SPECIAL PROPERTIES OF MODULES OF GENERALIZED POWER SERIES

Renyu Zhao and Zhongkui Liu

Abstract

Let R be a ring, M a right R-module and (S, \leq) a strictly ordered monoid. In this paper, a necessary and sufficient condition is given for modules under which $\left[\left[M^{S, \leq \leq]}\right]_{\left[R^{s}, \leq 1\right]}\right.$, the module of generalized power series with coefficients in M and exponents in S is a reduced, Baer, PP. quasi-Baer module, respectively.

1. Introduction

Throughout this paper all rings R are associative with identity and all modules M are unitary right R-modules. The notation $N \leq M$ means that N is a submodule of M, and $M[x]_{R[x]}\left(\right.$ resp. $M[[x]]_{R[x x]}$ or $\left.M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}\right)$ denotes polynomial (resp. power series or Laurent power series) extension of M_{R}. For any nonempty subset X of $R, r_{R}(X)$ (resp. $l_{R}(x)$) denotes the right (resp. left) annihilator of X in R. Any concept and notation not defined here can be found in $[10-13,15,16]$.

A ring R is called reduced if R does not have nonzero nilpotent elements. The notion of reduced rings has been studied by many authors. Some of the known results on reduced rings can be recalled as follows: R is reduced if and only if $R[x]$ is reduced if and only if $R[[x]]$ is reduced; if S is a torsion-free and cancellative monoid and \leq is a strict order on S, then it is shown in [6, Lemma 2.1] that R is reduced if and only if $\left[\left[R^{S, \leq}\right]\right]$, the ring of generalized power series with coefficients in R and exponents in S, is reduced; if R is a reduced ring, then it is shown in [1, Lemma 1] that R is an Armendariz ring where an Armendariz ring is any ring R such that if $\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=0$ in $R[x]$ then $a_{i} b_{j}=0$ for all i and j; if S is a torsion-free and cancellative monoid, \leq is a strict order on S and R is a reduced ring, then it is shown in [6, Lemma 3.1] that R is an S-Armendariz

[^0]ring where an S-Armendariz ring is any ring R such that if f, g in $\left[\left[R^{S, \leq]] \text { satisfy }}\right.\right.$ $f g=0$ then $f(u) g(v)=0$ for all $u, v \in S$.

The concept of a reduced ring is very useful in the investigation of certain annihilator conditions of polynomial extensions of a ring R. A ring R is called Baer (resp. right PP) if the right annihilator of every nonempty subset (resp. every element) is generated by an idempotent. A well-known result of Armendariz [1] states that, for a reduced ring R, R is Baer (resp. right PP) if and only if so is $R[x]$, and there exist non-reduced Baer rings whose polynomial ring is not Baer. In the sequel, this result has been extended in several directions by many authors, [2-9].

Recently, the notions of reduced, Armendariz, Baer, PP and quasi-Baer modules were introduced in [10]. A module M_{R} is called reduced if, for any $m \in M$ and any $a \in R$, $m a=0$ implies $m R \cap M a=0$. A module M_{R} is called Armendariz if, whenever $m(x) f(x)=0$ where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, then $m_{i} a_{j}=0$ for all i and j. A module M_{R} is called Armendariz of power series type if, whenever $m(x) f(x)=0$ where $m(x)=$ $\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x]]$ and $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in R[[x]]$, then we have $m_{i} a_{j}=0$ for all i and j. A module M_{R} is called Baer if, for any nonempty subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$. A module M_{R} is called PP if, for any $m \in M, r_{R}(m)=e R$ where $e^{2}=e \in R$. A module M_{R} is called quasi-Baer if, for any right R-submodule X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$. Clearly, R is reduced (resp. Armendariz, Baer, right PP, quasi-Baer) if and only if R_{R} is a reduced (resp. Armendariz, Baer, PP, quasi-Baer) module. And various results on reduced (resp. Baer, right PP, quasi-Baer) rings were extended to modules in [10]. It was proved that every reduced module is an Armendariz module of power series type [Lemma 1.5]; and that M_{R} is reduced if and only if $M[x]_{R[x]}$ is reduced if and only if $M[[x]]_{R[[x]]}$ is reduced if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is reduced [Theorem 1.6]. If M_{R} is an Armendariz module, then it was proved that M_{R} is Baer if and only if $M[x]_{R[x]}$ is Baer [Corollary 2.7 (1)]; and that M_{R} is PP if and only if $M[x]_{R[x]}$ is PP [Corollary 2.12 (1)]. If M_{R} is an Armendariz module of power series type, then it was proved that M_{R} is Baer if and only if $M[[x]]_{R[[x]]}$ is Baer if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is Baer [Corollary 2.7 (2)]; and that $M[[x]]_{R[[x]]}$ is PP if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is PP if and only if for any countable subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$ [Corollary 2.12 (2)]. For quasi-Baerness, it was proved that M_{R} is quasi-Baer if and only if $M[x]_{R[x]}$ is quasi-Baer if and only if $M[[x]]_{R[[x]]}$ is quasi-Baer if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is quasi-Baer [Corollary 2.14].

As a generalization of generalized power series rings, Varadarajan introduced the notion of modules of generalized power series in [15]. Thus a natural question of characterization of reduced (Baer, PP, quasi-Baer, respectively) property of generalized power series modules is raised. In this paper, a necessary and sufficient
condition is given for modules under which $\left[\left[M^{S, \leq}\right]_{\left[\left[R^{S}, \leq\right]\right]}\right.$, the module of generalized power series with coefficients in M_{R} and exponents in S, is a reduced (Baer, PP, quasi-Baer, respectively) module. If S is a torsion-free and cancellative monoid and \leq a strict order on S, we will show that: if M_{R} is a reduced module, then M_{R} is an S-Armendariz module; M_{R} is reduced if and only if $\left[\left[M^{S, \leq]]_{\left[\left[R^{S, \leq} \leq\right]\right]}}\right.\right.$ is reduced; M_{R} is a quasi-Baer module if and only if $\left[\left[M^{S, \leq}\right]_{\left.\left.[]^{S}, \leq\right]\right]}\right.$ is a quasi-Baer module. If (S, \leq) is a strictly ordered monoid and M_{R} an S-Armendariz module, we will show that: M_{R} is a Baer module if and only if $\left[\left[M^{S, \leq}\right]_{\left[\left[R^{s, \leq]]}\right.\right.}\right.$ is a Baer module; $\left[\left[M^{S, \leq]]_{\left[R^{S, \leq]] ~}\right.} \text { is a PP-module if and only if for any } S \text {-indexed subset } X, ~ . ~}\right.\right.$ of M_{R}, there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$. And many other results are obtained, which unify and extend non-trivially many of the previously known results.

2. Preliminaries

Let (S, \leq) be an ordered set. Recalled that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0 . The following definition is due to [11-13].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$), and R a ring. Let $\left[\left[R^{S, \leq}\right]\right]$ be the set of all maps $f: S \rightarrow R$ such that $\operatorname{supp}(f)=\{s \in$ $S \mid f(s) \neq 0\}$ is artinian and narrow.

With pointwise addition, $\left[\left[R^{S, \leq} \leq\right]\right.$ is an abelian group.
For every $s \in S$ and $f, g \in\left[\left[R^{S, \leq} \leq\right]\right]$, let $X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=$ $s, f(u) \neq 0, g(v) \neq 0\}$. It follows from [11, 4.1] that $X_{s}(f, g)$ is finite. This allows to define the operation of convolution:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v) .
$$

With these operations, $\left[\left[R^{S, \leq}\right]\right]$ becomes an associative ring, with unit element e, namely $e(0)=1, e(s)=0$ for every $s \in S, s \neq 0$, which is called the ring of generalized power series with coefficients in R and exponents in S.

In $[15,16]$, Varadarajan introduced the concept of modules of generalized power series. Let M be a right R-module, (S, \leq) a strictly ordered monoid. Let $\left[\left[M^{S, \leq}\right]\right]$ denotes the set of all mapping $\phi: S \rightarrow M$ with $\operatorname{supp}(\phi)$ artinian and narrow, where $\operatorname{supp}(\phi)=\{s \in S \mid \phi(s) \neq 0\}$.

With pointwise addition, $\left[\left[M^{S, \leq}\right]\right]$ is an abelian group.

For each $s \in S, f \in\left[\left[R^{S, \leq}\right]\right]$ and $\phi \in\left[\left[M^{S, \leq}\right]\right]$, let $X_{s}(\phi, f)=\{(u, v) \in$ $S \times S \mid u+v=s, \phi(u) \neq 0, f(v) \neq 0\}$. Then by analogy with [11, 4.1], $X_{s}(\phi, f)$ is finite. This allows to define the operation of convolution:

$$
(\phi f)(s)=\sum_{(u, v) \in X_{s}(\phi, f)} \phi(u) f(v)
$$

With these operations, $\left[\left[M^{S, \leq}\right]\right]$ becomes a right $\left[\left[R^{S, \leq}\right]\right]$-module, which is called the modules of generalized power series with coefficients in M and exponents in S.

For example, if $S=\mathbb{N}$, and \leq is the usual order, then $\left[\left[M^{\mathbb{N}, \leq]]_{\left[\left[R^{\mathbb{N}}, \leq\right]\right]} \cong}\right.\right.$ $M[[x]]_{R[[x]]}$, the power series extension of M. If $S=\mathbb{Z}$, and \leq is the usual order,
 M.

3. Reduced Modules

Following from [10], a module M_{R} is called reduced if, for any $m \in M$ and any $a \in R$, $m a=0$ implies $m R \cap M a=0$. It is easy to see that R is a reduced ring if and only if R_{R} is a reduced module. The following result appeared in [10, Lemma 1.2].

Lemma 3.1. The following conditions are equivalent:
(1) M_{R} is reduced.
(2) For any $m \in M$ and any $a \in R$, the following conditions hold:
(a) $m a=0$ implies $m R a=0$.
(b) $m a^{2}=0$ implies $m a=0$.

Rege and Chhawchharia in [14] introduced the notion of an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. Let (S, \leq) be a strictly ordered monoid. Recall from [6] that R is an S-Armendariz ring if whenever f, g in $\left[\left[R^{S, \leq}\right]\right]$ satisfy $f g=0$, then $f(u) g(v)=0$ for all $u, v \in S$. We call a module M_{R} is S-Armendariz if whenever $f \in\left[\left[R^{S, \leq]]}\right.\right.$ and $\phi \in\left[\left[M^{S, \leq}\right]\right]$ satisfy $\phi f=0$, then $\phi(u) f(v)=0$ for each $u, v \in S$. Clearly, R is S-Armendariz if and only if R_{R} is S-Armendariz. It was proved in [6, Lemma 3.1] that if S is a torsion-free and cancellative monoid, \leq a strict order on S and R is a reduced ring then R is S-Armendariz. The following proposition extends this result to modules.

Proposition 3.2. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and M_{R} a reduced module. Then M_{R} is an S-Armendariz module.

Proof. Let $0 \neq f \in\left[\left[R^{S, \leq}\right]\right]$ and $0 \neq \phi \in\left[\left[M^{S, \leq}\right]\right]$ satisfy $\phi f=0$. By [11], there exists a compatible strict total order \leq^{\prime} on S, which is finer than \leq (that is, for all $s, t \in S, s \leq t$ implies $s \leq^{\prime} t$). We will use transfinite induction on the strictly totally ordered set $\left(S, \leq^{\prime}\right)$ to show that $\phi(u) f(v)=0$ for any $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$. Let s and t denote the minimum elements of $\operatorname{supp}(\phi)$ and $\operatorname{supp}(f)$ in the \leq^{\prime} order, respectively. If $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$ are such that $u+v=s+t$, then $s \leq^{\prime} u$ and $t \leq^{\prime} v$. If $s<^{\prime} u$ then $s+t<^{\prime} u+v=s+t$, a contradiction. Thus $u=s$. Similarly, $v=t$. Hence $0=(\phi f)(s+t)=$ $\sum_{(u, v) \in X_{s+t}(\phi, f)} \phi(u) f(v)=\phi(s) f(t)$.

Now suppose that $w \in S$ is such that for any $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$ with $u+v<^{\prime} w, \phi(u) f(v)=0$. We will show that $\phi(u) f(v)=0$ for any $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$ with $u+v=w$. We write $X_{w}(\phi, f)=\{(u, v) \in$ $S \times S \mid u+v=w, \phi(u) \neq 0, f(v) \neq 0\}$ as $\left\{\left(u_{i}, v_{i}\right) \mid i=1,2, \ldots, n\right\}$ such that $u_{1}<^{\prime} u_{2}<^{\prime} \cdots<^{\prime} u_{n}$. Since S is cancellative, $u_{1}=u_{2}$ and $u_{1}+v_{1}=u_{2}+v_{2}=w$ imply $v_{1}=v_{2}$. Since \leq^{\prime} is a strict order, $u_{1}<^{\prime} u_{2}$ and $u_{1}+v_{1}=u_{2}+v_{2}=w$ imply $v_{2}<^{\prime} v_{1}$. Thus we have $v_{n}<^{\prime} \cdots<^{\prime} v_{2}<^{\prime} v_{1}$. Now,

$$
\begin{equation*}
0=(\phi f)(w)=\sum_{(u, v) \in X_{w}(\phi, f)} \phi(u) f(v)=\sum_{i=1}^{n} \phi\left(u_{i}\right) f\left(v_{i}\right) . \tag{1}
\end{equation*}
$$

For any $1 \leq i \leq n-1, u_{i}+v_{n}<^{\prime} u_{i}+v_{i}=w$, and thus, by induction hypothesis, we have $\phi\left(u_{i}\right) f\left(v_{n}\right)=0$. Since M is reduced, then $\phi\left(u_{i}\right) R f\left(v_{n}\right)=0$ by Lemma 3.1. Hence, multiplying (1) on the right by $f\left(v_{n}\right)$, we obtain

$$
\sum_{i=1}^{n} \phi\left(u_{i}\right) f\left(v_{i}\right) f\left(v_{n}\right)=\phi\left(u_{n}\right) f\left(v_{n}\right) f\left(v_{n}\right)=0 .
$$

Since M is reduced, then by Lemma 3.1 we have $\phi\left(u_{n}\right) f\left(v_{n}\right)=0$. Now (1) becomes

$$
\begin{equation*}
\sum_{i=1}^{n-1} \phi\left(u_{i}\right) f\left(v_{i}\right)=0 . \tag{2}
\end{equation*}
$$

Multiplying $f\left(v_{n-1}\right)$ on (2) from the right-hand side, we obtain $\phi\left(u_{n-1}\right) f\left(v_{n-1}\right)=$ 0 by the same way as the above. Continuing this process, we can prove $\phi\left(u_{i}\right) f\left(v_{i}\right)=$ 0 for $i=1,2, \ldots, n$. Thus $\phi(u) f(v)=0$ for any $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$ with $u+v=w$.

Therefore, by transfinite induction, $\phi(u) f(v)=0$ for any $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$.

Lee-Zhou introduced the notion of an Armendariz module of power series type in [10]. They defined a module M_{R} to be an Armendariz module of power series type if, whenever $m(x) f(x)=0$ where $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x]]$ and $f(x)=$ $\sum_{j=0}^{\infty} a_{j} x^{j} \in R[[x]]$, then $m_{i} a_{j}=0$ for all i and j. Letting $(S, \leq)=(\mathbb{N}, \leq)$, the natural number set with usual order, yields the following result.

Corollary 3.3. Let M_{R} be a reduced module. Then M_{R} is an Armendariz module of power series type.

In [1, Lemma 1], it was proved that if R is a reduced ring, then R is an Armendariz ring. Here we have

Corollary 3.4. Let R be a reduced ring. Then R is an Armendariz ring of power series type.

Let $m \in M$ and $\delta \in S$. Define a mapping $d_{m}^{s} \in\left[\left[M^{S, \leq}\right]\right]$ as follows:

$$
d_{m}^{s}(s)=m, \quad d_{m}^{s}(t)=0, \quad s \neq t \in S
$$

Proposition 3.5. Let (S, \leq) be a strictly ordered monoid and M_{R} an S Armendariz module. If $\phi \in\left[\left[M^{S, \leq}\right]\right]$ and $f_{1}, f_{2}, \cdots, f_{n} \in\left[\left[R^{S, \leq}\right]\right]$ are such that $\phi f_{1} f_{2} \cdots f_{n}=0$, then $\phi(u) f_{1}\left(v_{1}\right) f_{2}\left(v_{2}\right) \ldots, f_{n}\left(v_{n}\right)=0$ for all $u, v_{1}, v_{2}, \ldots, v_{n} \in S$.

Proof. Suppose $\phi f_{1} f_{2} \cdots f_{n}=0$. Then from $\phi\left(f_{1} f_{2} \cdots f_{n}\right)=0$ it follows that $\phi(u)\left(f_{1} f_{2} \cdots f_{n}\right)(v)=0$ for all $u, v \in S$. Thus $\left(d_{\phi(u)}^{0} f_{1} f_{2} \cdots f_{n}\right)(v)=0$ for any $v \in S$, and so $d_{\phi(u)}^{0} f_{1} f_{2} \cdots f_{n}=0$. Now from $\left(d_{\phi(u)}^{0} f_{1}\right)\left(f_{2} \cdots f_{n}\right)=0$ it follows that $\left(d_{\phi(u)}^{0} f_{1}\right)\left(v_{1}\right)\left(f_{2} \cdots f_{n}\right)(w)=0$ for all $v_{1}, w \in S$. Since $\left(d_{\phi(u)}^{0} f_{1}\right)\left(v_{1}\right)=$ $\phi(u) f_{1}\left(v_{1}\right)$ for any $u, v_{1} \in S$, we have $\phi(u) f_{1}\left(v_{1}\right)\left(f_{2} \cdots f_{n}\right)(w)=0$ for all $u, v_{1}, w \in S$. Hence $d_{\phi(u) f_{1}\left(v_{1}\right)}^{0} f_{2} \cdots f_{n}=0$. Continuing in this manner, we see that $\phi(u) f_{1}\left(v_{1}\right) f_{2}\left(v_{2}\right) \cdots f_{n}\left(v_{n}\right)=0$ for all $u, v_{1}, v_{2}, \ldots, v_{n} \in S$.

Now, combining proposition 3.2 we have
Corollary 3.6. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and M_{R} a reduced module. If $\phi \in\left[\left[M^{S, \leq]]}\right.\right.$ and $f_{1}, f_{2}, \ldots, f_{n} \in$ $\left[\left[R^{S, \leq]}\right]\right.$ are such that $\phi f_{1} f_{2} \cdots f_{n}=0$, then $\phi(u) f_{1}\left(v_{1}\right) f_{2}\left(v_{2}\right) \cdots f_{n}\left(v_{n}\right)=0$ for all $u, v_{1}, v_{2}, \ldots, v_{n} \in S$.

$$
C_{r}(0)=r, \quad C_{r}(s)=0, \quad 0 \neq s \in S
$$

It was proved in $\left[10\right.$, Theorem 1.6] that M_{R} is reduced if and only if $M[x]_{R[x]}$ is reduced if and only if $M[[x]]_{R[[x]]}$ is reduced if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is reduced. Here we have

Theorem 3.7. Let S be a torsion-free and cancellative monoid and \leq a strict order on S. Then M_{R} is reduced if and only if $\left[\left[M^{S, \leq}\right]_{\left[\left[R^{S, \leq]]}\right.\right.}\right.$ is reduced.

Proof. Let M_{R} be reduced. Suppose that $f \in\left[\left[R^{S, \leq}\right]\right]$ and $\phi \in\left[\left[M^{S, \leq}\right]\right]$ satisfy $\phi f=0$ and $\phi g=\psi f$, where $\psi \in\left[\left[M^{S, \leq}\right]\right]$ and $g \in\left[\left[R^{S, \leq}\right]\right]$. It suffices to show that $\psi f=0$. By Proposition 3.2, $\phi(s) f(t)=0$ for any $s, t \in S$. Thus $\phi(s) R f(t)=0$ for any $s, t \in S$ by Lemma 3.1. Then

$$
(\phi g f)(s)=\sum_{(u, v, w) \in X_{s}(\phi, g, f)} \phi(u) g(v) f(w)=0
$$

for any $s \in S$. Thus $\psi f^{2}=\phi g f=0$. Then by Corollary 3.6, $\psi(u) f(v) f(w)=0$ for any $u, v, w \in S$. Thus $\psi(u) f(v)^{2}=0$ for any $u, v \in S$. Then $\psi(u) f(v)=0$ for any $u, v \in S$ by Lemma 3.1, and which implies that $\psi f=0$.

Conversely, suppose that $m a=0$ and $m r=n a \in m R \cap M a$ where $m, n \in M$ and $r, a \in R$. Then $d_{m}^{0} C_{a}=0$. Since $\left[\left[M^{S, \leq}\right]\right]$ is reduced, we have $d_{m}^{0}\left[\left[R^{S, \leq}\right]\right] \cap$ $\left[\left[M^{S, \leq}\right]\right] C_{a}=0$. Thus $d_{m}^{0} C_{r}=d_{n}^{0} C_{a}=0$, and so $m r=n a=0$. Hence M_{R} is reduced.

Corollary 3.8. ([8, Lemma 2.1]) Let S be a torsion-free and cancellative monoid and $\leq a$ strict order on S. Then R is reduced if and only if $\left[\left[R^{S, \leq]] ~ i s ~}\right.\right.$ reduced.

4. Baer Modules

Recall that R is Baer if the right annihilator of every nonempty subset is generated by an idempotent. If R is a reduced ring, then it is shown in [2, Corollary $1.10]$ that R is Baer if and only if $R[x]$ is Baer if and only if $R[[x]]$ is Baer. If R is commutative and (S, \leq) is a strictly totally ordered monoid, then it is shown in [7, Theorem 7] that R is Baer if and only if $\left[\left[R^{S, \leq}\right]\right]$ is Baer. Recall from [10] that a right R - module M is Baer if, for any subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$. It is also shown in [10, Corollary 2.7(2)] that if M_{R} is an Armendariz module of power series type, then M_{R} is Baer if and only if $M[[x]]_{R[x x]}$ is Baer if and only if $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is Baer. Next, we will extend these results to generalized power series modules. First we have the following results on which our discussion is based.

Let I be a right ideal of R. Let $\left[\left[I^{S, \leq}\right]\right]=\left\{f \in\left[\left[R^{S, \leq]]} \mid f(s) \in I\right.\right.\right.$ for any $s \in S\}$. Then it is easy to see that $\left[\left[I^{S, \leq}\right]\right]$ is a right ideal of $\left[\left[R^{S, \leq}\right]\right]$.

Lemma 4.1. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Then the following conditions are equivalent:
(1) M_{R} is an S-Armendariz module.
(2) For any $X \subseteq\left[\left[M^{S, \leq]]},\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq]]}=r_{\left[\left[R^{S, \leq]]}\right.\right.}(X)\right.\right.\right.\right.$, where $X^{\prime}=\{\phi(s) \mid$ $\phi \in X, s \in S\}$.

Proof. (2) \Rightarrow (1). Let $\phi f=0$ where $\phi \in\left[\left[M^{S, \leq}\right]\right]$ and $f \in\left[\left[R^{S, \leq}\right]\right]$. Then $f \in r_{\left[\left[R^{S, \leq]]}\right.\right.}(\phi)$. By (2), $f \in\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq}\right]\right]$ where $X^{\prime}=\{\phi(s) \mid s \in S\}$. Take $f(s) \in r_{R}\left(X^{\prime}\right)$ for any $s \in S$. Thus $\phi(t) f(s)=0$ for any $s, t \in S$. This means that M is an S-Armendariz module.
$(1) \Rightarrow(2)$. Suppose that $X \subseteq\left[\left[M^{S, \leq}\right]\right]$. Take $X^{\prime}=\{\phi(s) \mid \phi \in X, s \in S\}$. Let $g \in r_{\left[\left[R^{S, \leq]]}\right.\right.}(X)$, then $\phi g=0$ for any $\phi \in X$. By (1), $\phi(s) g(t)=0$ for any $s, t \in S$. Thus $g(t) \in r_{R}\left(X^{\prime}\right)$ for any $t \in S$. Thus $g \in\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq}\right]\right]$, and so $r_{\left[\left[R^{S, \leq \leq]}\right.\right.}(X) \subseteq\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq}\right]\right]$. The opposite inclusion is obviously.

Lemma 4.2. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Then for any $X \subseteq M,\left[\left[r_{R}(X)^{S, \leq]]}=r_{\left[\left[R^{S, \leq \leq]]}\right.\right.}\left(X^{\prime}\right)\right.\right.$, where $X^{\prime}=\left\{d_{m}^{0} \mid m \in X\right\}$.

Proof. The proof is straightforward.
Theorem 4.3. Let (S, \leq) be a strictly ordered monoid and M_{R} an S Armendariz module. Then the following conditions are equivalent:
(1) M_{R} is a Baer module.
(2) $\left[\left[M^{S, \leq}\right]_{\left[R^{S, \leq]]}\right.}\right.$ is a Baer module.

Proof. (1) \Rightarrow (2). Let $X \subseteq\left[\left[M^{S, \leq}\right]\right]$. Since M_{R} is an S-Armendariz module, by Lemma 4.1, $r_{\left[\left[R^{s, \leq \leq]}\right.\right.}(X)=\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq]]}\right.\right.$ where $X^{\prime}=\{\phi(s) \mid \phi \in X, s \in S\}$. Since M_{R} is a Baer module, there exists an idempotent $e^{2}=e \in R$ such that $r_{R}\left(X^{\prime}\right)=e R$. Thus $r_{\left[\left[R^{S, \leq]]}\right.\right.}(X)=\left[\left[r_{R}\left(X^{\prime}\right)^{S, \leq]]}=\left[\left[(e R)^{S, \leq]}\right]=C_{e}\left[\left[R^{S, \leq]]}\right.\right.\right.\right.\right.$, and which implies $\left[\left[M^{S, \leq}\right]\right]$ is a Baer module.
(2) \Rightarrow (1). Let $X \subseteq M$. Then by Lemma 4.2, $\left[\left[r_{R}(X)^{S, \leq]]}\right]=r_{\left[\left[R^{S, \leq]]}\right.\right.}\left(X^{\prime}\right)\right.$, where $X^{\prime}=\left\{d_{m}^{0} \mid m \in X\right\}$. Since $\left[\left[M^{S, \leq]]_{\left[\left[R^{S, \leq}\right]\right]} \text { is a Baer module, there exists an }}\right.\right.$ idempotent $f^{2}=f \in\left[\left[R^{S, \leq}\right]\right]$ such that $\left[\left[r_{R}(X)^{S, \leq}\right]\right]=r_{\left[\left[R^{S}, \leq\right]\right]}\left(X^{\prime}\right)=f\left[\left[R^{S, \leq]]}\right.\right.$. We will show that $r_{R}(X)=f(0) R$ and $f(0)=f(0)^{2}$. From $f \in\left[\left[r_{R}(X)^{S, \leq}\right]\right]$ it follows that $f(s) \in r_{R}(X)$ for any $s \in S$. Especially, $f(0) \in r_{R}(X)$, and so $f(0) R \subseteq r_{R}(X)$. Conversely, let $r \in r_{R}(X)$. Then $C_{r} \in\left[\left[r_{R}(X)^{S, \leq}\right]\right]=$ $f\left[\left[R^{S, \leq}\right]\right]$. Thus $C_{r}=f C_{r}$. Then $r=C_{r}(0)=\left(f C_{r}\right)(0)=f(0) r \in f(0) R$. Thus $r_{R}(X) \subseteq f(0) R$. Since $f(0) \in r_{R}(X)$, we have $f(0)=f(0)^{2}$. Hence $r_{R}(X)=f(0) R$ and $f(0)=f(0)^{2}$. So M_{R} is a Baer module.

Applying Proposition 3.2 we can get

Corollary 4.4. Let S be a torsion-free and cancellative monoid, \leq a strict order on S and M_{R} a reduced module. Then M_{R} is a Baer module if and only if $\left[\left[M^{S, \leq]}\right]_{\left[\left[R^{S, \leq]]}\right.\right.}\right.$ is a Baer module.

Corollary 4.5. Let (S, \leq) be a strictly ordered monoid and R an S-Armendriz ring. Then R is Baer if and only if $\left[\left[R^{S, \leq]]}\right.\right.$ is Baer.

In [5, Theorem 10], it was proved that if R is an Armendariz ring, then R is Baer if and only if $R[x]$ is Baer. Here we have

Corollary 4.6. Let R be an Armendariz ring of power series type. Then R is Baer if and only if $R[[x]]$ is Baer.

Applying Corollary 3.4 we can get
Corollary 4.7. ([2, Corollary 1.10.]). Let R be a reduced ring. Then R is Baer if and only if $R[[x]]$ is Baer.

5. PP-Modules

One of generalizations of Baer rings is PP-rings. A ring R is called right (resp. left) PP if the right (resp. left) annihilator of an element of R is generated by an idempotent. A ring is called PP if it is both right and left PP. It was proved in [1, Theorem A] that R is a reduced right PP-ring if and only if $R[x]$ is a reduced right PP-ring. It was proved in [4] that $R[[x]]$ is a reduced right PP -ring if and only if R is a reduced right PP-ring and any countable family of idempotents of R has a least upper bound in $B(R)$, the set of all central idempotents. If (S, \leq) is a strictly totally ordered monoid, then it is shown in [6, Theorem 3.5] that $\left[\left[R^{S, \leq}\right]\right]$ is a reduced right PP-ring if and only if R is a reduced right PP-ring and any S-indexed family of idempotents of R has a least upper bound in $B(R)$. The notion of PP-modules was introduced in [10]. A module M_{R} is called PP if, for any $m \in M, r_{R}(m)=e R$ where $e^{2}=e \in R$. It was also proved in [10, Corollary 2.12] that if M_{R} is an Armendariz module of power series type, then $M[[x]]_{R[[x]]}$ is PP if and only if for any countable subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$. In this section we will consider the PP property of generalized power series modules. The following result is a corollary of Theorem 5.2. But here we give a direct and different proof.

Proposition 5.1. Let (S, \leq) be a strictly ordered monoid and M a right R-module. If $\left[\left[M^{S, \leq]]_{\left.\left[R^{S, \leq} \leq\right]\right]}}\right.\right.$ is a PP-module, then M_{R} is a PP-module.

Proof. Let $m \in M$. Then by Lemma 4.2, $\left[\left[r_{R}(m)^{S, \leq}\right]\right]=r_{\left[\left[R R^{S, \leq]]}\right.\right.}\left(d_{m}^{0}\right)$. Since $\left[\left[M^{S, \leq}\right]\right]_{\left[R^{S, \leq]]}\right.}$ is a PP-module, there exists an idempotent $f \in\left[\left[R^{S, \leq}\right]\right]$ such that
 From $f \in r_{\left[\left[R^{S, \leq]]]}\right.\right.}\left(d_{m}^{0}\right)$ it follows that $d_{m}^{0} f=0$. Then $m f(0)=\left(d_{m}^{0} f\right)(0)=0$. Thus $f(0) R \subseteq r_{R}(m)$. Conversely, let $r \in r_{R}(m)$. Then $C_{r} \in\left[\left[\left(r_{R}(m)^{S, \leq}\right]\right]=\right.$ $f\left[\left[R^{S, \leq}\right]\right]$. Thus $C_{r}=f C_{r}$. Then $r=C_{r}(0)=\left(f C_{r}\right)(0)=f(0) r \in f(0) R$. Thus $r_{R}(m) \subseteq f(0) R$. Since $f(0) \in r_{R}(m)$, we have $f(0)=f(0)^{2}$. Hence $r_{R}(m)=f(0) R$ and $f(0)=f(0)^{2}$. So M_{R} is a PP-module.

Let $X \subseteq M$. We will say that X is S-indexed if there exists an artinian and narrow subset I of S such that X is indexed by I.

Theorem 5.2. Let (S, \leq) be a strictly ordered monoid and M_{R} an S Armendariz module. Then the following conditions are equivalent:
(1) $\left[\left[M^{S, \leq}\right]_{\left[\left[R^{S, \leq]]}\right.\right.}\right.$ is a PP-module.
(2) For every S-indexed subset X of M, there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$.

Proof. (1) \Rightarrow (2). Suppose that $\left[\left[M^{S, \leq}\right]\right]$ is a PP-module. Let $X=\left\{m_{s} \mid s \in I\right\}$ is an S-indexed subset of M. Define $\phi: S \rightarrow M$ via

$$
\phi(s)=\left\{\begin{array}{cl}
m_{s}, & s \in I \\
0, & s \notin I
\end{array}\right.
$$

Then $\operatorname{supp}(\phi)=I$ is artinian and narrow, and so $\phi \in\left[\left[M^{S, \leq}\right]\right]$. Since $\left[\left[M^{\left.S, \leq]]_{\left[\left[R^{S, \leq} \leq\right]\right.}\right]}\right.\right.$ is a PP-module, there exists an idempotent $f^{2}=f \in\left[\left[R^{S, \leq}\right]\right]$ such that $r_{\left[\left[R^{S, \leq]]}\right.\right.}(\phi)=$ $f\left[\left[R^{S, \leq}\right]\right]$. Since M_{R} is an S-Armendariz module, then $r_{\left[\left[R^{S, \leq]]}\right.\right.}(\phi)=\left[\left[r_{R}(X)^{S, \leq]]}\right.\right.$ by Lemma 4.1. Thus $\left[\left[r_{R}(X)^{S, \leq]]}=f\left[\left[R^{S, \leq]]}\right.\right.\right.\right.$. Then by analogy with the proof of Theorem 4.3 we can show that $r_{R}(X)=f(0) R$ with $f(0)^{2}=f(0)$.
 subset of M. Then there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$ by (2). Thus by Lemma 4.1, we have $r_{\left[\left[R^{S, \leq]]}\right.\right.}(\phi)=\left[\left[\left(r_{R}(X)^{S, \leq]]}=\left[\left[(e R)^{S, \leq]]}=\right.\right.\right.\right.\right.$ $C_{e}\left[\left[R^{S, \leq]]}\right.\right.$, and which implies $\left[\left[M^{S, \leq}\right]\right]_{\left[\left[R^{S, \leq]]}\right.\right.}$ is a PP-module.

Corollary 5.3. Let (S, \leq) be a torsion-free cancellative strictly ordered monoid. Then the following conditions are equivalent:
(1) $\left[\left[M^{S, \leq}\right]\right]_{\left[\left[R^{S, \leq}\right]\right]}$ is a reduced PP-module.
(2) M is a reduced $P P$-module, and for every S-indexed subset X of M, there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$.

Proof. Using Proposition 3.2, Theorem 3.7 and Theorem 5.2, we can complete the proof.

If R is reduced, then R is Abelian (that is, every idempotent of R is central). Thus, by [4], the set $B(R)$ of all idempotents is a Boolean algebra where $e \leq f$ means $e f=e$, and where the join, meet, and complement are given by $e \vee f=$ $e+f-e f, e \wedge f=e f$ and $e^{\prime}=1-e$, respectively. The following result appeared in [4] on which our following discussion is based. An element $a \in R$ will be called entire if $l_{R}(a)=r_{R}(a)=0$.

Lemma 5.4. The following conditions are equivalent for a ring R :
(1) R is a reduced right PP-ring.
(2) If $a \in R$ then $a=e b=b e$ where $e^{2}=e \in R$ and $b \in R$ is entire.
(3) R is an Abelian right $P P$-ring.

Now, comparing with the result in [6, Theorem 3.5], we have
Corollary 5.5. Let (S, \leq) be a torsion-free cancellative strictly ordered monoid. Then the following conditions are equivalent:
(1) $\left[\left[R^{S, \leq]]}\right.\right.$ is a reduced right PP-ring.
(2) R is a reduced right $P P$-ring, and for every S-indexed subset X of R, there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$.
(3) R is a reduced right PP-ring, and for every S-indexed subset X of $B(R)$, there exists an idempotent $e \in R$ such that $r_{R}(X)=e R$.
(4) R is a reduced right $P P$-ring and every S-indexed subset X of $B(R)$ has a least upper bound in $B(R)$.

Proof. Letting $M=R$ in Corollary 5.3 we can get $(1) \Leftrightarrow(2)$.
(2) \Rightarrow (3). It is straightforward.
(3) \Rightarrow (4). Suppose that $X=\left\{e_{s} \mid s \in I\right\}$ is an S-indexed subset of $B(R)$.

Then by (3), $r_{R}(X)=e R$ where $e^{2}=e \in R$. We claim that $1-e$ is a least upper bound of X in $B(R)$. First $X e=0$ implies that for every $s \in I, e_{s} e=0$, and thus $e_{s}(1-e)=e_{s}$. Thus $e_{s} \leq 1-e$. On the other hand, suppose that $e_{s} \leq f$ for all $s \in I$, where $f^{2}=f \in R$. Then $1-f \in r_{R}(X)=e R$. Thus $1-f=e(1-f)$. Thus $1-e=(1-e) f$, and which implies that $1-e \leq f$.
(4) \Rightarrow (2). Suppose that $X=\left\{a_{s} \mid s \in I\right\}$ is an S-indexed subset of R. Then by Lemma 5.4, $a_{s}=e_{s} b_{s}$ for all $s \in I$, where $e_{s}^{2}=e_{s} \in R$ and $b_{s} \in R$ is entire. Setting $X^{\prime}=\left\{e_{s} \mid s \in I\right\}$. Then X^{\prime} is an S-indexed subset of $B(R)$. Let e be a least upper bound of X^{\prime} in $B(R)$. We will show that $r_{R}(X)=(1-e) R$. First from $e_{s} e=e_{s}$ it follows that $(1-e) e_{s}=0$ for all $s \in I$. Then $1-e \in r_{R}(X)$. On the other hand, let $r \in r_{R}(X)$. Then $a_{s} r=0$ for all $s \in I$. By Lemma 5.4, there exists an idempotent $f^{2}=f \in R$ and an entire element $p \in R$ such that $r=f p$.

Thus $e_{s} f=0$ for all $s \in I$ since p and b_{s} is entire. Thus $e_{s} \leq 1-f$ for all $s \in I$. Thus $e \leq 1-f$, and so $r=(1-e) r \in(1-e) R$. Hence $r_{R}(X)=(1-e) R$.

In [5, Theorem 9], it was proved that if R is an Armendariz ring, then R is PP if and only if $R[x]$ is PP. Here we have

Corollary 5.6. Let R be an Armendariz ring of power series type. Then $R[[x]]$ is right $P P$ if and only if R is right $P P$ and for any countable subset X of R, $r_{R}(X)=e R$, where $e^{2}=e \in R$.

6. Quasi-baer Modules

Another generalization of Baer rings is quasi-Baer rings. Recall that R is quasiBaer if the right annihilator of every right ideal is generated by an idempotent. Every prime ring is quasi-Baer ring. Since Baer ring are nonsingular, the prime rings with $Z_{r}(R) \neq 0$ are quasi-Baer but not Baer. It was proved in [2, Theorem 1.8] that a ring R is quasi-Baer if and only if $R[x]$ is quasi-Baer if and only if $R[[x]]$ is quasi-Baer. Following from [10] a module M_{R} is called quasi-Baer if, for any right R-submodule X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$. Clearly, R is quasi-Baer if and only if R_{R} is quasi-Baer. In [10, Corollary 2.14], it is shown that M_{R} is quasi-Baer if and only if $M[x]_{R[x]}$ is quasi-Baer if and only if $M[[x]]_{R[[x]]}$ is quasi-Baer. In this section we will generalize these results to generalized power series modules.

Theorem 6.1. Let $(S \leq)$ be a torsion-free and cancellative strictly ordered monoid. Then the following conditions are equivalent:
(1) M_{R} is a quasi-Baer module.
(2)
$\left[\left[M^{S, \leq}\right]\right]_{\left[\left[R^{S, \leq}\right]\right]}$ is a quasi-Baer module.
Proof. (1) $\Rightarrow(2)$. Suppose that $V \leq\left[\left[M^{S, \leq}\right]\right]$. By [11], there exists a compatible strict total order \leq^{\prime} on S, which is finer than \leq (that is, for all $s, t \in S, s \leq t$ implies $s \leq^{\prime} t$). Note that $\left[\left[M^{S, \leq]]}\right.\right.$ (resp. $\left[\left[R^{S, \leq]]}\right.\right.$) is a submodule (resp. subring) of $\left[\left[M^{S, \leq^{\prime}}\right]\right]$ (resp. $\left[\left[R^{\left.\left.\left.S, \leq^{\prime}\right]\right]\right) \text {. Thus we may assume that the order } \leq \text { is total. Then }}\right.\right.$ for any $0 \neq f \in\left[\left[R^{S, \leq}\right]\right]$ (resp. [[$\left.\left.M^{S, \leq}\right]\right]$), the $\operatorname{supp}(f)$ is a nonempty well-ordered subset of S. We denote by $\pi(f)$ the smallest element of the support of f. Let $U=\{\phi(s) \mid \phi \in V, \pi(\phi)=s\} \cup\{0\}$. Then it is easy to see that U is a right R-submodule of M. Since M_{R} is a quasi-Baer module, then $r_{R}(U)=e R$ where $e^{2}=e \in R$. We will show that $r_{\left[\left[R^{S, \leq 1]}\right.\right.}(V)=C_{e}\left[\left[R^{S, \leq]]}\right.\right.$. Let $\phi \in V$. If $\phi C_{e} \neq 0$. Let $\pi\left(\phi C_{e}\right)=s$, then $0 \neq\left(\phi C_{e}\right)(s)=\phi(s) e$; on the other hand, since $\phi \in V$, so $\phi C_{e} \in V$ and then $\phi(s) e \in U$. From $r_{R}(U)=e R$ it follows that $\phi(s) e=$
$(\phi(s) e) e=0$, a contradiction. Thus $\phi C_{e}=0$, and so $C_{e}\left[\left[R^{S, \leq]]} \subseteq r_{\left[\left[R^{s, \leq}\right]\right]}(V)\right.\right.$. Conversely, suppose that $0 \neq f \in r_{\left[\left[R^{S, \leq]]}\right.\right.}(V)$. We will show that $f(u)=e f(u)$ for all $u \in \operatorname{supp}(f)$.

Step 1. Let $\pi(f)=s$. Then we will show that $f(s)=e f(s)$. Let $0 \neq m \in U$. Then there exists a $\phi \in V$ such that $\pi(\phi)=t$ and $\phi(t)=m$. From $f \in r_{\left[\left[R^{s}, \leq\right]\right]}(V)$ it follows that $\phi f=0$. Thus

$$
0=(\phi f)(s+t)=\sum_{(u, v) \in X_{s+t}(\phi, f)} \phi(u) f(v)
$$

If $u \in \operatorname{supp}(\phi)$ and $v \in \operatorname{supp}(f)$ are such that $u+v=s+t$, then $t \leq u$ and $s \leq v$. If $t<u$ then $s+t<u+v=s+t$, a contradiction. Thus $u=t$. Similarly, $v=s$. Hence $\phi(t) f(s)=0$. Thus $U f(s)=0$, which implies that $f(s) \in r_{R}(U)=e R$. Thus $f(s)=e f(s)$.

Step 2. Assume that $f(u)=e f(u)$ for any $u<w \in \operatorname{supp}(f)$. We will show that $f(w)=e f(w)$. Define f_{w} as follows:

$$
f_{w}(x)=\left\{\begin{array}{cc}
f(x), & x<w, \\
0, & w \leq x .
\end{array}\right.
$$

Then $f_{w} \in\left[\left[R^{S, \leq}\right]\right]$ and $f_{w}(x)=f(x)=e f(x)=e f_{w}(x)=\left(C_{e} f_{w}\right)(x)$ for any $x<w$ by induction hypothesis. Thus $f_{w}=C_{e} f_{w} \in C_{e}\left[\left[R^{S, \leq]]} \subseteq r_{\left[\left[R^{s, \leq \leq]]}\right.\right.}(V)\right.\right.$. Thus $f-f_{w} \in r_{\left[\left[R^{s, \leq]]}\right.\right.}(V)$, and $\pi\left(f-f_{w}\right)=w$. Applying Step 1, we obtain $\left(f-f_{w}\right)(w)=e\left(f-f_{w}\right)(w)$, thus $f(w)=e f(w)$. Therefore, by transfinite induction, $f(u)=e f(u)$ for all $u \in \operatorname{supp}(f)$. Thus $f=C_{e} f \in C_{e}\left[\left[R^{S, \leq]] \text {, and }}\right.\right.$ which implies that $r_{\left[\left[R^{s, \leq]]]}\right.\right.}(V) \subseteq C_{e}\left[\left[R^{S, \leq]] \text {. }}\right.\right.$
 module.
$(2) \Rightarrow(1)$. Suppose that $\left[\left[M^{S, \leq} \leq\right]\right.$ is a quasi-Baer module. Let $U \leq M$, then it is easy to see that $\left[\left[U^{S, \leq}\right]\right] \leq\left[\left[M^{S, \leq}\right]\right]$. Thus there exists an idempotent $f^{2}=f \in$ $\left[\left[R^{S, \leq]] \text { such that } r_{\left[\left[R^{S, \leq},\right.\right.}\left(\left[\left[U^{S, \leq}\right]\right]\right)=f\left[\left[R^{S, \leq]]} \text {. We claim that } r_{\left[\left[R^{S, \leq \leq]}\right.\right.}\left(\left[\left[U^{S, \leq]]}\right)=\right.\right.\right.\right.}\right.\right.$ $f\left[\left[R^{S, \leq}\right]\right]=\left[\left[r_{R}(U)^{S, \leq}\right]\right]$. Let $m \in U$. Then $d_{m}^{0} \in\left[\left[U^{S, \leq}\right]\right]$. Thus $d_{m}^{0} f=0$, and then $m f(s)=0$ for all $s \in S$. Thus $U f(s)=0$ for all $s \in S$, and so $f \in\left[\left[r_{R}(U)^{S, \leq}\right]\right]$. Let $g \in\left[\left[r_{R}(U)^{S, \leq}\right]\right]$. Then $g(s) \in r_{R}(U)$ for all $s \in S$. Then $(\phi g)(t)=\sum_{(u, v) \in X_{t}(\phi, g)} \phi(u) g(v)=0$ for any $\phi \in\left[\left[U^{S, \leq}\right]\right]$ and any $t \in S$. Thus $\phi g=0$, and so $g \in r_{\left[\left[R^{S, \leq \leq]]}\right.\right.}\left(\left[\left[U^{S, \leq]]}\right)\right.\right.$. Hence $r_{\left[\left[R^{S, \leq]]}\right.\right.}\left(\left[\left[U^{S, \leq]]}\right)=f\left[\left[R^{S, \leq]]}=\right.\right.\right.\right.$
 $r_{R}(U)=f(0) R$ with $f(0)^{2}=f(0)$. Hence M_{R} is a quasi-Baer module.

It was proved in [9] that if (S, \leq) is a strictly totally ordered monoid satisfying that $0 \leq s$ for all $s \in S$, then R is quasi-Baer if and only if $\left[\left[R^{S, \leq}\right]\right]$ is quasi-Baer. Here we have

Corollary 6.2. Let $(S \leq)$ be a torsion-free and cancellative strictly ordered monoid. Then the following conditions are equivalent:
(1) R is quasi-Baer.
(2) $\left[\left[R^{S, \leq]]}\right.\right.$ is quasi-Baer.

Acknowledgment

The authors are greatly indebted to the referee's careful reading and helpful suggestions. This research was supported by National Natural Science Foundation of China (10171082).

References

1. E. P. Armendariz, A note on extensions of Baer and PP-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
2. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159 (2001), 25-42.
3. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, On quasi-Baer rings, Contemp. Math., 259 (2000), 67-92.
4. J. A. Fraser, and W. K. Nicholson, Reduced PP-rings, Math. Japonica, 34 (1989), 715-725.
5. N. K. Kim, and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477-488.
6. Z. K. Liu, Special properties of rings of generalized power series, Comm. Algebra, 32 (2004), 3215-3226.
7. Z. K. Liu, Baer rings of generalized power series, Glasgow Math. J., 44 (2002), 463-469.
8. Z. K. Liu, and J. Ahsan, PP-rings of generalized power series, Acta Mathematica Sinica, English Series, 16 (2000), 573-578.
9. Z. K. Liu, Quasi-Baer rings of generalized power series, Chinese Annals of Mathematics, 23 (2002), 579-584.
10. T. K. Lee, and Y. Q. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
11. P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79 (1992), 293-312.
12. P. Ribenboim, Rings of generalized power series II: Units and zero-divisors, J. Algebra, 168 (1994), 71-89.
13. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra, 198 (1997), 327-338.
14. M. B. Rege, and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
15. K. Varadarajan, Noetherian generalized power series rings and modules, Comm. Algebra, 29 (2001), 245-251.
16. K. Varadarajan, Generalized power series modules, Comm. Algebra, 29 (2001), 1281-1294.

Renyu Zhao
College of Economics and Management,
Northwest Normal University,
Lanzhou, Gansu 730070,
P. R. China.
E-mail: renyuzhao026@sohu.com
Zhongkui Liu
College of Mathematics and Information Science,
Northwest Normal University,
Lanzhou, Gansu 730070,
P. R. China
E-mail: liuzk@nwnu.edu.cn

[^0]: Received December 29, 2005, accepted October 13, 2006.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: 16W60, 13F25.
 Key words and phrases: Generalized power series, Reduced module, S-Armendariz module, Baer module, PP-Module, Quasi-Baer module.

