the form

〈u1 . . . ur〉{i, j} ,

where 0 ≤ r ≤ n − 2, and all the uk’s, i and j are from {1, 2, 3}. Let us call this
labeling the quotient labeling of Sn. (See Fig. 2 where the quotient labeling of S4

is shown.) For a vertex u = 〈u1 . . . ur〉{i, j} of Sn we will also say that 〈u1 . . . ur〉
is the prefix of u.

For i = 1, 2, 3 let Sn,i be the subgraph of Sn+1 induced by 〈i . . . i〉, {i, j},
{i, k}, where {i, j, k} = {1, 2, 3}, and all the vertices whose prefix starts with i.
Note that Sn,i is isomorphic to Sn.

To explicitly describe adjacencies with respect to the quotient labeling of Sn,
n ≥ 2, note first that an extreme vertex 〈i . . . i〉 of Sn is adjacent to vertices
〈i . . . i〉{i, j} and 〈i . . . i〉{i, k}, where {i, j, k} = {1, 2, 3} and the prefixes are of
length n − 2. In particular, in S2, an extreme vertex 〈ii〉 is adjacent to {i, j} and
{i, k}. To describe neighbors of other vertices we need the following notations.
For a vertex u = 〈u1 . . . un〉 of S(n, 3) and s ≤ n − 2 let u(s) = 〈u1 . . . us〉. Let
u = 〈u1 . . .ur〉{i, j} be a vertex of Sn. Then let

u = 〈u1 . . .urij . . . j〉 and u = 〈u1 . . . urji . . . i〉
be the endvertices of the edge of S(n, 3) contracted to u.

Proposition 2.1. Let n ≥ 2, let u = 〈u1 . . . ur〉{i, j} be a vertex of Sn and let
{i, j, k} = {1, 2, 3}.

(i) If 0 ≤ r ≤ n − 3 then u is adjacent to

u(n−2){i, j}, u(n−2){j, k}, u(n−2){i, j}, and u(n−2){i, k} .

(ii) If r = n − 2 then u is adjacent to u (n−2){i, k}, u(n−2){j, k}, to{
u(t−1){i, ut}, t is the largest index with ut �= i, 1 ≤ t ≤ n − 2;
〈i . . . i〉, no such t exists;

and to{
u(s−1){j, us}, s is the largest index with us �= j, 1 ≤ s ≤ n − 2;
〈j . . . j〉, no such s exists;
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Proof.

(i) Since r ≤ n − 3, u = 〈u1 . . .urij . . . jj〉 and u = 〈u1 . . .urji . . . ii〉, where
u ends with at least two j’s and u ends with at least two i’s. Hence u is in
S(n, 3) adjacent to 〈u1 . . .urij . . . ji〉 and to 〈u1 . . . urij . . . jk〉. These two
vertices contract to u(n−2){i, j} and u(n−2){j, k}, respectively. Similarly, u
is adjacent to 〈u1 . . . urji . . . ij〉 and to 〈u1 . . . urji . . . ik〉 that contract to
u(n−2){i, j} and u(n−2){i, k}, the two remaining vertices of Sn adjacent to
u. (Note that the argument also holds for r = 0).

(ii) Let r = n−2. Then u = 〈u1 . . . un−2ij〉 and u = 〈u1 . . . un−2ji〉. The vertex
u is in S(n, 3) adjacent to 〈u1 . . .un−2ik〉 that contracts to u(n−2){i, k} and
is also adjacent to x = 〈u1 . . . un−2ii〉. If u1 = · · · = un−2 = i, then u is
adjacent to the extreme vertex x = 〈i . . . i〉 of S(n, 3), therefore u is adjacent
to the extreme vertex 〈i . . . i〉 of Sn. Suppose not all ui’s are equal to i, and
let t be the largest index such that ut �= i. Then x = 〈u1 . . .uti . . . i〉, where
1 ≤ t ≤ n − 2. In this case u is also adjacent to u(t−1){i, ut}.

The other two neighbors of u that arise from the neighbors of u are
obtained analogously as the neighbors induced by u. The details are left to
the reader.

We point out that in Proposition 2.1 the case n = 2 is treated in case (ii).
To conclude the section note that from the quotient labeling we can immediately

infer that Sn contains 3 +
∑n−2

i=0 3 · 3i = 3
2 (3n−1 + 1) vertices.

3. VERTEX- AND EDGE-COLORINGS

In this section we determine the chromatic number and the chromatic index of
the Sierpiński graphs and the Sierpiński gasket graphs.

It is easy to see that for any n ≥ 1, χ(S(n, 3)) = 3. As observed by Parisse [13],
a natural 3-coloring of S(n, 3) can be obtained by setting

c(〈u1 . . . un〉) = un

for any vertex 〈u1 . . . un〉 of S(n, 3). Teguia and Godbole [15, Proposition 2]
showed an analogous result for the graphs Sn, namely χ(Sn) = 3, n ≥ 1. We can
strengthen the latter result as follows.

Theorem 3.1. Sn is uniquely 3-colorable for any n ≥ 1.

Proof. We prove the theorem by induction on n and pose the following stronger
induction assumption: Sn is uniquely 3-colorable and in every 3-coloring the ex-
treme vertices receive different colors.
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The claim is clearly true for S1 = K3. Suppose it holds for Sn, n ≥ 2,
and consider an arbitrary 3-coloring c of Sn+1. By the induction assumption,
Sn+1,1 is uniquely 3-colorable and we may without loss of generality assume that
c(〈1 . . .1〉) = 1, c({1, 2}) = 2, and c({1, 3}) = 3. Then, considering Sn+1,2, the
induction assumption implies c({2, 3}) �= 2. Similarly because of Sn+1,3, we infer
c({2, 3}) �= 3. So c({2, 3}) = 1 and therefore c(〈2 . . .2〉) = 3 and c(〈3 . . .3〉) = 2.
Induction completes the argument.

In the rest of this section we consider edge-colorings. To show that Sierpiński
graphs are uniquely 3-edge-colorable we prove the following.

Theorem 3.2. Let n ≥ 1. The 3-colorings of Sn are in a 1-1 correspondence
with the 3-edge-colorings of S(n, 3).

Proof. For i, j ∈ {1, 2, 3}, i �= j, let {i, j} = {1, 2, 3} \ {i, j}. In addition,
for a vertex u ∈ S(n, 3) let ũ be the vertex of Sn to which u is mapped while
contracted S(n, 3) to Sn.

Let c be a 3-coloring of Sn. Then for an arbitrary edge uv of S(n, 3) set

c′(uv) = {c(ũ), c(ṽ)}, ũ �= ṽ;
c(ũ), ũ = ṽ;

We claim that c′ is an edge-coloring of S(n, 3). Let uv and vw be adjacent edges
of S(n, 3). Suppose first that they belong to a common triangle. Then ũ, ṽ, and
w̃ are pairwise different vertices of Sn which implies that c ′(uv) �= c′(vw). The
other case to consider is when, without loss of generality, vw belongs to a triangle
while uv belongs to no triangle of S(n, 3). Then c′(uv) = c(ũ) = c(ṽ), while
c(vw) = {c(ṽ), c(w̃)} �= c(ũ) = c′(uv).

Let now c′ be a 3-edge-coloring of S(n, 3). For a vertex 〈u1 . . .ur〉{i, j} of Sn

set
c(〈u1 . . .ur〉{i, j}) = c′(〈u1 . . .urij . . . j〉〈u1 . . . urji . . . i〉) .

Suppose c(ũ) = c(ṽ) holds for adjacent vertices ũ and ṽ of Sn. Since ũ and ṽ
are adjacent they lie in a common triangle T̃ = ũṽw̃ that in turn corresponds to
a triangle T = uvw of S(n, 3). Then c(ũ) = c(ṽ) implies that the two edges of
S(n, 3) that are adjacent to u and v, and do not lie in T , receive the same c′-color.
But then none of the edges of T can be colored with this color, a contradiction.

We have thus shown that c properly colors the subgraph of Sn induced by all
but the three extreme vertices. Clearly, c can be uniquely extended to a 3-coloring
of Sn.

Combining Theorems 3.1 and 3.2 we immediately get:
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Corollary 3.3. S(n, 3) is uniquely 3-edge-colorable for any n ≥ 1.

We next determine the chromatic index of the Sierpiński gasket graphs, a ques-
tion posed in [15].

Clearly, χ′(Sn) ≥ 4 for n ≥ 2. Consider a 4-edge coloring of S2. The edges
of its middle triangle receive different colors and their color classes contain at most
two edges each. Since any color class contains at most 3 edges and S2 has 9 edges,
we infer that three color classes contain two edges while the remaining color class
has 3 edges. But then the later edges alternate on the outer 6-cycle and we conclude
that a 4-edge-coloring of S2 is unique modulo permutations of the colors and the
shift of the color class with three elements on the outer cycle. In particular, a 4-
edge-coloring of S2 is uniquely defined with the colors of its outer 6-cycle, hence
in our figures we will color only such edges.

Note that χ′(S1) = 3, while for the other Sierpiński gasket graphs we have the
following result.

Theorem 3.4. For any n ≥ 2, χ′(Sn) = 4.

Proof. It suffices to construct an edge-coloring with four colors for any n ≥ 2.
Let c be an edge-coloring of Sn, then let C1, C2, and C3 be the sets of col-

ors assigned by c to the two edges incident with 〈1 . . .1〉, 〈2 . . .2〉, and 〈3 . . .3〉,
respectively. To prove the theorem we pose the following stronger claim.

Claim. If n is even, then there exists a 4-edge-coloring c of Sn such that
C1 = {1, 2}, C2 = {1, 3}, and C3 = {1, 4}. If n is odd, then there exists a
4-edge-coloring c of Sn such that C1 = {1, 2}, C2 = {1, 3}, and C3 = {2, 3}.

The claim is true for n = 2, 3 as demonstrated in Fig. 3.
Let n be even. Then color Sn+1 as follows. Let c′ be a coloring of Sn+1,1 such

that C ′
1 = {1, 2}, C′

2 = {1, 3}, and C ′
3 = {1, 4}. Let c′′ be a coloring of Sn+1,2 such

Fig. 3. 4-edge-colorings of S2 and S3.
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that C ′′
1 = {4, 2}, C′′

2 = {4, 1}, and C ′′
3 = {4, 3}. Finally, let c′′′ be a coloring of

Sn+1,3 such that C ′′′
1 = {2, 3}, C′′′

2 = {2, 1}, and C ′′′
3 = {2, 4}. See the left-hand side

of Fig. 4. All these colorings exist by the induction assumption and by appropriate
permutations of colors. Combine c′, c′′, and c′′′ to obtain a 4-edge-coloring of Sn+1.
Finally exchange colors 3 and 4 to obtain a desired coloring.

Fig. 4. Even to odd case, and odd to even case.

For n odd we proceed similarly. Let c′ be a coloring of Sn+1,1 such that
C ′

1 = {1, 2}, C′
2 = {1, 3}, and C ′

4 = {2, 3}, let c′′ be a coloring of Sn+1,2 such
that C ′′

1 = {2, 4}, C′′
2 = {2, 3}, and C ′′

3 = {4, 3}, and c′′′ a coloring of Sn+1,3

such that C ′′′
1 = {1, 4}, C′′′

2 = {1, 2}, and C ′′′
3 = {4, 2}, see the right-hand side of

Fig. 4. Again, these colorings exist by the induction assumption and by appropriate
permutations of colors. Combine c′, c′′, and c′′′ to color Sn+1 and exchange colors
1 and 2 to obtain a desired coloring of Sn+1.

4. ON CODES AND HAMILTONICITY

In the final section we present two additional aspects of Sierpiński (gasket)
graphs.

It is proved in [15] that for every n ≥ 4, γ(Sn) = 3γ(Sn−1). This enables us
to quickly prove the following result that is in a strike contrast to the fact already
mentioned in the introduction that every Sierpiński graph S(n, k) contains essentially
a unique 1-perfect code. Recall that if C is a 1-perfect code of a graph G, then
|C| = γ(G), see [4, Theorem 4.2].

Proposition 4.1. Sn contains a 1-perfect code if and only if n = 1 or n = 3.

Proof. It is straightforward to verify the result for n ≤ 3.
Let n ≥ 4 and suppose that C is a 1-perfect code of Sn. Assume 〈1 . . .1〉 ∈ C

and consider the vertex 〈1 . . .1〉{2, 3} with the prefix of length n − 2. Then it can
be dominated either with itself, with 〈1 . . .1〉{1, 2}, or with 〈1 . . .1〉{1, 3}, where
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the last two vertices have prefixes of length n− 3. However, none of these vertices
qualifies for C, so 〈1 . . .1〉 /∈ C. Analogously 〈2 . . .2〉 /∈ C and 〈3 . . .3〉 /∈ C.
Hence every vertex of C is of degree 4 and as Sn contains 3(3n−1 +1)/2 vertices,
we infer that |C| = 3(3n−1 + 1)/10. Since |C| = γ(Sn), the above result of
Teguia and Godbole implies that γ(Sn) = |C| = 3n−2 for n ≥ 3. But then
3(3n−1 + 1)/10 = 3n−2, which reduces to 3n−2 = 3 with n = 3 as the solution.

We conclude the paper by proving that the Sierpiński graphs S(n, 3) contain
unique Hamiltonian cycles. For this sake we first show:

Lemma 4.2. Let n ≥ 1 and let u, v be extreme vertices of S(n, 3). Then there
exists a unique Hamiltonian u, v-path.

Proof. The statement is clearly true for n = 1. Suppose it holds for n ≥ 2
and without loss of generality consider the extreme vertices 〈1 . . .1〉 and 〈2 . . .2〉 of
S(n + 1, 3). By the induction assumption, there exists a unique Hamiltonian path
P between 〈1 . . .1〉 and 〈13 . . .3〉 in S(n + 1, 3)1, a unique Hamiltonian path Q
between 〈31 . . .1〉 and 〈32 . . .2〉 in S(n + 1, 3)3, and a unique Hamiltonian path S

between 〈23 . . .3〉 and 〈2 . . .2〉 in S(n + 1, 3)2. Then

〈1 . . .1〉P 〈13 . . .3〉〈31 . . .1〉Q〈32 . . .2〉〈23 . . .3〉S〈2 . . .2〉

is a Hamiltonian path in S(n+1, 3). To see that it is unique, observe that 〈12 . . .2〉
must appear before 〈13 . . .3〉 on any Hamiltonian 〈1 . . .1〉, 〈2 . . .2〉-path. Indeed,
suppose this is not the case. Then if we proceed from 〈13 . . .3〉 to 〈31 . . .1〉, the
vertex 〈12 . . .2〉 would appear on the Hamiltonian path just after 〈21 . . .1〉 which is
clearly not possible. And if we proceed from 〈13 . . .3〉 to a vertex of S(n + 1, 3)1,
then the vertex 〈32 . . .2〉 would appear on the Hamiltonian path just after 〈23 . . .3〉,
which is also not possible. Similarly, 〈3 . . .3〉 must appear before 〈32 . . .2〉 on any
Hamiltonian 〈1 . . .1〉, 〈2 . . .2〉-path. Induction completes the argument.

Theorem 4.3. S(n, 3), n ≥ 1, contains a unique Hamiltonian cycle.

Proof. The case n = 1 is trivial. For n > 1 construct a Hamiltonian cycle of
S(n, 3) by combining a Hamiltonian 〈12 . . .2〉, 〈13 . . .3〉-path in S(n, 3)1, a Hamil-
tonian 〈31 . . .1〉, 〈32 . . .2〉-path in S(n, 3)3, and a Hamiltonian 〈23 . . .3〉, 〈21 . . .1〉-
path in S(n, 3)2. By Lemma 4.2, this Hamiltonian cycle is unique.
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