TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 2, pp. 447-461, April 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

SPECIAL PROPERTIES OF MODULES OF GENERALIZED POWER SERIES

Renyu Zhao and Zhongkui Liu

Abstract. Let R be a ring, M a right R-module and (S, \leq) a strictly ordered monoid. In this paper, a necessary and sufficient condition is given for modules under which $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$, the module of generalized power series with coefficients in M and exponents in S is a reduced, Baer, PP. quasi-Baer module, respectively.

1. INTRODUCTION

Throughout this paper all rings R are associative with identity and all modules M are unitary right R-modules. The notation $N \leq M$ means that N is a submodule of M, and $M[x]_{R[x]}$ (resp. $M[[x]]_{R[[x]]}$ or $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$) denotes polynomial (resp. power series or Laurent power series) extension of M_R . For any nonempty subset X of R, $r_R(X)$ (resp. $l_R(x)$) denotes the right (resp. left) annihilator of X in R. Any concept and notation not defined here can be found in [10-13, 15, 16].

A ring R is called reduced if R does not have nonzero nilpotent elements. The notion of reduced rings has been studied by many authors. Some of the known results on reduced rings can be recalled as follows: R is reduced if and only if R[x] is reduced if and only if R[[x]] is reduced; if S is a torsion-free and cancellative monoid and \leq is a strict order on S, then it is shown in [6, Lemma 2.1] that R is reduced if and only if $[[R^{S,\leq}]]$, the ring of generalized power series with coefficients in R and exponents in S, is reduced; if R is a reduced ring, then it is shown in [1, Lemma 1] that R is an Armendariz ring where an Armendariz ring is any ring R such that if $(\sum_{i=0}^{m} a_i x^i) (\sum_{j=0}^{n} b_j x^j) = 0$ in R[x] then $a_i b_j = 0$ for all i and j; if S is a torsion-free and cancellative monoid, \leq is a strict order on S and R is a reduced ring, then it is shown in [6, Lemma 3.1] that R is an Armendariz

Received December 29, 2005, accepted October 13, 2006.

Communicated by Wen-Fong Ke.

²⁰⁰⁰ Mathematics Subject Classification: 16W60, 13F25.

Key words and phrases: Generalized power series, Reduced module, S-Armendariz module, Baer module, PP-Module, Quasi-Baer module.

ring where an S-Armendariz ring is any ring R such that if f, g in $[[R^{S,\leq}]]$ satisfy fg = 0 then f(u)g(v) = 0 for all $u, v \in S$.

The concept of a reduced ring is very useful in the investigation of certain annihilator conditions of polynomial extensions of a ring R. A ring R is called Baer (resp. right PP) if the right annihilator of every nonempty subset (resp. every element) is generated by an idempotent. A well-known result of Armendariz [1] states that, for a reduced ring R, R is Baer (resp. right PP) if and only if so is R[x], and there exist non-reduced Baer rings whose polynomial ring is not Baer. In the sequel, this result has been extended in several directions by many authors, [2-9].

Recently, the notions of reduced, Armendariz, Baer, PP and quasi-Baer modules were introduced in [10]. A module M_R is called reduced if, for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$. A module M_R is called Armendariz if, whenever m(x)f(x) = 0 where $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x]$ and $f(x) = \sum_{i=0}^{t} a_i x^i \in R[x]$, then $m_i a_j = 0$ for all i and j. A module M_R is called Armendariz of power series type if, whenever m(x)f(x) = 0 where m(x) = $\sum_{i=0}^{\infty} m_i x^i \in M[[x]]$ and $f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x]]$, then we have $m_i a_j = 0$ for all i and j. A module M_R is called Baer if, for any nonempty subset X of $M, r_R(X) = eR$ where $e^2 = e \in R$. A module M_R is called PP if, for any $m \in M$, $r_R(m) = eR$ where $e^2 = e \in R$. A module M_R is called quasi-Baer if, for any right R-submodule X of M, $r_R(X) = eR$ where $e^2 = e \in R$. Clearly, R is reduced (resp. Armendariz, Baer, right PP, quasi-Baer) if and only if R_R is a reduced (resp. Armendariz, Baer, PP, quasi-Baer) module. And various results on reduced (resp. Baer, right PP, quasi-Baer) rings were extended to modules in [10]. It was proved that every reduced module is an Armendariz module of power series type [Lemma 1.5]; and that M_R is reduced if and only if $M[x]_{R[x]}$ is reduced if and only if $M[[x]]_{R[[x]]}$ is reduced if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is reduced [Theorem 1.6]. If M_R is an Armendariz module, then it was proved that M_R is Baer if and only if $M[x]_{R[x]}$ is Baer [Corollary 2.7 (1)]; and that M_R is PP if and only if $M[x]_{R[x]}$ is PP [Corollary 2.12 (1)]. If M_R is an Armendariz module of power series type, then it was proved that M_R is Baer if and only if $M[[x]]_{R[[x]]}$ is Baer if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is Baer [Corollary 2.7 (2)]; and that $M[[x]]_{R[[x]]}$ is PP if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is PP if and only if for any countable subset X of M, $r_R(X) = eR$ where $e^2 = e \in R$ [Corollary 2.12 (2)]. For quasi-Baerness, it was proved that M_R is quasi-Baer if and only if $M[x]_{R[x]}$ is quasi-Baer if and only if $M[[x]]_{R[[x]]}$ is quasi-Baer if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is quasi-Baer [Corollary 2.14].

As a generalization of generalized power series rings, Varadarajan introduced the notion of modules of generalized power series in [15]. Thus a natural question of characterization of reduced (Baer, PP, quasi-Baer, respectively) property of generalized power series modules is raised. In this paper, a necessary and sufficient condition is given for modules under which $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$, the module of generalized power series with coefficients in M_R and exponents in S, is a reduced (Baer, PP, quasi-Baer, respectively) module. If S is a torsion-free and cancellative monoid and \leq a strict order on S, we will show that: if M_R is a reduced module, then M_R is an S-Armendariz module; M_R is reduced if and only if $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is reduced; M_R is a quasi-Baer module if and only if $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a quasi-Baer module. If (S, \leq) is a strictly ordered monoid and M_R an S-Armendariz module, we will show that: M_R is a Baer module if and only if $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a Baer module; $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module if and only if for any S-indexed subset Xof M_R , there exists an idempotent $e \in R$ such that $r_R(X) = eR$. And many other results are obtained, which unify and extend non-trivially many of the previously known results.

2. Preliminaries

Let (S, \leq) be an ordered set. Recalled that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0. The following definition is due to [11-13].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s', t \in S$ and s < s', then s + t < s' + t), and R a ring. Let $[[R^{S,\leq}]]$ be the set of all maps $f: S \to R$ such that $supp(f) = \{s \in S \mid f(s) \neq 0\}$ is artinian and narrow.

With pointwise addition, $[[R^{S,\leq}]]$ is an abelian group.

For every $s \in S$ and $f, g \in [[R^{S,\leq}]]$, let $X_s(f,g) = \{(u,v) \in S \times S \mid u+v = s, f(u) \neq 0, g(v) \neq 0\}$. It follows from [11, 4.1] that $X_s(f,g)$ is finite. This allows to define the operation of convolution:

$$(fg)(s) = \sum_{(u,v)\in X_s(f,g)} f(u)g(v).$$

With these operations, $[[R^{S,\leq}]]$ becomes an associative ring, with unit element e, namely e(0) = 1, e(s) = 0 for every $s \in S, s \neq 0$, which is called the ring of generalized power series with coefficients in R and exponents in S.

In [15, 16], Varadarajan introduced the concept of modules of generalized power series. Let M be a right R-module, (S, \leq) a strictly ordered monoid. Let $[[M^{S,\leq}]]$ denotes the set of all mapping $\phi : S \to M$ with $supp(\phi)$ artinian and narrow, where $supp(\phi) = \{s \in S \mid \phi(s) \neq 0\}.$

With pointwise addition, $[[M^{S,\leq}]]$ is an abelian group.

For each $s \in S$, $f \in [[R^{S,\leq}]]$ and $\phi \in [[M^{S,\leq}]]$, let $X_s(\phi, f) = \{(u,v) \in S \times S \mid u+v = s, \phi(u) \neq 0, f(v) \neq 0\}$. Then by analogy with [11, 4.1], $X_s(\phi, f)$ is finite. This allows to define the operation of convolution:

$$(\phi f)(s) = \sum_{(u,v)\in X_s(\phi,f)} \phi(u)f(v).$$

With these operations, $[[M^{S,\leq}]]$ becomes a right $[[R^{S,\leq}]]$ -module, which is called the modules of generalized power series with coefficients in M and exponents in S.

For example, if $S = \mathbb{N}$, and \leq is the usual order, then $[[M^{\mathbb{N},\leq}]]_{[[R^{\mathbb{N},\leq}]]} \cong M[[x]]_{R[[x]]}$, the power series extension of M. If $S = \mathbb{Z}$, and \leq is the usual order, then $[[M^{\mathbb{Z},\leq}]]_{[[R^{\mathbb{Z},\leq}]]} \cong M[[x,x^{-1}]]_{R[[x,x^{-1}]]}$, the Laurent power series extension of M.

3. REDUCED MODULES

Following from [10], a module M_R is called reduced if, for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$. It is easy to see that R is a reduced ring if and only if R_R is a reduced module. The following result appeared in [10, Lemma 1.2].

Lemma 3.1. The following conditions are equivalent:

- (1) M_R is reduced.
- (2) For any $m \in M$ and any $a \in R$, the following conditions hold:
- (a) ma = 0 implies mRa = 0.
- (b) $ma^2 = 0$ implies ma = 0.

Rege and Chhawchharia in [14] introduced the notion of an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. Let (S, \leq) be a strictly ordered monoid. Recall from [6] that R is an S-Armendariz ring if whenever f, g in $[[R^{S,\leq}]]$ satisfy fg = 0, then f(u)g(v) = 0 for all $u, v \in S$. We call a module M_R is S-Armendariz if whenever $f \in [[R^{S,\leq}]]$ and $\phi \in [[M^{S,\leq}]]$ satisfy $\phi f = 0$, then $\phi(u)f(v) = 0$ for each $u, v \in S$. Clearly, R is S-Armendariz if and only if R_R is S-Armendariz. It was proved in [6, Lemma 3.1] that if S is a torsion-free and cancellative monoid, \leq a strict order on S and R is a reduced ring then R is S-Armendariz. The following proposition extends this result to modules.

450

Proposition 3.2. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and M_R a reduced module. Then M_R is an S-Armendariz module.

Proof. Let $0 \neq f \in [[R^{S,\leq}]]$ and $0 \neq \phi \in [[M^{S,\leq}]]$ satisfy $\phi f = 0$. By [11], there exists a compatible strict total order \leq' on S, which is finer than \leq (that is, for all $s, t \in S, s \leq t$ implies $s \leq' t$). We will use transfinite induction on the strictly totally ordered set (S, \leq') to show that $\phi(u)f(v) = 0$ for any $u \in supp(\phi)$ and $v \in supp(f)$. Let s and t denote the minimum elements of $supp(\phi)$ and supp(f) in the \leq' order, respectively. If $u \in supp(\phi)$ and $v \in supp(f)$ are such that u + v = s + t, then $s \leq' u$ and $t \leq' v$. If s <' u then s + t <' u + v = s + t, a contradiction. Thus u = s. Similarly, v = t. Hence $0 = (\phi f)(s + t) = \sum_{(u,v)\in X_{s+t}(\phi,f)} \phi(u)f(v) = \phi(s)f(t)$.

Now suppose that $w \in S$ is such that for any $u \in supp(\phi)$ and $v \in supp(f)$ with u + v < w, $\phi(u)f(v) = 0$. We will show that $\phi(u)f(v) = 0$ for any $u \in supp(\phi)$ and $v \in supp(f)$ with u + v = w. We write $X_w(\phi, f) = \{(u, v) \in S \times S \mid u + v = w, \phi(u) \neq 0, f(v) \neq 0\}$ as $\{(u_i, v_i) \mid i = 1, 2, ..., n\}$ such that $u_1 < u_2 < \cdots < u_n$. Since S is cancellative, $u_1 = u_2$ and $u_1 + v_1 = u_2 + v_2 = w$ imply $v_1 = v_2$. Since \leq' is a strict order, $u_1 < u_2$ and $u_1 + v_1 = u_2 + v_2 = w$ imply $v_2 < v_1$. Thus we have $v_n < \cdots < v_2 < v_1$. Now,

(1)
$$0 = (\phi f)(w) = \sum_{(u,v) \in X_w(\phi,f)} \phi(u)f(v) = \sum_{i=1}^n \phi(u_i)f(v_i).$$

For any $1 \le i \le n-1$, $u_i + v_n <' u_i + v_i = w$, and thus, by induction hypothesis, we have $\phi(u_i)f(v_n) = 0$. Since M is reduced, then $\phi(u_i)Rf(v_n) = 0$ by Lemma 3.1. Hence, multiplying (1) on the right by $f(v_n)$, we obtain

$$\sum_{i=1}^{n} \phi(u_i) f(v_i) f(v_n) = \phi(u_n) f(v_n) f(v_n) = 0.$$

Since M is reduced, then by Lemma 3.1 we have $\phi(u_n)f(v_n) = 0$. Now (1) becomes

(2)
$$\sum_{i=1}^{n-1} \phi(u_i) f(v_i) = 0.$$

Multiplying $f(v_{n-1})$ on (2) from the right-hand side, we obtain $\phi(u_{n-1})f(v_{n-1}) = 0$ by the same way as the above. Continuing this process, we can prove $\phi(u_i)f(v_i) = 0$ for i = 1, 2, ..., n. Thus $\phi(u)f(v) = 0$ for any $u \in supp(\phi)$ and $v \in supp(f)$ with u + v = w.

Therefore, by transfinite induction, $\phi(u)f(v) = 0$ for any $u \in supp(\phi)$ and $v \in supp(f)$.

Lee-Zhou introduced the notion of an Armendariz module of power series type in [10]. They defined a module M_R to be an Armendariz module of power series type if, whenever m(x)f(x) = 0 where $m(x) = \sum_{i=0}^{\infty} m_i x^i \in M[[x]]$ and $f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x]]$, then $m_i a_j = 0$ for all *i* and *j*. Letting $(S, \leq) = (\mathbb{N}, \leq)$, the natural number set with usual order, yields the following result.

Corollary 3.3. Let M_R be a reduced module. Then M_R is an Armendariz module of power series type.

In [1, Lemma 1], it was proved that if R is a reduced ring, then R is an Armendariz ring. Here we have

Corollary 3.4. Let R be a reduced ring. Then R is an Armendariz ring of power series type.

Let $m \in M$ and $\delta \in S$. Define a mapping $d_m^s \in [[M^{S,\leq}]]$ as follows:

 $d_m^s(s)=m, \qquad \quad d_m^s(t)=0, \quad s\neq t\in S.$

Proposition 3.5. Let (S, \leq) be a strictly ordered monoid and M_R an S-Armendariz module. If $\phi \in [[M^{S,\leq}]]$ and $f_1, f_2, \cdots, f_n \in [[R^{S,\leq}]]$ are such that $\phi f_1 f_2 \cdots f_n = 0$, then $\phi(u) f_1(v_1) f_2(v_2) \dots, f_n(v_n) = 0$ for all $u, v_1, v_2, \dots, v_n \in S$.

Proof. Suppose $\phi f_1 f_2 \cdots f_n = 0$. Then from $\phi(f_1 f_2 \cdots f_n) = 0$ it follows that $\phi(u)(f_1 f_2 \cdots f_n)(v) = 0$ for all $u, v \in S$. Thus $(d^0_{\phi(u)} f_1 f_2 \cdots f_n)(v) = 0$ for any $v \in S$, and so $d^0_{\phi(u)} f_1 f_2 \cdots f_n = 0$. Now from $(d^0_{\phi(u)} f_1)(f_2 \cdots f_n) = 0$ it follows that $(d^0_{\phi(u)} f_1)(v_1)(f_2 \cdots f_n)$ (w) = 0 for all $v_1, w \in S$. Since $(d^0_{\phi(u)} f_1)(v_1) = \phi(u)f_1(v_1)$ for any $u, v_1 \in S$, we have $\phi(u)f_1(v_1)(f_2 \cdots f_n)(w) = 0$ for all $u, v_1, w \in S$. Hence $d^0_{\phi(u)f_1(v_1)} f_2 \cdots f_n = 0$. Continuing in this manner, we see that $\phi(u)f_1(v_1)f_2(v_2)\cdots f_n(v_n) = 0$ for all $u, v_1, v_2, \dots, v_n \in S$.

Now, combining proposition 3.2 we have

Corollary 3.6. Let S be a torsion-free and cancellative monoid, $\leq a$ strict order on S and M_R a reduced module. If $\phi \in [[M^{S,\leq}]]$ and $f_1, f_2, ..., f_n \in [[R^{S,\leq}]]$ are such that $\phi f_1 f_2 \cdots f_n = 0$, then $\phi(u) f_1(v_1) f_2(v_2) \cdots f_n(v_n) = 0$ for all $u, v_1, v_2, ..., v_n \in S$.

Let $r \in R$. Define a mapping $C_r \in [[R^{S,\leq}]]$ as follows:

 $C_r(0) = r,$ $C_r(s) = 0, \quad 0 \neq s \in S.$

It was proved in [10, Theorem 1.6] that M_R is reduced if and only if $M[x]_{R[x]}$ is reduced if and only if $M[[x]]_{R[[x]]}$ is reduced if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is reduced. Here we have

Theorem 3.7. Let S be a torsion-free and cancellative monoid and \leq a strict order on S. Then M_R is reduced if and only if $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is reduced.

Proof. Let M_R be reduced. Suppose that $f \in [[R^{S,\leq}]]$ and $\phi \in [[M^{S,\leq}]]$ satisfy $\phi f = 0$ and $\phi g = \psi f$, where $\psi \in [[M^{S,\leq}]]$ and $g \in [[R^{S,\leq}]]$. It suffices to show that $\psi f = 0$. By Proposition 3.2, $\phi(s)f(t) = 0$ for any $s, t \in S$. Thus $\phi(s)Rf(t) = 0$ for any $s, t \in S$ by Lemma 3.1. Then

$$(\phi g f)(s) = \sum_{(u,v,w) \in X_s(\phi,g,f)} \phi(u)g(v)f(w) = 0$$

for any $s \in S$. Thus $\psi f^2 = \phi g f = 0$. Then by Corollary 3.6, $\psi(u)f(v)f(w) = 0$ for any $u, v, w \in S$. Thus $\psi(u)f(v)^2 = 0$ for any $u, v \in S$. Then $\psi(u)f(v) = 0$ for any $u, v \in S$ by Lemma 3.1, and which implies that $\psi f = 0$.

Conversely, suppose that ma = 0 and $mr = na \in mR \cap Ma$ where $m, n \in M$ and $r, a \in R$. Then $d_m^0 C_a = 0$. Since $[[M^{S,\leq}]]$ is reduced, we have $d_m^0[[R^{S,\leq}]] \cap [[M^{S,\leq}]]C_a = 0$. Thus $d_m^0 C_r = d_n^0 C_a = 0$, and so mr = na = 0. Hence M_R is reduced.

Corollary 3.8. ([8, Lemma 2.1]) Let S be a torsion-free and cancellative monoid and \leq a strict order on S. Then R is reduced if and only if $[[R^{S,\leq}]]$ is reduced.

4. BAER MODULES

Recall that R is Baer if the right annihilator of every nonempty subset is generated by an idempotent. If R is a reduced ring, then it is shown in [2, Corollary 1.10] that R is Baer if and only if R[x] is Baer if and only if R[[x]] is Baer. If R is commutative and (S, \leq) is a strictly totally ordered monoid, then it is shown in [7, Theorem 7] that R is Baer if and only if $[[R^{S,\leq}]]$ is Baer. Recall from [10] that a right R- module M is Baer if, for any subset X of M, $r_R(X) = eR$ where $e^2 = e \in R$. It is also shown in [10, Corollary 2.7(2)] that if M_R is an Armendariz module of power series type, then M_R is Baer if and only if $M[[x]]_{R[[x]]}$ is Baer if and only if $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is Baer. Next, we will extend these results to generalized power series modules. First we have the following results on which our discussion is based.

Let I be a right ideal of R. Let $[[I^{S,\leq}]] = \{f \in [[R^{S,\leq}]] \mid f(s) \in I \text{ for any } s \in S\}$. Then it is easy to see that $[[I^{S,\leq}]]$ is a right ideal of $[[R^{S,\leq}]]$.

Lemma 4.1. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Then the following conditions are equivalent:

- (1) M_R is an S-Armendariz module.
- (2) For any $X \subseteq [[M^{S,\leq}]], [[r_R(X')^{S,\leq}]] = r_{[[R^{S,\leq}]]}(X)$, where $X' = \{\phi(s) \mid \phi \in X, s \in S\}$.

Proof. (2) \Rightarrow (1). Let $\phi f = 0$ where $\phi \in [[M^{S,\leq}]]$ and $f \in [[R^{S,\leq}]]$. Then $f \in r_{[[R^{S,\leq}]]}(\phi)$. By (2), $f \in [[r_R(X')^{S,\leq}]]$ where $X' = \{\phi(s) \mid s \in S\}$. Take $f(s) \in r_R(X')$ for any $s \in S$. Thus $\phi(t)f(s) = 0$ for any $s, t \in S$. This means that M is an S-Armendariz module.

(1) \Rightarrow (2). Suppose that $X \subseteq [[M^{S,\leq}]]$. Take $X' = \{\phi(s) \mid \phi \in X, s \in S\}$. Let $g \in r_{[[R^{S,\leq}]]}(X)$, then $\phi g = 0$ for any $\phi \in X$. By (1), $\phi(s)g(t) = 0$ for any $s, t \in S$. Thus $g(t) \in r_R(X')$ for any $t \in S$. Thus $g \in [[r_R(X')^{S,\leq}]]$, and so $r_{[[R^{S,\leq}]]}(X) \subseteq [[r_R(X')^{S,\leq}]]$. The opposite inclusion is obviously.

Lemma 4.2. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Then for any $X \subseteq M$, $[[r_R(X)^{S,\leq}]] = r_{[[R^S,\leq]]}(X')$, where $X' = \{d_m^0 \mid m \in X\}$. *Proof.* The proof is straightforward.

Theorem 4.3. Let (S, \leq) be a strictly ordered monoid and M_R an S-Armendariz module. Then the following conditions are equivalent:

- (1) M_R is a Baer module.
- (2) $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a Baer module.

Proof. (1) \Rightarrow (2). Let $X \subseteq [[M^{S,\leq}]]$. Since M_R is an S-Armendariz module, by Lemma 4.1, $r_{[[R^{S,\leq}]]}(X) = [[r_R(X')^{S,\leq}]]$ where $X' = \{\phi(s) \mid \phi \in X, s \in S\}$. Since M_R is a Baer module, there exists an idempotent $e^2 = e \in R$ such that $r_R(X') = eR$. Thus $r_{[[R^{S,\leq}]]}(X) = [[r_R(X')^{S,\leq}]] = [[(eR)^{S,\leq}]] = C_e[[R^{S,\leq}]]$, and which implies $[[M^{S,\leq}]]$ is a Baer module.

 $(2) \Rightarrow (1).$ Let $X \subseteq M$. Then by Lemma 4.2, $[[r_R(X)^{S,\leq}]] = r_{[[R^{S,\leq}]]}(X')$, where $X' = \{d_m^0 \mid m \in X\}$. Since $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a Baer module, there exists an idempotent $f^2 = f \in [[R^{S,\leq}]]$ such that $[[r_R(X)^{S,\leq}]] = r_{[[R^{S,\leq}]]}(X') = f[[R^{S,\leq}]]$. We will show that $r_R(X) = f(0)R$ and $f(0) = f(0)^2$. From $f \in [[r_R(X)^{S,\leq}]]$ it follows that $f(s) \in r_R(X)$ for any $s \in S$. Especially, $f(0) \in r_R(X)$, and so $f(0)R \subseteq r_R(X)$. Conversely, let $r \in r_R(X)$. Then $C_r \in [[r_R(X)^{S,\leq}]] =$ $f[[R^{S,\leq}]]$. Thus $C_r = fC_r$. Then $r = C_r(0) = (fC_r)(0) = f(0)r \in f(0)R$. Thus $r_R(X) \subseteq f(0)R$. Since $f(0) \in r_R(X)$, we have $f(0) = f(0)^2$. Hence $r_R(X) = f(0)R$ and $f(0) = f(0)^2$. So M_R is a Baer module.

Applying Proposition 3.2 we can get

Corollary 4.4. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and M_R a reduced module. Then M_R is a Baer module if and only if $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a Baer module.

Corollary 4.5. Let (S, \leq) be a strictly ordered monoid and R an S-Armendriz ring. Then R is Baer if and only if $[[R^{S,\leq}]]$ is Baer.

In [5, Theorem 10], it was proved that if R is an Armendariz ring, then R is Baer if and only if R[x] is Baer. Here we have

Corollary 4.6. Let R be an Armendariz ring of power series type. Then R is Baer if and only if R[[x]] is Baer.

Applying Corollary 3.4 we can get

Corollary 4.7. ([2, Corollary 1.10.]). Let R be a reduced ring. Then R is Baer if and only if R[[x]] is Baer.

5. PP-MODULES

One of generalizations of Baer rings is PP-rings. A ring R is called right (resp. left) PP if the right (resp. left) annihilator of an element of R is generated by an idempotent. A ring is called PP if it is both right and left PP. It was proved in [1, Theorem A] that R is a reduced right PP-ring if and only if R[x] is a reduced right PP-ring. It was proved in [4] that R[[x]] is a reduced right PP-ring if and only if R is a reduced right PP-ring and any countable family of idempotents of R has a least upper bound in B(R), the set of all central idempotents. If (S, \leq) is a strictly totally ordered monoid, then it is shown in [6, Theorem 3.5] that $[[R^{S,\leq}]]$ is a reduced right PP-ring if and only if R is a reduced right PP-ring and any S-indexed family of idempotents of R has a least upper bound in B(R). The notion of PP-modules was introduced in [10]. A module M_R is called PP if, for any $m \in M$, $r_R(m) = eR$ where $e^2 = e \in R$. It was also proved in [10, Corollary 2.12] that if M_R is an Armendariz module of power series type, then $M[[x]]_{R[[x]]}$ is PP if and only if for any countable subset X of M, $r_R(X) = eR$ where $e^2 = e \in R$. In this section we will consider the PP property of generalized power series modules. The following result is a corollary of Theorem 5.2. But here we give a direct and different proof.

Proposition 5.1. Let (S, \leq) be a strictly ordered monoid and M a right R-module. If $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module, then M_R is a PP-module.

Proof. Let $m \in M$. Then by Lemma 4.2, $[[r_R(m)^{S,\leq}]] = r_{[[R^{S,\leq}]]}(d_m^0)$. Since $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module, there exists an idempotent $f \in [[R^{S,\leq}]]$ such that

 $r_{[[R^{S,\leq}]]}(d_m^0) = f[[R^{S,\leq}]].$ We will show that $r_R(m) = f(0)R$ and $f(0) = f(0)^2$. From $f \in r_{[[R^{S,\leq}]]}(d_m^0)$ it follows that $d_m^0 f = 0$. Then $mf(0) = (d_m^0 f)(0) = 0$. Thus $f(0)R \subseteq r_R(m)$. Conversely, let $r \in r_R(m)$. Then $C_r \in [[(r_R(m)^{S,\leq}]] = f[[R^{S,\leq}]]$. Thus $C_r = fC_r$. Then $r = C_r(0) = (fC_r)(0) = f(0)r \in f(0)R$. Thus $r_R(m) \subseteq f(0)R$. Since $f(0) \in r_R(m)$, we have $f(0) = f(0)^2$. Hence $r_R(m) = f(0)R$ and $f(0) = f(0)^2$. So M_R is a PP-module.

Let $X \subseteq M$. We will say that X is S-indexed if there exists an artinian and narrow subset I of S such that X is indexed by I.

Theorem 5.2. Let (S, \leq) be a strictly ordered monoid and M_R an S-Armendariz module. Then the following conditions are equivalent:

- (1) $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module.
- (2) For every S-indexed subset X of M, there exists an idempotent $e \in R$ such that $r_R(X) = eR$.

Proof. (1) \Rightarrow (2). Suppose that $[[M^{S,\leq}]]$ is a PP-module. Let $X = \{m_s \mid s \in I\}$ is an S-indexed subset of M. Define $\phi : S \to M$ via

$$\phi(s) = \begin{cases} m_s, & s \in I, \\ 0, & s \notin I. \end{cases}$$

Then $supp(\phi) = I$ is artinian and narrow, and so $\phi \in [[M^{S,\leq}]]$. Since $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module, there exists an idempotent $f^2 = f \in [[R^{S,\leq}]]$ such that $r_{[[R^{S,\leq}]]}(\phi) = f[[R^{S,\leq}]]$. Since M_R is an S-Armendariz module, then $r_{[[R^{S,\leq}]]}(\phi) = [[r_R(X)^{S,\leq}]]$ by Lemma 4.1. Thus $[[r_R(X)^{S,\leq}]] = f[[R^{S,\leq}]]$. Then by analogy with the proof of Theorem 4.3 we can show that $r_R(X) = f(0)R$ with $f(0)^2 = f(0)$.

(2) \Rightarrow (1). Let $\phi \in [[M^{S,\leq}]]$. Then $X = \{\phi(s) \mid s \in supp(\phi)\}$ is an S- indexed subset of M. Then there exists an idempotent $e \in R$ such that $r_R(X) = eR$ by (2). Thus by Lemma 4.1, we have $r_{[[R^{S,\leq}]]}(\phi) = [[(r_R(X)^{S,\leq}]] = [[(eR)^{S,\leq}]] = C_e[[R^{S,\leq}]]$, and which implies $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a PP-module.

Corollary 5.3. Let (S, \leq) be a torsion-free cancellative strictly ordered monoid. Then the following conditions are equivalent:

- (1) $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a reduced PP-module.
- (2) *M* is a reduced *PP*-module, and for every *S*-indexed subset *X* of *M*, there exists an idempotent $e \in R$ such that $r_R(X) = eR$.

Proof. Using Proposition 3.2, Theorem 3.7 and Theorem 5.2, we can complete the proof.

If R is reduced, then R is Abelian (that is, every idempotent of R is central). Thus, by [4], the set B(R) of all idempotents is a Boolean algebra where $e \leq f$ means ef = e, and where the join, meet, and complement are given by $e \vee f = e + f - ef$, $e \wedge f = ef$ and e' = 1 - e, respectively. The following result appeared in [4] on which our following discussion is based. An element $a \in R$ will be called entire if $l_R(a) = r_R(a) = 0$.

Lemma 5.4. The following conditions are equivalent for a ring R:

- (1) R is a reduced right PP-ring.
- (2) If $a \in R$ then a = eb = be where $e^2 = e \in R$ and $b \in R$ is entire.
- (3) *R* is an Abelian right *PP*-ring.

Now, comparing with the result in [6, Theorem 3.5], we have

Corollary 5.5. Let (S, \leq) be a torsion-free cancellative strictly ordered monoid. Then the following conditions are equivalent:

- (1) $[[R^{S,\leq}]]$ is a reduced right PP-ring.
- (2) *R* is a reduced right *PP*-ring, and for every *S*-indexed subset *X* of *R*, there exists an idempotent $e \in R$ such that $r_R(X) = eR$.
- (3) *R* is a reduced right *PP*-ring, and for every *S*-indexed subset *X* of *B*(*R*), there exists an idempotent $e \in R$ such that $r_R(X) = eR$.
- (4) *R* is a reduced right *PP*-ring and every *S*-indexed subset *X* of B(R) has a least upper bound in B(R).

Proof. Letting M = R in Corollary 5.3 we can get (1) \Leftrightarrow (2). (2) \Rightarrow (3). It is straightforward.

 $(3) \Rightarrow (4)$. Suppose that $X = \{e_s \mid s \in I\}$ is an S-indexed subset of B(R). Then by (3), $r_R(X) = eR$ where $e^2 = e \in R$. We claim that 1 - e is a least upper bound of X in B(R). First Xe = 0 implies that for every $s \in I$, $e_se = 0$, and thus $e_s(1-e) = e_s$. Thus $e_s \leq 1 - e$. On the other hand, suppose that $e_s \leq f$ for all $s \in I$, where $f^2 = f \in R$. Then $1 - f \in r_R(X) = eR$. Thus 1 - f = e(1 - f). Thus 1 - e = (1 - e)f, and which implies that $1 - e \leq f$.

 $(4)\Rightarrow(2)$. Suppose that $X = \{a_s \mid s \in I\}$ is an S-indexed subset of R. Then by Lemma 5.4, $a_s = e_s b_s$ for all $s \in I$, where $e_s^2 = e_s \in R$ and $b_s \in R$ is entire. Setting $X' = \{e_s \mid s \in I\}$. Then X' is an S-indexed subset of B(R). Let e be a least upper bound of X' in B(R). We will show that $r_R(X) = (1 - e)R$. First from $e_s e = e_s$ it follows that $(1 - e)e_s = 0$ for all $s \in I$. Then $1 - e \in r_R(X)$. On the other hand, let $r \in r_R(X)$. Then $a_s r = 0$ for all $s \in I$. By Lemma 5.4, there exists an idempotent $f^2 = f \in R$ and an entire element $p \in R$ such that r = fp. Thus $e_s f = 0$ for all $s \in I$ since p and b_s is entire. Thus $e_s \leq 1 - f$ for all $s \in I$. Thus $e \leq 1 - f$, and so $r = (1 - e)r \in (1 - e)R$. Hence $r_R(X) = (1 - e)R$.

In [5, Theorem 9], it was proved that if R is an Armendariz ring, then R is PP if and only if R[x] is PP. Here we have

Corollary 5.6. Let R be an Armendariz ring of power series type. Then R[[x]] is right PP if and only if R is right PP and for any countable subset X of R, $r_R(X) = eR$, where $e^2 = e \in R$.

6. QUASI-BAER MODULES

Another generalization of Baer rings is quasi-Baer rings. Recall that R is quasi-Baer if the right annihilator of every right ideal is generated by an idempotent. Every prime ring is quasi-Baer ring. Since Baer ring are nonsingular, the prime rings with $Z_r(R) \neq 0$ are quasi-Baer but not Baer. It was proved in [2, Theorem 1.8] that a ring R is quasi-Baer if and only if R[x] is quasi-Baer if and only if R[[x]] is quasi-Baer. Following from [10] a module M_R is called quasi-Baer if, for any right R-submodule X of M, $r_R(X) = eR$ where $e^2 = e \in R$. Clearly, R is quasi-Baer if and only if R_R is quasi-Baer. In [10, Corollary 2.14], it is shown that M_R is quasi-Baer if and only if $M[x]_{R[x]}$ is quasi-Baer if and only if $M[[x]]_{R[[x]]}$ is quasi-Baer. In this section we will generalize these results to generalized power series modules.

Theorem 6.1. Let $(S \leq)$ be a torsion-free and cancellative strictly ordered monoid. Then the following conditions are equivalent:

- (1) M_R is a quasi-Baer module.
- (2) $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ is a quasi-Baer module.

Proof. (1) \Rightarrow (2). Suppose that $V \leq [[M^{S,\leq}]]$. By [11], there exists a compatible strict total order \leq' on S, which is finer than \leq (that is, for all $s, t \in S, s \leq t$ implies $s \leq' t$). Note that $[[M^{S,\leq}]]$ (resp. $[[R^{S,\leq}]]$) is a submodule (resp. subring) of $[[M^{S,\leq'}]]$ (resp. $[[R^{S,\leq'}]]$). Thus we may assume that the order \leq is total. Then for any $0 \neq f \in [[R^{S,\leq}]]$ (resp. $[[M^{S,\leq}]]$), the supp(f) is a nonempty well-ordered subset of S. We denote by $\pi(f)$ the smallest element of the support of f. Let $U = \{\phi(s) \mid \phi \in V, \pi(\phi) = s\} \cup \{0\}$. Then it is easy to see that U is a right R-submodule of M. Since M_R is a quasi-Baer module, then $r_R(U) = eR$ where $e^2 = e \in R$. We will show that $r_{[[R^{S,\leq}]]}(V) = C_e[[R^{S,\leq}]]$. Let $\phi \in V$. If $\phi C_e \neq 0$. Let $\pi(\phi C_e) = s$, then $0 \neq (\phi C_e)(s) = \phi(s)e$; on the other hand, since $\phi \in V$, so $\phi C_e \in V$ and then $\phi(s)e \in U$. From $r_R(U) = eR$ it follows that $\phi(s)e =$

 $(\phi(s)e)e = 0$, a contradiction. Thus $\phi C_e = 0$, and so $C_e[[R^{S,\leq}]] \subseteq r_{[[R^{S,\leq}]]}(V)$. Conversely, suppose that $0 \neq f \in r_{[[R^{S,\leq}]]}(V)$. We will show that f(u) = ef(u) for all $u \in supp(f)$.

Step 1. Let $\pi(f) = s$. Then we will show that f(s) = ef(s). Let $0 \neq m \in U$. Then there exists a $\phi \in V$ such that $\pi(\phi) = t$ and $\phi(t) = m$. From $f \in r_{[[R^{S,\leq}]]}(V)$ it follows that $\phi f = 0$. Thus

$$0 = (\phi f)(s+t) = \sum_{(u,v) \in X_{s+t}(\phi,f)} \phi(u) f(v).$$

If $u \in supp(\phi)$ and $v \in supp(f)$ are such that u+v = s+t, then $t \leq u$ and $s \leq v$. If t < u then s+t < u+v = s+t, a contradiction. Thus u = t. Similarly, v = s. Hence $\phi(t)f(s) = 0$. Thus Uf(s) = 0, which implies that $f(s) \in r_R(U) = eR$. Thus f(s) = ef(s).

Step 2. Assume that f(u) = ef(u) for any $u < w \in supp(f)$. We will show that f(w) = ef(w). Define f_w as follows:

$$f_w(x) = \begin{cases} f(x), & x < w, \\ 0, & w \le x. \end{cases}$$

Then $f_w \in [[R^{S,\leq}]]$ and $f_w(x) = f(x) = ef(x) = ef_w(x) = (C_e f_w)(x)$ for any x < w by induction hypothesis. Thus $f_w = C_e f_w \in C_e[[R^{S,\leq}]] \subseteq r_{[[R^{S,\leq}]]}(V)$. Thus $f - f_w \in r_{[[R^{S,\leq}]]}(V)$, and $\pi(f - f_w) = w$. Applying Step 1, we obtain $(f - f_w)(w) = e(f - f_w)(w)$, thus f(w) = ef(w). Therefore, by transfinite induction, f(u) = ef(u) for all $u \in supp(f)$. Thus $f = C_e f \in C_e[[R^{S,\leq}]]$, and which implies that $r_{[[R^{S,\leq}]]}(V) \subseteq C_e[[R^{S,\leq}]]$.

Hence $r_{[[R^{S,\leq}]]}(V) = C_e[[R^{S,\leq}]]$. This shows that $[[M^{S,\leq}]]$ is a quasi-Baer module.

 $\begin{array}{ll} (2) \Rightarrow (1). \text{ Suppose that } [[M^{S,\leq}]] \text{ is a quasi-Baer module. Let } U \leq M, \text{ then it is easy to see that } [[U^{S,\leq}]] \leq [[M^{S,\leq}]]. \text{ Thus there exists an idempotent } f^2 = f \in [[R^{S,\leq}]] \text{ such that } r_{[[R^{S,\leq}]]}([[U^{S,\leq}]]) = f[[R^{S,\leq}]]. \text{ We claim that } r_{[[R^{S,\leq}]]}([[U^{S,\leq}]]) = f[[R^{S,\leq}]] = [[r_R(U)^{S,\leq}]]. \text{ Let } m \in U. \text{ Then } d^0_m \in [[U^{S,\leq}]]. \text{ Thus } d^0_m f = 0, \text{ and then } mf(s) = 0 \text{ for all } s \in S. \text{ Thus } Uf(s) = 0 \text{ for all } s \in S, \text{ and so } f \in [[r_R(U)^{S,\leq}]]. \text{ Let } g \in [[r_R(U)^{S,\leq}]]. \text{ Then } g(s) \in r_R(U) \text{ for all } s \in S. \text{ Then } (\phi g)(t) = \sum_{(u,v)\in X_t(\phi,g)} \phi(u)g(v) = 0 \text{ for any } \phi \in [[U^{S,\leq}]] \text{ and any } t \in S. \text{ Thus } \phi g = 0, \text{ and so } g \in r_{[[R^{S,\leq}]]}([[U^{S,\leq}]]). \text{ Hence } r_{[[R^{S,\leq}]]}([[U^{S,\leq}]]) = f[[R^{S,\leq}]] = [[r_R(U)^{S,\leq}]]. \text{ Then by analogy with the proof of Theorem 4.3 we can show that } r_R(U) = f(0)R \text{ with } f(0)^2 = f(0). \text{ Hence } M_R \text{ is a quasi-Baer module.} \end{array}$

It was proved in [9] that if (S, \leq) is a strictly totally ordered monoid satisfying that $0 \leq s$ for all $s \in S$, then R is quasi-Baer if and only if $[[R^{S,\leq}]]$ is quasi-Baer. Here we have

Corollary 6.2. Let $(S \leq)$ be a torsion-free and cancellative strictly ordered monoid. Then the following conditions are equivalent:

(1) R is quasi-Baer.

(2) $[[R^{S,\leq}]]$ is quasi-Baer.

ACKNOWLEDGMENT

The authors are greatly indebted to the referee's careful reading and helpful suggestions. This research was supported by National Natural Science Foundation of China (10171082).

REFERENCES

- E. P. Armendariz, A note on extensions of Baer and PP-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
- 2. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, *J. Pure Appl. Algebra*, **159** (2001), 25-42.
- 3. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, On quasi-Baer rings, *Contemp. Math.*, **259** (2000), 67-92.
- 4. J. A. Fraser, and W. K. Nicholson, Reduced PP-rings, *Math. Japonica*, **34** (1989), 715-725.
- 5. N. K. Kim, and Y. Lee, Armendariz rings and reduced rings, *J. Algebra*, **223** (2000), 477-488.
- Z. K. Liu, Special properties of rings of generalized power series, *Comm. Algebra*, 32 (2004), 3215-3226.
- 7. Z. K. Liu, Baer rings of generalized power series, *Glasgow Math. J.*, 44 (2002), 463-469.
- Z. K. Liu, and J. Ahsan, PP-rings of generalized power series, Acta Mathematica Sinica, English Series, 16 (2000), 573-578.
- Z. K. Liu, Quasi-Baer rings of generalized power series, *Chinese Annals of Mathematics*, 23 (2002), 579-584.
- T. K. Lee, and Y. Q. Zhou, Reduced modules, *Rings, Modules, Algebras and Abelian Groups*, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
- 11. P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79 (1992), 293-312.
- P. Ribenboim, Rings of generalized power series II: Units and zero-divisors, J. Algebra, 168 (1994), 71-89.

- 13. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, *J. Algebra*, **198** (1997), 327-338.
- 14. M. B. Rege, and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
- 15. K. Varadarajan, Noetherian generalized power series rings and modules, *Comm. Al-gebra*, **29** (2001), 245-251.
- 16. K. Varadarajan, Generalized power series modules, Comm. Algebra, 29 (2001), 1281-1294.

Renyu Zhao College of Economics and Management, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China. E-mail: renyuzhao026@sohu.com

Zhongkui Liu College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China E-mail: liuzk@nwnu.edu.cn