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SPECIAL PROPERTIES OF MODULES
OF GENERALIZED POWER SERIES

Renyu Zhao and Zhongkui Liu

Abstract. Let R be a ring, M a right R-module and (S,≤) a strictly ordered
monoid. In this paper, a necessary and sufficient condition is given for modules
under which [[MS,≤]][[RS,≤]], the module of generalized power series with
coefficients in M and exponents in S is a reduced, Baer, PP. quasi-Baer
module, respectively.

1. INTRODUCTION

Throughout this paper all rings R are associative with identity and all modules
M are unitary right R-modules. The notationN ≤M means that N is a submodule
ofM , andM [x]R[x] (resp. M [[x]]R[[x]] orM [[x, x−1]]R[[x,x−1]]) denotes polynomial
(resp. power series or Laurent power series) extension of MR. For any nonempty
subset X of R, rR(X) (resp. lR(x)) denotes the right (resp. left) annihilator of X
in R. Any concept and notation not defined here can be found in [10-13, 15, 16].

A ring R is called reduced if R does not have nonzero nilpotent elements. The
notion of reduced rings has been studied by many authors. Some of the known
results on reduced rings can be recalled as follows: R is reduced if and only if R[x]
is reduced if and only if R[[x]] is reduced; if S is a torsion-free and cancellative
monoid and ≤ is a strict order on S, then it is shown in [6, Lemma 2.1] that R is
reduced if and only if [[RS,≤]], the ring of generalized power series with coefficients
in R and exponents in S, is reduced; if R is a reduced ring, then it is shown in
[1, Lemma 1] that R is an Armendariz ring where an Armendariz ring is any ring
R such that if (

∑m
i=0 aix

i)(
∑n

j=0 bjx
j) = 0 in R[x] then aibj = 0 for all i and

j; if S is a torsion-free and cancellative monoid, ≤ is a strict order on S and R
is a reduced ring, then it is shown in [6, Lemma 3.1] that R is an S-Armendariz

Received December 29, 2005, accepted October 13, 2006.
Communicated by Wen-Fong Ke.
2000 Mathematics Subject Classification: 16W60, 13F25.
Key words and phrases: Generalized power series, Reduced module, S-Armendariz module, Baer
module, PP-Module, Quasi-Baer module.

447



448 Renyu Zhao and Zhongkui Liu

ring where an S-Armendariz ring is any ring R such that if f, g in [[RS,≤]] satisfy
fg = 0 then f(u)g(v) = 0 for all u, v ∈ S.

The concept of a reduced ring is very useful in the investigation of certain
annihilator conditions of polynomial extensions of a ring R. A ring R is called
Baer (resp. right PP) if the right annihilator of every nonempty subset (resp. every
element) is generated by an idempotent. A well-known result of Armendariz [1]
states that, for a reduced ring R, R is Baer (resp. right PP) if and only if so is R[x],
and there exist non-reduced Baer rings whose polynomial ring is not Baer. In the
sequel, this result has been extended in several directions by many authors, [2-9].

Recently, the notions of reduced, Armendariz, Baer, PP and quasi-Baer modules
were introduced in [10]. A module MR is called reduced if, for any m ∈ M
and any a ∈ R, ma = 0 implies mR ∩ Ma = 0. A module MR is called
Armendariz if, whenever m(x)f(x) = 0 where m(x) =

∑s
i=0 mix

i ∈ M [x] and
f(x) =

∑t
j=0 ajx

j ∈ R[x], then miaj = 0 for all i and j. A module MR is
called Armendariz of power series type if, wheneverm(x)f(x) = 0 where m(x) =∑∞

i=0 mix
i ∈ M [[x]] and f(x) =

∑∞
j=0 ajx

j ∈ R[[x]] , then we have miaj = 0
for all i and j. A module MR is called Baer if, for any nonempty subset X of
M , rR(X) = eR where e2 = e ∈ R. A module MR is called PP if, for any
m ∈ M, rR(m) = eR where e2 = e ∈ R. A module MR is called quasi-Baer if,
for any right R-submodule X of M, rR(X) = eR where e2 = e ∈ R. Clearly, R
is reduced (resp. Armendariz, Baer, right PP, quasi-Baer) if and only if RR is a
reduced (resp. Armendariz, Baer, PP, quasi-Baer) module. And various results on
reduced (resp. Baer, right PP, quasi-Baer) rings were extended to modules in [10].
It was proved that every reduced module is an Armendariz module of power series
type [Lemma 1.5]; and that MR is reduced if and only if M [x]R[x] is reduced if
and only if M [[x]]R[[x]] is reduced if and only if M [[x, x−1]]R[[x,x−1]] is reduced
[Theorem 1.6]. IfMR is an Armendariz module, then it was proved thatMR is Baer
if and only if M [x]R[x] is Baer [Corollary 2.7 (1)]; and that MR is PP if and only
if M [x]R[x] is PP [Corollary 2.12 (1)]. If MR is an Armendariz module of power
series type, then it was proved thatMR is Baer if and only if M [[x]]R[[x]] is Baer if
and only if M [[x, x−1]]R[[x,x−1]] is Baer [Corollary 2.7 (2)]; and thatM [[x]]R[[x]] is
PP if and only if M [[x, x−1]]R[[x,x−1]] is PP if and only if for any countable subset
X ofM , rR(X) = eR where e2 = e ∈ R [Corollary 2.12 (2)]. For quasi-Baerness,
it was proved that MR is quasi-Baer if and only if M [x]R[x] is quasi-Baer if and
only if M [[x]]R[[x]] is quasi-Baer if and only if M [[x, x−1]]R[[x,x−1]] is quasi-Baer
[Corollary 2.14].

As a generalization of generalized power series rings, Varadarajan introduced
the notion of modules of generalized power series in [15]. Thus a natural question
of characterization of reduced (Baer, PP, quasi-Baer, respectively) property of gen-
eralized power series modules is raised. In this paper, a necessary and sufficient
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condition is given for modules under which [[MS,≤]][[RS,≤]], the module of general-
ized power series with coefficients in MR and exponents in S, is a reduced (Baer,
PP, quasi-Baer, respectively) module. If S is a torsion-free and cancellative monoid
and ≤ a strict order on S, we will show that: if MR is a reduced module, then
MR is an S-Armendariz module; MR is reduced if and only if [[MS,≤]][[RS,≤]] is
reduced; MR is a quasi-Baer module if and only if [[MS,≤]][[RS,≤]] is a quasi-Baer
module. If (S,≤) is a strictly ordered monoid and MR an S-Armendariz module,
we will show that: MR is a Baer module if and only if [[MS,≤]][[RS,≤]] is a Baer
module; [[MS,≤]][[RS,≤]] is a PP-module if and only if for any S-indexed subset X
of MR, there exists an idempotent e ∈ R such that rR(X) = eR. And many other
results are obtained, which unify and extend non-trivially many of the previously
known results.

2. PRELIMINARIES

Let (S,≤) be an ordered set. Recalled that (S,≤) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a commuta-
tive monoid. Unless stated otherwise, the operation of S shall be denoted additively,
and the neutral element by 0. The following definition is due to [11-13].

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, t ∈ S and s < s′, then s+ t < s′ + t), and R
a ring. Let [[RS,≤]] be the set of all maps f : S → R such that supp(f) = {s ∈
S | f(s) �= 0} is artinian and narrow.

With pointwise addition, [[RS,≤]] is an abelian group.
For every s ∈ S and f, g ∈ [[RS,≤]], let Xs(f, g) = {(u, v) ∈ S × S | u+ v =

s, f(u) �= 0, g(v) �= 0}. It follows from [11, 4.1] that Xs(f, g) is finite. This
allows to define the operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

With these operations, [[RS,≤]] becomes an associative ring, with unit element
e, namely e(0) = 1, e(s) = 0 for every s ∈ S, s �= 0, which is called the ring of
generalized power series with coefficients in R and exponents in S.

In [15, 16], Varadarajan introduced the concept of modules of generalized power
series. Let M be a right R-module, (S,≤) a strictly ordered monoid. Let [[MS,≤]]
denotes the set of all mapping φ : S →M with supp(φ) artinian and narrow, where
supp(φ) = {s ∈ S | φ(s) �= 0}.

With pointwise addition, [[M S,≤]] is an abelian group.
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For each s ∈ S , f ∈ [[RS,≤]] and φ ∈ [[MS,≤]], let Xs(φ, f) = {(u, v) ∈
S ×S | u+ v = s, φ(u) �= 0, f(v) �= 0}. Then by analogy with [11, 4.1], Xs(φ, f)
is finite. This allows to define the operation of convolution:

(φf)(s) =
∑

(u,v)∈Xs(φ,f)

φ(u)f(v).

With these operations, [[MS,≤]] becomes a right [[RS,≤]] -module, which is
called the modules of generalized power series with coefficients inM and exponents
in S.

For example, if S = N, and ≤ is the usual order, then [[MN,≤]][[RN,≤]]
∼=

M [[x]]R[[x]], the power series extension of M . If S = Z, and ≤ is the usual order,
then [[MZ,≤]][[RZ,≤]]

∼= M [[x, x−1]]R[[x,x−1]], the Laurent power series extension of
M .

3. REDUCED MODULES

Following from [10], a module MR is called reduced if, for any m ∈ M and
any a ∈ R, ma = 0 implies mR ∩Ma = 0. It is easy to see that R is a reduced
ring if and only if RR is a reduced module. The following result appeared in [10,
Lemma 1.2].

Lemma 3.1. The following conditions are equivalent:

(1) MR is reduced.
(2) For any m ∈M and any a ∈ R, the following conditions hold:
(a) ma = 0 implies mRa = 0.
(b) ma2 = 0 implies ma = 0.

Rege and Chhawchharia in [14] introduced the notion of an Armendariz ring.
They defined a ring R to be an Armendariz ring if whenever polynomials f(x) =
a0 +a1x+ · · ·+amx

m, g(x) = b0 +b1x+ · · ·+bnx
n ∈ R[x] satisfy f(x)g(x) = 0,

then aibj = 0 for each i, j. Let (S,≤) be a strictly ordered monoid. Recall from
[6] that R is an S-Armendariz ring if whenever f, g in [[RS,≤]] satisfy fg = 0,
then f(u)g(v) = 0 for all u, v ∈ S. We call a module MR is S-Armendariz if
whenever f ∈ [[RS,≤]] and φ ∈ [[MS,≤]] satisfy φf = 0, then φ(u)f(v) = 0 for
each u, v ∈ S. Clearly, R is S-Armendariz if and only if RR is S-Armendariz. It
was proved in [6, Lemma 3.1] that if S is a torsion-free and cancellative monoid, ≤
a strict order on S and R is a reduced ring then R is S-Armendariz. The following
proposition extends this result to modules.
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Proposition 3.2. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S and MR a reduced module. Then MR is an S-Armendariz module.

Proof. Let 0 �= f ∈ [[RS,≤]] and 0 �= φ ∈ [[MS,≤]] satisfy φf = 0. By [11],
there exists a compatible strict total order ≤′ on S, which is finer than ≤ (that is,
for all s, t ∈ S, s ≤ t implies s ≤′ t). We will use transfinite induction on the
strictly totally ordered set (S,≤′) to show that φ(u)f(v) = 0 for any u ∈ supp(φ)
and v ∈ supp(f). Let s and t denote the minimum elements of supp(φ) and
supp(f) in the ≤′ order, respectively. If u ∈ supp(φ) and v ∈ supp(f) are such
that u+ v = s + t, then s ≤′ u and t ≤′ v. If s <′ u then s + t <′ u + v = s+ t,
a contradiction. Thus u = s. Similarly, v = t. Hence 0 = (φf)(s + t) =∑

(u,v)∈Xs+t(φ,f) φ(u)f(v) = φ(s)f(t).

Now suppose that w ∈ S is such that for any u ∈ supp(φ) and v ∈ supp(f)
with u + v <′ w, φ(u)f(v) = 0. We will show that φ(u)f(v) = 0 for any
u ∈ supp(φ) and v ∈ supp(f) with u + v = w. We write Xw(φ, f) = {(u, v) ∈
S × S | u + v = w, φ(u) �= 0, f(v) �= 0} as {(ui, vi) | i = 1, 2, ..., n} such that
u1 <

′ u2 <
′ · · · <′ un. Since S is cancellative, u1 = u2 and u1+v1 = u2+v2 = w

imply v1 = v2. Since ≤′ is a strict order, u1 <
′ u2 and u1 + v1 = u2 + v2 = w

imply v2 <′ v1. Thus we have vn <
′ · · ·<′ v2 <′ v1. Now,

(1) 0 = (φf)(w) =
∑

(u,v)∈Xw(φ,f)

φ(u)f(v) =
n∑

i=1

φ(ui)f(vi).

For any 1 ≤ i ≤ n− 1, ui + vn <
′ ui + vi = w, and thus, by induction hypothesis,

we have φ(ui)f(vn) = 0. Since M is reduced, then φ(ui)Rf(vn) = 0 by Lemma
3.1. Hence, multiplying (1) on the right by f(vn), we obtain

n∑
i=1

φ(ui)f(vi)f(vn) = φ(un)f(vn)f(vn) = 0.

Since M is reduced, then by Lemma 3.1 we have φ(un)f(vn) = 0. Now (1)
becomes

(2)
n−1∑
i=1

φ(ui)f(vi) = 0.

Multiplying f(vn−1) on (2) from the right-hand side, we obtain φ(un−1)f(vn−1) =
0 by the same way as the above. Continuing this process, we can prove φ(ui)f(vi) =
0 for i = 1, 2, ..., n. Thus φ(u)f(v) = 0 for any u ∈ supp(φ) and v ∈ supp(f)
with u+ v = w.
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Therefore, by transfinite induction, φ(u)f(v) = 0 for any u ∈ supp(φ) and
v ∈ supp(f).

Lee-Zhou introduced the notion of an Armendariz module of power series type
in [10]. They defined a module MR to be an Armendariz module of power series
type if, whenever m(x)f(x) = 0 where m(x) =

∑∞
i=0 mix

i ∈M [[x]] and f(x) =∑∞
j=0 ajx

j ∈ R[[x]], then miaj = 0 for all i and j. Letting (S,≤) = (N,≤), the
natural number set with usual order, yields the following result.

Corollary 3.3. Let MR be a reduced module. Then MR is an Armendariz
module of power series type.

In [1, Lemma 1], it was proved that if R is a reduced ring, then R is an
Armendariz ring. Here we have

Corollary 3.4. Let R be a reduced ring. Then R is an Armendariz ring of
power series type.

Let m ∈M and δ ∈ S. Define a mapping ds
m ∈ [[MS,≤]] as follows:

ds
m(s) = m, ds

m(t) = 0, s �= t ∈ S.

Proposition 3.5. Let (S,≤) be a strictly ordered monoid and MR an S-
Armendariz module. If φ ∈ [[M S,≤]] and f1, f2, · · · , fn ∈ [[RS,≤]] are such that
φf1f2 · · ·fn = 0, then φ(u)f1(v1)f2(v2)..., fn(vn)=0 for all u, v1, v2,...,vn ∈ S.

Proof. Suppose φf1f2 · · ·fn = 0. Then from φ(f1f2 · · ·fn) = 0 it follows that
φ(u)(f1f2 · · ·fn)(v) = 0 for all u, v ∈ S. Thus (d0

φ(u)f1f2 · · ·fn)(v) = 0 for any
v ∈ S, and so d0

φ(u)f1f2 · · ·fn = 0. Now from (d0φ(u)f1)(f2 · · ·fn) = 0 it follows
that (d0

φ(u)f1)(v1)(f2 · · ·fn) (w) = 0 for all v1, w ∈ S. Since (d0
φ(u)f1)(v1) =

φ(u)f1(v1) for any u, v1 ∈ S, we have φ(u)f1(v1)(f2 · · ·fn)(w) = 0 for all
u, v1, w ∈ S. Hence d0

φ(u)f1(v1)
f2 · · ·fn = 0. Continuing in this manner, we

see that φ(u)f1(v1)f2(v2) · · ·fn(vn) = 0 for all u, v1, v2, ..., vn ∈ S.

Now, combining proposition 3.2 we have

Corollary 3.6. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S and MR a reduced module. If φ ∈ [[M S,≤]] and f1, f2, ..., fn ∈
[[RS,≤]] are such that φf1f2 · · ·fn = 0, then φ(u)f1(v1)f2(v2) · · ·fn(vn) = 0 for
all u, v1, v2, ..., vn ∈ S.

Let r ∈ R. Define a mapping Cr ∈ [[RS,≤]] as follows:

Cr(0) = r, Cr(s) = 0, 0 �= s ∈ S.
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It was proved in [10, Theorem 1.6] thatMR is reduced if and only if M [x]R[x]

is reduced if and only if M [[x]]R[[x]] is reduced if and only if M [[x, x−1]]R[[x,x−1]]

is reduced. Here we have

Theorem 3.7. Let S be a torsion-free and cancellative monoid and ≤ a strict
order on S. Then MR is reduced if and only if [[M S,≤]][[RS,≤]] is reduced.

Proof. Let MR be reduced. Suppose that f ∈ [[RS,≤]] and φ ∈ [[MS,≤]]
satisfy φf = 0 and φg = ψf , where ψ ∈ [[MS,≤]] and g ∈ [[RS,≤]]. It suffices
to show that ψf = 0. By Proposition 3.2, φ(s)f(t) = 0 for any s, t ∈ S. Thus
φ(s)Rf(t) = 0 for any s, t ∈ S by Lemma 3.1. Then

(φgf)(s) =
∑

(u,v,w)∈Xs(φ,g,f)

φ(u)g(v)f(w) = 0

for any s ∈ S. Thus ψf2 = φgf = 0. Then by Corollary 3.6, ψ(u)f(v)f(w) = 0
for any u, v, w ∈ S. Thus ψ(u)f(v)2 = 0 for any u, v ∈ S. Then ψ(u)f(v) = 0
for any u, v ∈ S by Lemma 3.1, and which implies that ψf = 0.

Conversely, suppose that ma = 0 and mr = na ∈ mR∩Ma where m, n ∈M
and r, a ∈ R. Then d0

mCa = 0. Since [[MS,≤]] is reduced, we have d0
m[[RS,≤]] ∩

[[MS,≤]]Ca = 0. Thus d0
mCr = d0

nCa = 0, and so mr = na = 0. Hence MR is
reduced.

Corollary 3.8. ([8, Lemma 2.1]) Let S be a torsion-free and cancellative
monoid and ≤ a strict order on S. Then R is reduced if and only if [[R S,≤]] is
reduced.

4. BAER MODULES

Recall that R is Baer if the right annihilator of every nonempty subset is gen-
erated by an idempotent. If R is a reduced ring, then it is shown in [2, Corollary
1.10] that R is Baer if and only if R[x] is Baer if and only if R[[x]] is Baer. If
R is commutative and (S,≤) is a strictly totally ordered monoid, then it is shown
in [7, Theorem 7] that R is Baer if and only if [[RS,≤]] is Baer. Recall from [10]
that a right R- module M is Baer if, for any subset X of M , rR(X) = eR where
e2 = e ∈ R. It is also shown in [10, Corollary 2.7(2)] that ifMR is an Armendariz
module of power series type, then MR is Baer if and only if M [[x]]R[[x]] is Baer
if and only if M [[x, x−1]]R[[x,x−1]] is Baer. Next, we will extend these results to
generalized power series modules. First we have the following results on which our
discussion is based.

Let I be a right ideal of R. Let [[IS,≤]] = {f ∈ [[RS,≤]] | f(s) ∈ I for any
s ∈ S}. Then it is easy to see that [[IS,≤]] is a right ideal of [[RS,≤]].
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Lemma 4.1. LetM be a right R-module and (S,≤) a strictly ordered monoid.
Then the following conditions are equivalent:

(1) MR is an S-Armendariz module.
(2) For any X ⊆ [[MS,≤]], [[rR(X ′)S,≤]] = r[[RS,≤]](X), where X ′ = {φ(s) |

φ ∈ X, s ∈ S}.

Proof. (2)⇒(1). Let φf = 0 where φ ∈ [[MS,≤]] and f ∈ [[RS,≤]]. Then
f ∈ r[[RS,≤]](φ). By (2), f ∈ [[rR(X ′)S,≤]] where X ′ = {φ(s) | s ∈ S} . Take
f(s) ∈ rR(X ′) for any s ∈ S. Thus φ(t)f(s) = 0 for any s, t ∈ S. This means
that M is an S-Armendariz module.

(1)⇒(2). Suppose that X ⊆ [[MS,≤]]. Take X ′ = {φ(s) | φ ∈ X, s ∈ S}.
Let g ∈ r[[RS,≤]](X), then φg = 0 for any φ ∈ X . By (1), φ(s)g(t) = 0 for any
s, t ∈ S. Thus g(t) ∈ rR(X ′) for any t ∈ S. Thus g ∈ [[rR(X ′)S,≤]], and so
r[[RS,≤]](X) ⊆ [[rR(X ′)S,≤]]. The opposite inclusion is obviously.

Lemma 4.2. LetM be a right R-module and (S,≤) a strictly ordered monoid.
Then for any X ⊆M , [[rR(X)S,≤]] = r[[RS,≤]](X ′), where X ′ = {d0

m | m ∈ X}.
Proof. The proof is straightforward.

Theorem 4.3. Let (S,≤) be a strictly ordered monoid and MR an S-
Armendariz module. Then the following conditions are equivalent:

(1) MR is a Baer module.
(2) [[MS,≤]][[RS,≤]] is a Baer module.

Proof. (1)⇒(2). Let X ⊆ [[MS,≤]]. Since MR is an S-Armendariz module,
by Lemma 4.1, r[[RS,≤]](X) = [[rR(X ′)S,≤]] where X ′ = {φ(s) | φ ∈ X, s ∈ S}.
Since MR is a Baer module, there exists an idempotent e2 = e ∈ R such that
rR(X ′) = eR. Thus r[[RS,≤]](X) = [[rR(X ′)S,≤]] = [[(eR)S,≤]] = Ce[[RS,≤]], and
which implies [[M S,≤]] is a Baer module.

(2)⇒(1). Let X ⊆ M . Then by Lemma 4.2, [[rR(X)S,≤]] = r[[RS,≤]](X
′),

whereX ′ = {d0
m | m ∈ X}. Since [[MS,≤]][[RS,≤]] is a Baer module, there exists an

idempotent f2 = f ∈ [[RS,≤]] such that [[rR(X)S,≤]] = r[[RS,≤]](X ′) = f [[RS,≤]].
We will show that rR(X) = f(0)R and f(0) = f(0)2. From f ∈ [[rR(X)S,≤]]
it follows that f(s) ∈ rR(X) for any s ∈ S. Especially, f(0) ∈ rR(X), and
so f(0)R ⊆ rR(X). Conversely, let r ∈ rR(X). Then Cr ∈ [[rR(X)S,≤]] =
f [[RS,≤]]. Thus Cr = fCr . Then r = Cr(0) = (fCr)(0) = f(0)r ∈ f(0)R.
Thus rR(X) ⊆ f(0)R. Since f(0) ∈ rR(X), we have f(0) = f(0)2. Hence
rR(X) = f(0)R and f(0) = f(0)2. So MR is a Baer module.

Applying Proposition 3.2 we can get
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Corollary 4.4. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S and MR a reduced module. Then MR is a Baer module if and only if
[[MS,≤]][[RS,≤]] is a Baer module.

Corollary 4.5. Let (S,≤) be a strictly ordered monoid and R an S-Armendriz
ring. Then R is Baer if and only if [[RS,≤]] is Baer.

In [5, Theorem 10], it was proved that if R is an Armendariz ring, then R is
Baer if and only if R[x] is Baer. Here we have

Corollary 4.6. Let R be an Armendariz ring of power series type. Then R is
Baer if and only if R[[x]] is Baer.

Applying Corollary 3.4 we can get

Corollary 4.7. ([2, Corollary 1.10.]). Let R be a reduced ring . Then R is
Baer if and only if R[[x]] is Baer.

5. PP-MODULES

One of generalizations of Baer rings is PP-rings. A ring R is called right (resp.
left) PP if the right (resp. left) annihilator of an element of R is generated by an
idempotent. A ring is called PP if it is both right and left PP. It was proved in [1,
Theorem A] that R is a reduced right PP-ring if and only if R[x] is a reduced right
PP-ring. It was proved in [4] that R[[x]] is a reduced right PP-ring if and only if R
is a reduced right PP-ring and any countable family of idempotents of R has a least
upper bound in B(R), the set of all central idempotents. If (S,≤) is a strictly totally
ordered monoid, then it is shown in [6, Theorem 3.5] that [[RS,≤]] is a reduced right
PP-ring if and only if R is a reduced right PP-ring and any S-indexed family of
idempotents of R has a least upper bound in B(R). The notion of PP-modules was
introduced in [10]. A module MR is called PP if, for any m ∈ M , rR(m) = eR

where e2 = e ∈ R. It was also proved in [10, Corollary 2.12] that if MR is an
Armendariz module of power series type, then M [[x]]R[[x]] is PP if and only if for
any countable subsetX of M , rR(X) = eR where e2 = e ∈ R. In this section we
will consider the PP property of generalized power series modules. The following
result is a corollary of Theorem 5.2. But here we give a direct and different proof.

Proposition 5.1. Let (S,≤) be a strictly ordered monoid and M a right
R-module. If [[MS,≤]][[RS,≤]] is a PP-module, then MR is a PP-module.

Proof. Let m ∈M . Then by Lemma 4.2, [[rR(m)S,≤]] = r[[RS,≤]](d
0
m). Since

[[MS,≤]][[RS,≤]] is a PP-module, there exists an idempotent f ∈ [[RS,≤]] such that
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r[[RS,≤]](d
0
m) = f [[RS,≤]]. We will show that rR(m) = f(0)R and f(0) = f(0)2.

From f ∈ r[[RS,≤]](d0
m) it follows that d0

mf = 0. Then mf(0) = (d0
mf)(0) = 0.

Thus f(0)R ⊆ rR(m). Conversely, let r ∈ rR(m). Then Cr ∈ [[(rR(m)S,≤]] =
f [[RS,≤]]. Thus Cr = fCr . Then r = Cr(0) = (fCr)(0) = f(0)r ∈ f(0)R.
Thus rR(m) ⊆ f(0)R. Since f(0) ∈ rR(m), we have f(0) = f(0)2. Hence
rR(m) = f(0)R and f(0) = f(0)2. So MR is a PP-module.

Let X ⊆ M . We will say that X is S-indexed if there exists an artinian and
narrow subset I of S such that X is indexed by I .

Theorem 5.2. Let (S,≤) be a strictly ordered monoid and MR an S-
Armendariz module. Then the following conditions are equivalent:

(1) [[MS,≤]][[RS,≤]] is a PP-module.
(2) For every S-indexed subset X of M , there exists an idempotent e ∈ R such

that rR(X) = eR.

Proof. (1)⇒(2). Suppose that [[M S,≤]] is a PP-module. LetX = {ms | s ∈ I}
is an S-indexed subset of M . Define φ : S →M via

φ(s) =

{
ms, s ∈ I,

0, s /∈ I.

Then supp(φ) = I is artinian and narrow, and so φ ∈ [[M S,≤]]. Since [[MS,≤]][[RS,≤]]

is a PP-module, there exists an idempotent f2 = f ∈ [[RS,≤]] such that r[[RS,≤]](φ) =
f [[RS,≤]]. Since MR is an S-Armendariz module, then r[[RS,≤]](φ) = [[rR(X)S,≤]]
by Lemma 4.1. Thus [[rR(X)S,≤]] = f [[RS,≤]]. Then by analogy with the proof of
Theorem 4.3 we can show that rR(X) = f(0)R with f(0)2 = f(0).

(2)⇒(1). Let φ ∈ [[MS,≤]]. Then X = {φ(s) | s ∈ supp(φ)} is an S- indexed
subset of M . Then there exists an idempotent e ∈ R such that rR(X) = eR by
(2). Thus by Lemma 4.1, we have r[[RS,≤]](φ) = [[(rR(X)S,≤]] = [[(eR)S,≤]] =
Ce[[RS,≤]], and which implies [[M S,≤]][[RS,≤]] is a PP-module.

Corollary 5.3. Let (S,≤) be a torsion-free cancellative strictly ordered
monoid. Then the following conditions are equivalent:

(1) [[MS,≤]][[RS,≤]] is a reduced PP-module.
(2) M is a reduced PP-module, and for every S-indexed subset X of M , there

exists an idempotent e ∈ R such that rR(X) = eR.

Proof. Using Proposition 3.2, Theorem 3.7 and Theorem 5.2, we can complete
the proof.
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If R is reduced, then R is Abelian (that is, every idempotent of R is central).
Thus, by [4], the set B(R) of all idempotents is a Boolean algebra where e ≤ f
means ef = e, and where the join, meet, and complement are given by e ∨ f =
e+ f − ef, e∧ f = ef and e′ = 1− e, respectively. The following result appeared
in [4] on which our following discussion is based. An element a ∈ R will be called
entire if lR(a) = rR(a) = 0.

Lemma 5.4. The following conditions are equivalent for a ring R:

(1) R is a reduced right PP-ring.
(2) If a ∈ R then a = eb = be where e2 = e ∈ R and b ∈ R is entire.
(3) R is an Abelian right PP-ring.

Now, comparing with the result in [6, Theorem 3.5], we have

Corollary 5.5. Let (S,≤) be a torsion-free cancellative strictly ordered
monoid. Then the following conditions are equivalent:

(1) [[RS,≤]] is a reduced right PP-ring.
(2) R is a reduced right PP-ring, and for every S-indexed subset X of R, there

exists an idempotent e ∈ R such that rR(X) = eR.
(3) R is a reduced right PP-ring, and for every S-indexed subset X of B(R),

there exists an idempotent e ∈ R such that rR(X) = eR.
(4) R is a reduced right PP-ring and every S-indexed subset X of B(R) has a

least upper bound in B(R).

Proof. LettingM = R in Corollary 5.3 we can get (1)⇔(2).
(2)⇒(3). It is straightforward.
(3)⇒(4). Suppose that X = {es | s ∈ I} is an S-indexed subset of B(R).

Then by (3), rR(X) = eR where e2 = e ∈ R. We claim that 1− e is a least upper
bound of X in B(R). First Xe = 0 implies that for every s ∈ I , ese = 0, and thus
es(1 − e) = es. Thus es ≤ 1 − e. On the other hand, suppose that es ≤ f for all
s ∈ I , where f2 = f ∈ R. Then 1 − f ∈ rR(X) = eR. Thus 1 − f = e(1 − f).
Thus 1 − e = (1 − e)f , and which implies that 1− e ≤ f .

(4)⇒(2). Suppose that X = {as | s ∈ I} is an S-indexed subset of R. Then
by Lemma 5.4, as = esbs for all s ∈ I , where e2s = es ∈ R and bs ∈ R is entire.
Setting X ′ = {es | s ∈ I}. Then X ′ is an S-indexed subset of B(R). Let e be a
least upper bound of X ′ in B(R). We will show that rR(X) = (1 − e)R. First
from ese = es it follows that (1− e)es = 0 for all s ∈ I . Then 1− e ∈ rR(X). On
the other hand, let r ∈ rR(X). Then asr = 0 for all s ∈ I . By Lemma 5.4, there
exists an idempotent f 2 = f ∈ R and an entire element p ∈ R such that r = fp.
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Thus esf = 0 for all s ∈ I since p and bs is entire. Thus es ≤ 1− f for all s ∈ I .
Thus e ≤ 1− f , and so r = (1− e)r ∈ (1− e)R. Hence rR(X) = (1 − e)R.

In [5, Theorem 9], it was proved that if R is an Armendariz ring, then R is PP
if and only if R[x] is PP. Here we have

Corollary 5.6. Let R be an Armendariz ring of power series type. Then R[[x]]
is right PP if and only if R is right PP and for any countable subset X of R,
rR(X) = eR, where e2 = e ∈ R.

6. QUASI-BAER MODULES

Another generalization of Baer rings is quasi-Baer rings. Recall that R is quasi-
Baer if the right annihilator of every right ideal is generated by an idempotent.
Every prime ring is quasi-Baer ring. Since Baer ring are nonsingular, the prime
rings with Zr(R) �= 0 are quasi-Baer but not Baer. It was proved in [2, Theorem
1.8] that a ring R is quasi-Baer if and only if R[x] is quasi-Baer if and only if
R[[x]] is quasi-Baer. Following from [10] a moduleMR is called quasi-Baer if, for
any right R-submodule X of M , rR(X) = eR where e2 = e ∈ R. Clearly, R is
quasi-Baer if and only if RR is quasi-Baer. In [10, Corollary 2.14], it is shown that
MR is quasi-Baer if and only if M [x]R[x] is quasi-Baer if and only if M [[x]]R[[x]]

is quasi-Baer. In this section we will generalize these results to generalized power
series modules.

Theorem 6.1. Let (S ≤) be a torsion-free and cancellative strictly ordered
monoid . Then the following conditions are equivalent:

(1) MR is a quasi-Baer module.
(2) [[MS,≤]][[RS,≤]] is a quasi-Baer module.

Proof. (1)⇒(2). Suppose that V ≤ [[MS,≤]]. By [11], there exists a compatible
strict total order ≤′ on S, which is finer than ≤ (that is, for all s, t ∈ S, s ≤ t
implies s ≤′ t). Note that [[MS,≤]] (resp. [[RS,≤]]) is a submodule (resp. subring)
of [[MS,≤′

]] (resp. [[RS,≤′
]]). Thus we may assume that the order ≤ is total. Then

for any 0 �= f ∈ [[RS,≤]] (resp. [[MS,≤]]), the supp(f) is a nonempty well-ordered
subset of S. We denote by π(f) the smallest element of the support of f . Let
U = {φ(s) | φ ∈ V, π(φ) = s} ∪ {0}. Then it is easy to see that U is a right
R-submodule of M . Since MR is a quasi-Baer module, then rR(U) = eR where
e2 = e ∈ R. We will show that r[[RS,≤]](V ) = Ce[[RS,≤]]. Let φ ∈ V . If φCe �= 0.
Let π(φCe) = s, then 0 �= (φCe)(s) = φ(s)e; on the other hand, since φ ∈ V ,
so φCe ∈ V and then φ(s)e ∈ U . From rR(U) = eR it follows that φ(s)e =
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(φ(s)e)e = 0, a contradiction. Thus φCe = 0, and so Ce[[RS,≤]] ⊆ r[[RS,≤]](V ).
Conversely, suppose that 0 �= f ∈ r[[RS,≤]](V ). We will show that f(u) = ef(u)
for all u ∈ supp(f).

Step 1. Let π(f) = s. Then we will show that f(s) = ef(s). Let 0 �= m ∈ U .
Then there exists a φ ∈ V such that π(φ) = t and φ(t) = m. From f ∈ r[[RS,≤]](V )
it follows that φf = 0. Thus

0 = (φf)(s+ t) =
∑

(u,v)∈Xs+t(φ,f)

φ(u)f(v).

If u ∈ supp(φ) and v ∈ supp(f) are such that u+v = s+ t, then t ≤ u and s ≤ v.
If t < u then s+ t < u+ v = s+ t, a contradiction. Thus u = t. Similarly, v = s.
Hence φ(t)f(s) = 0. Thus Uf(s) = 0, which implies that f(s) ∈ rR(U) = eR.
Thus f(s) = ef(s).

Step 2. Assume that f(u) = ef(u) for any u < w ∈ supp(f). We will show
that f(w) = ef(w). Define fw as follows:

fw(x) =

{
f(x), x < w,

0, w ≤ x.

Then fw ∈ [[RS,≤]] and fw(x) = f(x) = ef(x) = efw(x) = (Cefw)(x) for any
x < w by induction hypothesis. Thus fw = Cefw ∈ Ce[[RS,≤]] ⊆ r[[RS,≤]](V ).
Thus f − fw ∈ r[[RS,≤]](V ), and π(f − fw) = w. Applying Step 1, we obtain
(f − fw)(w) = e(f − fw)(w), thus f(w) = ef(w). Therefore, by transfinite
induction, f(u) = ef(u) for all u ∈ supp(f). Thus f = Cef ∈ Ce[[RS,≤]], and
which implies that r [[RS,≤]](V ) ⊆ Ce[[RS,≤]].

Hence r[[RS,≤]](V ) = Ce[[RS,≤]]. This shows that [[M S,≤]] is a quasi-Baer
module.

(2)⇒(1). Suppose that [[MS,≤]] is a quasi-Baer module. Let U ≤ M , then it
is easy to see that [[US,≤]] ≤ [[MS,≤]]. Thus there exists an idempotent f 2 = f ∈
[[RS,≤]] such that r[[RS,≤]]([[U

S,≤]]) = f [[RS,≤]]. We claim that r[[RS,≤]]([[U
S,≤]]) =

f [[RS,≤]] = [[rR(U)S,≤]]. Let m ∈ U . Then d0
m ∈ [[US,≤]]. Thus d0

mf = 0,
and then mf(s) = 0 for all s ∈ S. Thus Uf(s) = 0 for all s ∈ S, and so
f ∈ [[rR(U)S,≤]]. Let g ∈ [[rR(U)S,≤]]. Then g(s) ∈ rR(U) for all s ∈ S. Then
(φg)(t) =

∑
(u,v)∈Xt(φ,g) φ(u)g(v) = 0 for any φ ∈ [[US,≤]] and any t ∈ S. Thus

φg = 0, and so g ∈ r[[RS,≤]]([[U
S,≤]]). Hence r[[RS,≤]]([[U

S,≤]]) = f [[RS,≤]] =
[[rR(U)S,≤]]. Then by analogy with the proof of Theorem 4.3 we can show that
rR(U) = f(0)R with f(0)2 = f(0). Hence MR is a quasi-Baer module.

It was proved in [9] that if (S,≤) is a strictly totally ordered monoid satisfying
that 0 ≤ s for all s ∈ S, then R is quasi-Baer if and only if [[RS,≤]] is quasi-Baer.
Here we have
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Corollary 6.2. Let (S ≤) be a torsion-free and cancellative strictly ordered
monoid. Then the following conditions are equivalent:

(1) R is quasi-Baer.
(2) [[RS,≤]] is quasi-Baer.
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