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A GENERALIZATION OF NOETHERIAN RINGS

Lixin Mao

Abstract. In this paper, we introduce the concept of AFG rings. R is said
to be a left AFG ring in case the left annihilator of every nonempty subset of
R is a finitely generated left ideal. Some characterizations of AFG rings and
applications are obtained.

1. INTRODUCTION

Throughout this paper, R is an associative ring with identity and all modules are
unitary. MR (RM) denotes a right (left) R-module. For an R-module M , the dual
module HomR(M, R) is denoted by M∗. For a subset X of R, the left annihilator
of X in R is denoted by l(X). If X = {a}, we usually abbreviate it to l(a).

We first recall some known notions and facts needed in the sequel.
An R-module M is called cogenerated by an R-module Q if M embeds in a

direct product of copies of Q. To say that M is torsionless is nothing but to say
that M is cogenerated by R. Note that M is torsionless if and only if the canonical
map M → M∗∗ is a monomorphism. It is easy to check that a cyclic left R-module
R/I is torsionless if and only if I = l(X) for some subset X ⊆ R.

R is called a left dual ring if every left ideal of R is a left annihilator of a
nonempty subset of R, equivalently, every cyclic left R-module is torsionless.

An R-module M is said to be a self-cogenerator [19] if M cogenerates every
factor module of M . For a ring R this means, that RR is a self-cogenerator if and
only if R is a left dual ring.

R is called a left CF ring if every cyclic leftR-module embeds in a free module.
Obviously, the left CF rings have a stronger property than the left dual rings since
their cyclic left R-modules do not simply embed in a product of copies of RR, but
in a (finite) direct sum of copies of RR.
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R is said to be a left Noetherian ring if every left ideal of R is finitely generated.
Noetherian rings and their generalizations have been studied extensively by many
authors. In this paper, we will introduce a new generalization of Noetherian rings.
We will call a ring R to be left AFG in case the left annihilator of every nonempty
subset of R is finitely generated. In Section 2, we prove that the following are
equivalent for a ring R: (1) R is a left AFG ring. (2) Any direct product of
copies of RR is singly projective. (3) Any direct product of singly projective right
R-modules is singly projective. (4) Every right R-module has a singly projective
preenvelope. (5) Every cyclic right R-module has a projective preenvelope.

Section 3 is devoted to some applications. We get that R is a QF ring if and
only if R is a left AFG, left and right dual ring. It is also shown that the following
are equivalent for a left AFG ring R: (1) R is a right CF ring. (2) Every right
R-module has a monic singly projective preenvelope. (3) Every cyclic right R-
module has a monic projective preenvelope. Finally, we prove that the following
are equivalent for a left AFG ring R: (1) R is a right PP ring. (2) Every cyclic
right R-module has an epic projective preenvelope. (3) Every right R-module has
an epic singly projective preenvelope. (4) Every submodule of a singly projective
right R-module is singly projective. (5) Every torsionless right R-module is singly
projective.

For unexplained concepts and notations, we refer the reader to [1, 7, 15, 19,
20].

2. AFG RINGS

Recall that a right R-module M is called singly projective [2] in case for every
epimorphism f : N → M and any homomorphism g : C → M with C a cyclic
right R-module, there exists h : C → N such that g = fh.

The following lemma will be used frequently in the sequel.

Lemma 2.1. The following are equivalent for a right R-module M :

(1) M is singly projective.

(2) For any cyclic submodule N of M , the inclusion ι : N → M factors through
a finitely generated free right R-module F , that is, there exist g : N → F

and h : F → M such that ι = hg.

(3) For any cyclic right R-module N and any homomorphism f : N → M , f
factors through a finitely generated free right R-module F .

Proof. It is easy by [2, Proposition 12].
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We also recall that a homomorphism f : M → P is called a projective preen-
velope of an R-module M [6] if P is projective, and for any homomorphism g
from M to any projective R-module P′, there exists h : P → P ′ such that g = hf .
Similarly we have the concept of singly projective preenvelopes.

Definition 2.2. R is called a left AFG ring if for any nonempty subset X of
R, the left annihilator of X in R is a finitely generated left ideal. Similarly, we
have the concept of right AFG rings.

Clearly, any left Noetherian ring is a left AFG ring. But the converse does not
hold in general. For example, we can choose R to be a domain (and hence an AFG

ring) which is not Noetherian.
Now we characterize left AFG rings as follows.

Theorem 2.3. The following are equivalent for a ring R:

(1) R is a left AFG ring.
(2) The dual module M ∗ = HomR(M, R) of any cyclic right R-module M is

finitely generated.
(3) Every cyclic torsionless left R-module is finitely presented.

(4) Any direct product of copies of RR is singly projective.
(5) Every direct product of singly projective rightR-modules is singly projective.
(6) Every cyclic right R-module has a projective preenvelope.
(7) Every cyclic right R-module has a singly projective preenvelope.
(8) Every right R-module has a singly projective preenvelope.

Proof. (1) ⇔ (2) Let I be a right ideal of R. Define α : (R/I)∗ → l(I) via

f �→ f(1), f ∈ (R/I)∗.

It is easy to verify that α is well-defined and is an isomorphism. So (1) ⇔ (2)
follows.

(1) ⇔ (3) follows from the fact that a left ideal I is a left annihilator in R if
and only if R/I is a torsionless left R-module.

(2) ⇒ (6) Let M be a cyclic right R-module. Since M∗ is finitely generated,
there exists a generating set {fj ∈ M∗ : 1 ≤ j ≤ n}. Define f : M → Rn via

x �→ (f1(x), f2(x), · · · , fn(x)), x ∈ M.

We will show that f is a projective preenvelope of M . It is enough to show that
for any m ≥ 1 and any homomorphism g : M → Rm, there is h : Rn → Rm
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such that g = hf . Let πi : Rm → R be the ith projection, 1 ≤ i ≤ m. Note that
πig ∈ M∗, so there exist rij ∈ R (1 ≤ j ≤ n) such that πig =

∑n
j=1 rijfj . Define

hi : Rn → R via

(a1, a2, · · · , an) �→
n∑

j=1

rijaj, aj ∈ R.

Then there exists h : Rn → Rm such that hi = πih. So πihf = hif = πig and
hence g = hf .

(6) ⇒ (7) Let M be a cyclic right R-module. Then M has a projective preen-
velope α : M → P by (6). We claim that α is also a singly projective preenve-
lope. In fact, for any singly projective right R-module N and any homomorphism
f : M → N , there exist a finitely generated free right R-module F , g : M → F
and h : F → N such that f = hg by Lemma 2.1. So there exists β : P → F such
that βα = g. Thus f = (hβ)α, as desired.

(7) ⇒ (5) Let {Mi}i∈I be a family of singly projective right R-modules and
N any cyclic submodule of MI

i . Write ι : N → M I
i to be the inclusion and

πi : M I
i → Mi to be the ith projection. Since Mi is singly projective, there

exist finitely generated free right R-modules Fi, homomorphisms gi : N → Fi and
hi : Fi → Mi such that πiι = higi by Lemma 2.1. Note that N has a singly
projective preenvelope f : N → F by (7), and so there is ki : F → Fi such
that gi = kif . Thus there exists g : F → M I

i such that πig = hiki. Hence
πiι = (hiki)f = πi(gf), and so ι = gf . Thus M I

i is singly projective by Lemma
2.1.

(5) ⇒ (8) Let N be any right R-module. By [7, Lemma 5.3.12], there is a
cardinal number ℵα dependent on Card(N ) and Card(R) such that for any ho-
momorphism g : N → L with L singly projective, there is a pure submodule
Q of L such that Card(Q) ≤ ℵα and g(N ) ⊆ Q. Thus g has a factorization
N → Q → L with Q singly projective by [2, Proposition 14]. Now let (ϕi)i∈I

give all such homomorphisms ϕi : N → Qi with Card(Qi) ≤ ℵα and Qi singly
projective. So any homomorphism N → M with M singly projective has a factor-
ization N → Qj → M for some j ∈ I . Thus N → Πi∈IQi is a singly projective
preenvelope since Πi∈IQi is singly projective by (5).

(8) ⇒ (4) follows from [5, Lemma 1].
(4) ⇒ (2) Let A be a cyclic right R-module. For every index set I , there is a

canonical homomorphism α : RI
R ⊗R A∗ → (A∗)I , where α is defined via

α((rj)j∈I ⊗R θ) = (δj)j∈I, δj(x) = rjθ(x), rj ∈ R, θ ∈ A∗, x ∈ A.

We will show that α is epic. Indeed, let (fj)j∈I ∈ (A∗)I. Then there exists β :
A → RI

R such that fj = πjβ, where πj : RI
R → R is the jth projection. Since RI

R

is singly projective by (4), there exist a finitely generated free right R-module Rn,



A Generalization of Noetherian Rings 505

γ : A → Rn and ϕ : Rn → RI
R such that β = ϕγ by Lemma 2.1. Let pi : Rn → R

be the ith projection and λi : R → Rn the ith injection, i = 1, 2, · · · , n. Put
ai = ϕλi(1) and gi = piγ. Then we have

fj(a) = πjβ(a) = πjϕγ(a) = πjϕ

n∑

i=1

λipi(γ(a)) = πj

n∑

i=1

aigi(a).

So fj = πj
∑n

i=1 aigi, and hence

(fj)j∈I = α(
n∑

i=1

ai ⊗ gi).

It follows that α is an epimorphism, which means that A∗ is a finitely generated
left R-module by [18, Lemma 13.1, p. 41].

The next example shows that the definition of AFG rings is not left-right sym-
metric.

Example 2.4. Let K be a field with a subfield L such that dimLK = ∞, and
there exists a field isomorphism ϕ : K → L (for instance, K = Q(x1, x2, x3, · · · ),
L = Q(x2, x3, · · ·)). Let R = K × K with multiplication

(x, y)(x′, y′) = (xx′, ϕ(x)y′ + yx′), x, y, x′, y′ ∈ K.

Then it is easy to see that R has exactly three right ideals: 0, R and (0, K).
Therefore R is a right Noetherian ring and hence a right AFG ring. On the other
hand, let a = (0, 1) ∈ R. Then l(a) is not finitely generated (see [15, Example
4.46 (e)]). Thus R is not a left AFG ring.

The proposition below shows that the concept of AFG rings is left-right sym-
metric for a left and right pseudo-coherent ring. Recall that R is called a left
pseudo-coherent ring [3] if the left annihilator of each finite subset of R is a
finitely generated left ideal. It is easy to verify that R is left pseudo-coherent if
and only if every cyclic submodule of any finitely generated free left R-module is
finitely presented.

Proposition 2.5. The following are equivalent for a left and right pseudo-
coherent ring R:

(1) R is a left AFG ring.

(2) R is a right AFG ring.
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Proof. (1) ⇒ (2) Let M be a cyclic torsionless right R-module. Then M ∗ is
finitely generated by Theorem 2.3 since R is a left AFG ring. Thus there exists
an exact sequence F → M∗ → 0 with F a finitely generated free left R-module,
which induces an exact sequence

0 → M∗∗ → F ∗.

ThusM embeds in F ∗ sinceM is torsionless. ConsequentlyM is finitely presented
since R is right pseudo-coherent, and so R is a right AFG ring by Theorem 2.3.

(2) ⇒ (1) is similar.

3. APPLICATIONS

In this section, we will give new characterizations of some special rings such
as QF rings, CF rings and PP rings using the foregoing results.

Recall that R is called a left Pseudo-Frobenius ring [19] if RR is injective and
cogenerates every left R-module. Clearly, a left Pseudo-Frobenius ring is left dual.

Proposition 3.1. The following are equivalent for a ring R:

(1) R is a QF ring.

(2) R is a left AFG, left and right dual ring.

(3) R is a left AFG and left Pseudo-Frobenius ring.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1) First, R is a left Noetherian ring since R is left AFG and left dual.

In addition, R is a left self-injective ring by [9, Lemma 3.1] and [11, Theorem 1].
Thus R is a QF ring.

(1) ⇔ (3) is easy.

The following implications are obvious:
“left Noetherian ring ⇒ left AFG rings ⇒ left pseudo-coherent rings”.

The converses hold if R is a left CF ring as follows.

Proposition 3.2. The following are equivalent for a left CF ring R:

(1) R is a left AFG ring.

(2) R is a left pseudo-coherent ring.

(3) R is a left Noetherian ring.
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Proof. It is enough to show that (2) ⇒ (3). Let I be a left ideal of R. Then
there is a monomorphism f : R/I → Rn for some n ∈ N since R is a left CF
ring. Put f(1) = (a1, a2, · · · , an). It is easy to check that I = l{a1, a2, · · · , an}
and so I is finitely generated by (2). Thus R is a left Noetherian ring.

In general, a left AFG ring need not be left coherent although it is left pseudo-
coherent, where a ring R is called left coherent if every finitely generated left ideal
is finitely presented. For example, let x, y1, y2, · · · be indeterminates over a field
K, R = K[x2, x3, yi, xyi] and S = K[x, yi]. Then R is a subring of the domain
S, hence R is an AFG ring. But R is not a coherent ring by [8, p. 110].

The following result shows that a left AFG ring is left coherent if R is
a right FP -injective ring, where R is called a right FP -injective ring [17] if
Ext1R(M, R) = 0 for all finitely presented right R-modules M .

Proposition 3.3. If R is a left AFG and right FP -injective ring, then R is a
left coherent ring.

Proof. It is clear that l(a) is finitely generated for any a ∈ R. In addition, let I
and J be two finitely generated left ideals of R. Then I = l(X) and J = l(Y ) for
some subsets X and Y of R by [12, Corollary 2.5] since R is a right FP -injective
ring. Thus I ∩ J = l(X ∪ Y ) is finitely generated since R is a left AFG ring. So
R is a left coherent ring by [4, Theorem 2.2].

Recall that R is called a left Baer ring [14] if the left annihilator of each
nonempty subset of R is a direct summand of RR. It is easy to see that the Baer
property is left-right symmetric. Thus any Baer ring is a left and right AFG ring.
Note that the ring Z4 is an AFG ring which is not a Baer ring. However we have
the following:

Proposition 3.4. The following are equivalent for a ring R:
(1) R is a Baer and right FP -injective ring.
(2) R is a Baer and left FP -injective ring.
(3) R is a von Neumann regular and left AFG ring.
(4) R is a von Neumann regular and right AFG ring.

Proof. (1)⇒ (3) and (4) Every finitely generated left ideal I is a left annihilator
of a nonempty subset of R since R is right FP -injective, and so I is a direct
summand of RR since R is a Baer ring. Thus R is a von Neumann regular ring.

The others are obvious.

It is well known that R is a von Neumann regular and left Noetherian ring if
and only if R is semisimple Artinian. By Proposition 3.4, we have
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Corollary 3.5. The following are equivalent for a ring R:

(1) R is a semisimple Artinian ring.
(2) R is a von Neumann regular, left AFG and left dual ring.
(3) R is a von Neumann regular, left AFG and right dual ring.

Lemma 3.6. The following are equivalent for a ring R:

(1) R is a right CF ring.
(2) Every injective right R-module is singly projective.
(3) The injective envelope of any cyclic right R-module is singly projective.

Proof. It is straightforward by Lemma 2.1.

Theorem 3.7. The following are equivalent for a left AFG ring R:

(1) R is a right CF ring.
(2) R is a right dual ring.
(3) Every cyclic right R-module has a monic projective preenvelope.
(4) Every cyclic right R-module has a monic singly projective preenvelope.
(5) Every right R-module has a monic singly projective preenvelope.

Proof. (1) ⇒ (5) Let M be any right R-module. Then M has a singly pro-
jective preenvelope f : M → F by Theorem 2.3. Note that M embeds in a singly
projective right R-module by Lemma 3.6 since M embeds in its injective envelope.
So f is a monomorphism.

(5) ⇒ (4) is trivial.
(4) ⇒ (3) Let M be a cyclic right R-module. Then M has a monic singly

projective preenvelope f : M → P by (4). Thus, by Lemma 2.1, there exist a
finitely generated free right R-module F , a monomorphism g : M → F and a
homomorphism h : F → P such that f = hg. It is easy to verify that g is a monic
projective preenvelope.

(3) ⇒ (2) is obvious.
(2) ⇒ (1) Let M be a cyclic right R-module. Then there is an exact sequence

0 → M → RI
R for some index set I by (2). Note that RI

R is singly projective by
Theorem 2.3. So M embeds in a finitely generated free right R-module, that is, R
is a right CF ring.

Remark 3.8. (1) In [3], Björk constructed a two-sided Artinian and one-sided
dual ring which is not QF . So a left AFG left CF ring or a left AFG right
CF ring need not be QF . However a left AFG two-sided CF ring is QF by
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Proposition 3.1. Thus the left AFG left CF rings are different from the left AFG

right CF rings.
(2) We note that every cyclic Z-module has a projective preenvelope, but not

every cyclic Z-module has a monic projective preenvelope. Indeed, it is easy to
see that the cyclic Z-module Z/nZ (n > 1) does not have a monic projective
preenvelope since HomZ(Z/nZ, P ) = 0 for any projective Z-module P .

Recall that R is called a right PP ring if every principal right ideal of R is
projective. PP rings have been studied in many articles such as [10, 15, 16, 19,
21]. Here we characterize PP rings in terms of (singly) projective preenvelopes.

Theorem 3.9. The following are equivalent for a left AFG ring R:

(1) R is a right PP ring.
(2) Any submodule of a singly projective right R-module is singly projective.
(3) Every cyclic right R-module has an epic projective preenvelope.
(4) Every cyclic right R-module has an epic singly projective preenvelope.
(5) Every right R-module has an epic singly projective preenvelope.
(6) Every torsionless right R-module is singly projective.

Proof. (1)⇒ (2) Suppose that N is a submodule of a singly projective right R-
module L, and M is a cyclic submodule of N . Let λ : N → L and ι : M → N be
the inclusions. Since L is singly projective, λι factors through a finitely generated
free right R-module H by Lemma 2.1. So there exist g : M → H and h : H → L
such that λι = hg. It is clear that g is a monomorphism. Without loss of the
generality, we may assume that g is an inclusion. Suppose that {ei : 1 ≤ i ≤ n} is
the basis of H . We will show that M is projective by induction on the number n.

If n = 1, then it is clear by (1).
Now suppose that it is true for n− 1. Let Q = e1R + e2R + · · ·+ en−1R. For

any x ∈ M , there is a unique factorization:

x = y + enr, y ∈ Q, r ∈ R.

Define α : M → R via
α(x) = r, x ∈ M.

Then α is well-defined, and so we obtain the exact sequence

0 → M ∩ Q → M → im(α) → 0.

Note that the sequence is split since im(α) is projective by (1). So M∩Q is a direct
summand of M , and hence is a cyclic submodule of Q. Thus M ∩ Q is projective
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by the induction hypothesis. It follows that M is projective. Consequently N is
singly projective by Lemma 2.1.

(2) ⇒ (1) is easy since a cyclic singly projective module is projective.
(4) ⇒ (3) Suppose that every cyclic right R-module N has an epic singly

projective preenvelope f : N → F . Then f factors through a projective right R-
module P , that is, there exist g : N → P and h : P → F such that f = hg. On the
other hand, since P is singly projective, there exists α : F → P such that g = αf .
Thus f = hαf , and so hα = 1 since f is epic. Therefore F is isomorphic to a
direct summand of P , and hence is projective. It follows that f is an epic projective
preenvelope of N .

(3)⇒ (2) Suppose that N is a submodule of a singly projective right R-module
L, and M is a cyclic submodule of N . Let λ : N → L and ι : M → N be the
inclusions. Then there exist a finitely generated free right R-moduleH , g : M → H
and h : H → L such that λι = hg. By (3), M has an epic projective preenvelope
β : M → Q. Thus there exists γ : Q → H such that g = γβ, and so λι = hγβ.
Thus β is a monomorphism and hence an isomorphism. Therefore M is projective,
which implies that N is singly projective.

(2) ⇒ (5) For any right R-module M , there is a singly projective preenvelope
f : M → F by Theorem 2.3. Note that im(f) is singly projective by (2), so
M → im(f) is an epic singly projective preenvelope.

(5) ⇒ (6) Let M be a torsionless right R-module. Then there is an exact
sequence 0 → M → RI

R for some index set I . Note that R
I
R is singly projective by

Theorem 2.3. Thus M is singly projective since M has an epic singly projective
preenvelope.

(6) ⇒ (4) Let M be a cyclic right R-module. Then M has a singly projective
preenvelope α : M → F . So there exist a projective right R-module P , β : M → P
and γ : P → M such that α = γβ. Note that im(β) is torsionless and hence singly
projective by (6), so M → im(β) is an epic singly projective preenvelope.

We end this paper with the following

Remark 3.10. (1) Recall that R is called a right PF ring if every principal
right ideal of R is flat. Obviously, the concept of PF rings is a generalization of
PP rings. The property that R is a PF ring is left-right symmetric (see [13]), but
there exists a right PP ring which is not left PP (see [15]). However, if R is a
left and right AFG ring, then we claim that R is a right PP ring if and only if R
is a left PP ring. In fact, it is enough to note that every principal right or principal
left ideal I is finitely presented since R is a left and right AFG ring, and so I is
projective if and only if I is flat.

(2) Let R = Z4. Then R is a commutative QF ring. So projective R-modules
coincide with injective R-modules. Thus every cyclic R-module has a projective
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preenvelope. But the cyclic R-module {0, 2} does not have an epic projective
preenvelope since {0, 2} is not a projective R-module.
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