A NEW SYSTEM OF GENERALIZED CO-COMPLEMENTARITY PROBLEMS IN BANACH SPACES

Fu-Quan Xia and Nan-Jing Huang

Abstract

In this paper, we introduce a new system of generalized cocomplementarity problems in Banach space. An iterative algorithm for finding approximate solutions of these problems is considered. Some convergence results for this iterative algorithm are derived and several existence results are also obtained.

1. Introduction

Let B be a real Banach space with dual space B^{*} and pairing $\langle x, f\rangle$ between $x \in B$ and $f \in B^{*}$. Let $C B(B)$ be the family of nonempty bounded closed subsets of B. Suppose B_{1} and B_{2} are two Banach spaces, $g_{i}, m_{i}: B_{i} \rightarrow B_{i}(i=1,2)$, $F: B_{1} \times B_{2} \rightarrow B_{1}$, and $G: B_{1} \times B_{2} \rightarrow B_{2}$ are all single-valued mappings. Let $V_{1}: B_{1} \rightarrow C B\left(B_{1}\right)$ and $V_{2}: B_{2} \rightarrow C B\left(B_{2}\right)$ be two set-valued mappings. Moreover, we assume $X_{1} \subset B_{1}$ and $X_{2} \subset B_{2}$ are two fixed closed convex cones. Define $K_{i}: B_{i} \rightarrow 2^{B_{i}}(i=1,2)$ by

$$
K_{i}(x)=m_{i}(x)+X_{i}, \quad \forall x \in B_{i} .
$$

In this paper, we shall study the following system of generalized co-complementarity problems $(S G C C P)$: find $(x, y) \in B_{1} \times B_{2}$ and $(u, v) \in V_{1}(x) \times V_{2}(y)$ such that $\left(g_{1}(x), g_{2}(y)\right) \in K_{1}(x) \times K_{2}(y)$ and

$$
\left\{\begin{array}{l}
F(u, v) \in\left(J_{1}\left(K_{1}(x)-g_{1}(x)\right)\right)^{*}, \tag{1.1}\\
G(u, v) \in\left(J_{2}\left(K_{2}(y)-g_{2}(y)\right)\right)^{*},
\end{array}\right.
$$

[^0]where $J_{i}: B_{i} \rightarrow B_{i}^{*}(i=1,2)$ are the normalized duality mappings, $\left(J_{1}\left(K_{1}(x)-\right.\right.$ $\left.\left.g_{1}(x)\right)\right)^{*}$ and $\left(J_{2}\left(K_{2}(y)-g_{2}(y)\right)\right)^{*}$ denote the dual cones of the sets $\left(J_{1}\left(K_{1}(x)-\right.\right.$ $\left.g_{1}(x)\right)$) and $\left(J_{2}\left(K_{2}(y)-g_{2}(y)\right)\right)$, respectively.

Recall that the normalized duality operator $J: B \rightarrow B^{*}$ is defined for arbitrary Banach space by the condition

$$
\|J x\|_{B^{*}}=\|x\| \quad \text { and } \quad\langle x, J x\rangle=\|x\|^{2}, \quad \forall x \in B
$$

Some examples and properties of the mapping J can be found in [1, p. 19]. When B is a Hilbert space, $J x=x$ reduces to the identity mapping. Note that every nonzero $x \in B$ is weak* continuous, and thus, attains its norm on the weak* compact unit ball of B^{*}. In this case where B^{*} is strictly convex, the point x attains its norm on the ball of B^{*} is unique, namely, $J x /\|x\|$. In this paper, we are mainly interested in uniformly smooth Banach space B. Therefore, the construction of J is concrete to us here.

Before we proceed any further, we make a few observations. There is evidence that our results generalize many known important results obtained in the literature.
(i) If $B_{1}=B_{2}, K_{1}=K_{2}, g_{1}=g_{2}$, and $F=G$, then problem (1.1) reduces to finding $x \in B_{1}, u \in V_{1}(x)$, and $v \in V_{2}(y)$ such that $g_{1}(x) \in K_{1}(x)$ and

$$
\begin{equation*}
F(u, v) \in\left(J_{1}\left(K_{1}(x)-g_{1}(x)\right)\right)^{*} \tag{1.2}
\end{equation*}
$$

(ii) If $V_{1}(x)=T(x)$ is a single valued mapping and $F(u, v)=u+A(v)$, then problem (1.2) reduces to finding $x \in B_{1}$ and $v \in V_{2}(x)$ such that $g_{1}(x) \in K_{1}(x)$ and

$$
\begin{equation*}
T(x)+A(v) \in\left(J_{1}\left(K_{1}(x)-g_{1}(x)\right)\right)^{*} \tag{1.3}
\end{equation*}
$$

which is the generalized co-complementarity problem studied by Chen, Wong and Yao [3].
(iii) If B_{1} is a Hilbert space, then problem (1.3) reduces to finding $x \in B_{1}$ and $v \in V_{2}(x)$ such that $g_{1}(x) \in K_{1}(x)$ and

$$
\begin{equation*}
T(x)+A(v) \in\left(K_{1}(x)-g_{1}(x)\right)^{*} \tag{1.4}
\end{equation*}
$$

which is the generalized multivalued complementarity problem studied by Jou and Yao [8].
(iv) If g_{1} is an identity mapping, then problem (1.4) reduces to finding $x \in K_{1}(x)$ and $v \in V_{2}(x)$ such that

$$
\begin{equation*}
T(x)+A(v) \in\left(K_{1}(x)-x\right)^{*}, \tag{1.5}
\end{equation*}
$$

which is known as the generalized strongly nonlinear quasi-complementarity problem studied by Chang and Huang [2].
(v) If g_{1} and V_{2} are identity mappings, A and m are zero mappings, then problem (1.3) equivalent to finding $x \in X_{1}$ such that

$$
\begin{equation*}
T(x) \in X_{1}^{*}, \quad\langle T(x), x\rangle=0, \tag{1.6}
\end{equation*}
$$

which is known as the generalized complementarity problem studied by Habetler and Price [5] and Karamardian [10].

The complementarity theory derives its importance from the face that it unifies problems in fields such as: mathematical programming, game theory, the theory of equilibrium in a competitive economy, equilibrium of traffic flows, mechanics, engineering, lubricant evaporation in the cavity of a cylindrical bearing, elasticity theory, maximizing oil production, computation of fixed point etc., see Isac [6, 7].

The aim of this paper is to construct the projection iterative methods of finding approximate solutions of (SGCCP) in (especially uniformly smooth) Banach space. As pointed out by Chen, Wong and Yao [3], such research fields are new, interesting, and should be applicable to all those classical complementarity problems mentioned above. The present results improve and extend many know results in the literature.

2. Preliminaries

We first recall the following definitions.
Definition 2.1. Let B be a Banach space with the normalized duality mapping $J: B \rightarrow B^{*}$. A mapping $A: B \rightarrow B$ is said to be
(1) strongly accretive if there exists a constant $\gamma>0$ such that

$$
\langle A x-A y, J(x-y)\rangle \geq \gamma\|x-y\|^{2}, \quad \forall x, y \in B ;
$$

(2) Lipschitz continuous if there exists a positive constant β such that

$$
\|A(x)-A(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in B
$$

Definition 2.2. Let B_{1} and B_{2} be two Banach spaces, $F: B_{1} \times B_{2} \rightarrow B_{1}$ a single-valued mapping, and $V: B_{1} \rightarrow C B\left(B_{1}\right)$ a set-valued mapping. For any
given $y \in B_{2}, F(\cdot, y)$ is said to be ξ-strongly accretive with respect to V if there exists a constant $\xi>0$ such that

$$
\begin{aligned}
& \left\langle F\left(u_{1}, y\right)-F\left(u_{2}, y\right), J_{1}\left(x_{1}-x_{2}\right)\right\rangle \\
\geq & \xi\left\|x_{1}-x_{2}\right\|^{2}, \quad \forall x_{1}, x_{2} \in B_{1}, \forall u_{1} \in V\left(x_{1}\right), \forall u_{2} \in V\left(x_{2}\right),
\end{aligned}
$$

where $J_{1}: B_{1} \rightarrow B_{1}^{*}$ is the normalized duality mapping.
Definition 2.3. The mapping $V: B \rightarrow C B(B)$ is said to be H-Lipschitz continuous if there exists a constant $\eta>0$ such that

$$
H(V(x), V(y)) \leq \eta\|x-y\|, \quad \forall x, y \in B
$$

where $H(\cdot, \cdot)$ is the Hausdorff metric on $C B(B)$.
We remark that the uniform convexity of the Banach space B means that for any given $\epsilon>0$, there exists $\delta>0$ such that for all $x, y \in B,\|x\| \leq 1,\|y\| \leq 1$ and $\|x-y\| \geq \epsilon$ ensure the following inequality:

$$
\|x+y\| \leq 2(1-\delta) .
$$

The function

$$
\delta_{B}(\epsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=1,\|y\|=1,\|x-y\| \geq \epsilon\right\}
$$

is called the modulus of the convexity of the space B.
The uniform smoothness of the Banach space B means that for any given $\epsilon>0$, there exists $\delta>0$ such that for all $x, y \in B,\|x\| \leq 1,\|y\|<\delta$ ensure the following inequality:

$$
\frac{\|x+y\|+\|x-y\|}{2}-1 \leq \epsilon\|y\|
$$

holds. The function

$$
\rho_{B}(t)=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1:\|x\|=1,\|y\| \leq t\right\}
$$

is called the modulus of the smoothness of the space B.
We also remark that the space B is uniformly convex if and only if $\delta_{B}(\epsilon)>0$ for all $\epsilon>0$, and it is uniformly smooth if and only if $\lim _{t \rightarrow 0} t^{-1} \rho_{B}(t)=0$. Moreover, B^{*} is uniformly convex if and only if B is uniformly smooth. In this case, B is reflexive by the Milman theorem. A Hilbert space is uniformly convex and uniformly smooth. The proof of the following inequalities can be found, e.g., in [1, p. 24].

Proposition 2.1. Let B be a uniformly smooth Banach space and J be the normalized duality mapping from B into B^{*}. Then, for all $x, y \in B$, we have
(i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle$,
(ii) $\langle x-y, J(x)-J(y)\rangle \leq 2 d^{2} \rho_{B}(4\|x-y\| / d)$, where $d=\left(\left(\|x\|^{2}+\|y\|^{2}\right) / 2\right)^{1 / 2}$.

Let B be a real Banach space and Ω be a nonempty closed convex subset of B. A mapping $Q_{\Omega}: B \rightarrow \Omega$ is said to be a retraction on Ω if $Q_{\Omega}^{2}=Q_{\Omega}$. The mapping Q_{Ω} is said to be a nonexpansive retraction if, in addition,

$$
\left\|Q_{\Omega}(x)-Q_{\Omega}(y)\right\| \leq\|x-y\|, \quad \forall x, y \in B
$$

and Q_{Ω} is a sunny retraction if for all $x \in B$,

$$
Q_{\Omega}\left(Q_{\Omega}(x)+t\left(x-Q_{\Omega}(x)\right)\right)=Q_{\Omega}(x), \quad \forall t \in R .
$$

The following characterization of a sunny nonexpansive retraction mapping can be found, e.g., in [4].

Proposition 2.2. Q_{Ω} is a sunny nonexpansive retraction if and only if for all $x \in B$ and $y \in \Omega$,

$$
\left\langle x-Q_{\Omega}(x), J\left(Q_{\Omega}(x)-y\right)\right\rangle \geq 0 .
$$

From Proposition 2.2, we have the following retraction shift equality.
Proposition 2.3. Let B be a Banach space and Ω be a nonempty closed convex subset of B. Let Q_{Ω} be a sunny nonexpansive retraction mapping and $m: B \rightarrow B$ be a single valued mapping. Then for all $x \in B$, we have

$$
Q_{\Omega+m(x)}(x)=m(x)+Q_{\Omega}(x-m(x)) .
$$

3. Iterative Algorithm and Convergence

In this section, we first derive some characterizations of solutions of the system of generalized co-complementarity problem.

Theorem 3.1. Let B_{1} and B_{2} be two Banach spaces with normalized duality mapping J_{1} and J_{2}, respectively. Suppose $X_{1} \subset B_{1}$ and $X_{2} \subset B_{2}$ are two closed convex cones such that the sunny nonexpansive retraction mappings $Q_{X_{1}}$ and $Q_{X_{2}}$ exist. Let $F: B_{1} \times B_{2} \rightarrow B_{1}, G: B_{1} \times B_{2} \rightarrow B_{2}, V_{i}: B_{i} \rightarrow C B\left(B_{i}\right)$ and $g_{i}, m_{i}: B_{i} \rightarrow B_{i}$ for $i=1,2$. Assume $K_{i}(x)=m_{i}(x)+X_{i}$ for all $x \in B_{i}$ and $i=1,2$. Then, for any given $(x, y) \in B_{1} \times B_{2}$ and $(u, v) \in V_{1}(x) \times V_{2}(y)$ are solutions of SGCCP (1.1) if and only if

$$
\left\{\begin{array}{l}
g_{1}(x)=m_{1}(x)+Q_{X_{1}}\left(g_{1}(x)-\tau_{1} F(u, v)\right), \tag{3.1}\\
g_{2}(y)=m_{2}(y)+Q_{X_{2}}\left(g_{2}(y)-\tau_{2} G(u, v)\right),
\end{array}\right.
$$

where $\tau_{1}>0$ and $\tau_{2}>0$ are constants.
Proof. From Proposition 2.3, we know that (3.1) holds if and only if

$$
\left\{\begin{array}{l}
g_{1}(x)=Q_{K_{1}(x)}\left(g_{1}(x)-\tau_{1} F(u, v)\right), \tag{3.2}\\
g_{2}(y)=Q_{K_{2}(y)}\left(g_{2}(y)-\tau_{2} G(u, v)\right),
\end{array}\right.
$$

From Proposition 2.2, it is easy to see that (3.2) holds if and only if

$$
\left\langle g_{1}(x)-\tau_{1} F(u, v)-g_{1}(x), J_{1}\left(g_{1}(x)-z_{1}\right)\right\rangle \geq 0, \quad \forall z_{1} \in K_{1}(x)
$$

and

$$
\left\langle g_{2}(y)-\tau_{2} G(u, v)-g_{2}(y), J_{2}\left(g_{2}(y)-z_{2}\right)\right\rangle \geq 0, \quad \forall z_{2} \in K_{2}(y) .
$$

That is,

$$
\begin{cases}\left\langle F(u, v), J_{1}\left(z_{1}-g_{1}(x)\right)\right\rangle \geq 0, & \forall z_{1} \in K_{1}(x), \tag{3.3}\\ \left\langle G(u, v), J_{2}\left(z_{2}-g_{2}(y)\right)\right\rangle \geq 0, & \forall z_{2} \in K_{2}(y) .\end{cases}
$$

We note that (3.3) holds if and only if

$$
F(u, v) \in\left(J_{1}\left(K_{1}(x)-g_{1}(x)\right)\right)^{*}, \quad G(u, v) \in\left(J_{2}\left(K_{2}(y)-g_{2}(y)\right)\right)^{*} .
$$

This is complete the proof.
Remark 3.1. In theorem 3.1, we suppose the sunny nonexpansive retraction mappings $Q_{X_{1}}$ and $Q_{X_{2}}$ exist. Such conditions can be satisfied under some assumptions, see, for example, Theorem 1 and Remark 2 in [9], or Theorem 5 and Remark 6 in [9].

Next we shall construct an iterative algorithm for finding approximate solutions of SGCCP (1.1) and discuss the convergence analysis of the algorithm.

Algorithm 3.1. Let $B_{i}, X_{i}, g_{i}, m_{i}, V_{i}, K_{i}, F$ and G be the same as in Theorem 3.1 for $i=1$, 2. Let $\tau_{1}>0$ and $\tau_{2}>0$ be fixed. For any given $\left(x_{0}, y_{0}\right) \in B_{1} \times B_{2}$ and $\left(u_{0}, v_{0}\right) \in V_{1}\left(x_{0}\right) \times V_{2}\left(y_{0}\right)$, from Theorem 3.2, let

$$
\left\{\begin{array}{l}
x_{1}=x_{0}-g_{1}\left(x_{0}\right)+m_{1}\left(x_{0}\right)+Q_{X_{1}}\left(g_{1}\left(x_{0}\right)-\tau_{1} F\left(u_{0}, v_{0}\right)-m_{1}\left(x_{0}\right)\right), \\
y_{1}=y_{0}-g_{2}\left(y_{0}\right)+m_{2}\left(y_{0}\right)+Q_{X_{2}}\left(g_{2}\left(y_{0}\right)-\tau_{2} G\left(u_{0}, v_{0}\right)-m_{2}\left(y_{0}\right)\right) .
\end{array}\right.
$$

Since $u_{0} \in V_{1}\left(x_{0}\right)$ and $v_{0} \in V_{2}\left(y_{0}\right)$, by Nadler's Theorem [11], there exist $u_{1} \in$ $V_{1}\left(x_{1}\right)$ and $v_{1} \in V_{2}\left(y_{1}\right)$ such that

$$
\left\|u_{0}-u_{1}\right\| \leq(1+1) H\left(V_{1}\left(x_{0}\right), V_{1}\left(x_{1}\right)\right), \quad\left\|v_{0}-v_{1}\right\| \leq(1+1) H\left(V_{2}\left(y_{0}\right), V_{2}\left(y_{1}\right)\right),
$$

where H is the Hausdorff metric on $C B(B)$. Let

$$
\left\{\begin{array}{l}
x_{2}=x_{1}-g_{1}\left(x_{1}\right)+m_{1}\left(x_{1}\right)+Q_{X_{1}}\left(g_{1}\left(x_{1}\right)-\tau_{1} F\left(u_{1}, v_{1}\right)-m_{1}\left(x_{1}\right)\right), \\
y_{2}=y_{1}-g_{2}\left(y_{1}\right)+m_{2}\left(y_{1}\right)+Q_{X_{2}}\left(g_{2}\left(y_{1}\right)-\tau_{2} G\left(u_{1}, v_{1}\right)-m_{2}\left(y_{1}\right)\right) .
\end{array}\right.
$$

Again by Nadler's Theorem, there exist $u_{2} \in V_{1}\left(x_{2}\right)$ and $v_{2} \in V_{2}\left(y_{2}\right)$ such that $\left\|u_{1}-u_{2}\right\| \leq\left(1+\frac{1}{2}\right) H\left(V_{1}\left(x_{1}\right), V_{1}\left(x_{2}\right)\right), \quad\left\|v_{1}-v_{2}\right\| \leq\left(1+\frac{1}{2}\right) H\left(V_{2}\left(y_{1}\right), V_{2}\left(y_{2}\right)\right)$.
Continuing in this way, we can obtain the following:
For any given $\left(x_{0}, y_{0}\right) \in B_{1} \times B_{2}$ and $\left(u_{0}, v_{0}\right) \in V_{1}\left(x_{0}\right) \times V_{2}\left(y_{0}\right)$, compute the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ by iterative schemes such that

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}-g_{1}\left(x_{n}\right)+m_{1}\left(x_{n}\right)+Q_{X_{1}}\left(g_{1}\left(x_{n}\right)-\tau_{1} F\left(u_{n}, v_{n}\right)-m_{1}\left(x_{n}\right)\right), \tag{3.4}\\
y_{n+1}=y_{n}-g_{2}\left(y_{n}\right)+m_{2}\left(y_{n}\right)+Q_{X_{2}}\left(g_{2}\left(y_{n}\right)-\tau_{2} G\left(u_{n}, v_{n}\right)-m_{2}\left(y_{n}\right)\right)
\end{array}\right.
$$

and

$$
\begin{cases}u_{n} \in V_{1}\left(x_{n}\right), & \left\|u_{n}-u_{n+1}\right\| \leq\left(1+\frac{1}{n+1}\right) H\left(V_{1}\left(x_{n}\right), V_{1}\left(x_{n+1}\right)\right), \tag{3.5}\\ v_{n} \in V_{2}\left(y_{n}\right), & \left\|v_{n}-v_{n+1}\right\| \leq\left(1+\frac{1}{n+1}\right) H\left(V_{2}\left(y_{n}\right), V_{2}\left(y_{n+1}\right)\right)\end{cases}
$$

for all $n=0,1,2, \cdots$, where $\tau_{1}>0$ and $\tau_{2}>0$ are two constants.
Now we have the following convergence and existence result.
Theorem 3.3. Let B_{1} and B_{2} be two uniformly smooth Banach spaces with $\rho_{B_{1}}(t) \leq C_{1} t^{2}, \rho_{B_{2}}(t) \leq C_{2} t^{2}$ for some $C_{1}>0, C_{2}>0$, respectively. Let $X_{1} \subset B_{1}, X_{2} \subset B_{2}$ be two closed convex cones such that the sunny nonexpansive retraction mappings $Q_{X_{1}}$ and $Q_{X_{2}}$ exist. Let $F: B_{1} \times B_{2} \rightarrow B_{1}, G: B_{1} \times B_{2} \rightarrow$ $B_{2}, V_{i}: B_{i} \rightarrow C B\left(B_{i}\right)$, and $g_{i}, m_{i}: B_{i} \rightarrow B_{i}$ be mappings for $i=1,2$. Suppose $K_{i}: B_{i} \rightarrow 2^{B_{i}}$ is defined by $K_{i}(x)=m_{i}(x)+X_{i}$ for all $x \in B_{i}(i=1,2)$ and
(i) g_{i} and m_{i} are Lipschitz continuous with constants δ_{i} and θ_{i}, respectively, and V_{i} is H-Lipschitz continuous with constant η_{i} for $i=1,2$;
(ii) g_{i} is strongly accretive with constant γ_{i} with $i=1,2$. For any given $(x, y) \in$ $B_{1} \times B_{2}, F(\cdot, y)$ is ξ_{1}-strongly accretive with respect to V_{1} and $G(x, \cdot)$ is ξ_{2}-strongly accretive with respect to V_{2};
(iii) for any given $(x, y) \in B_{1} \times B_{2}, F(\cdot, y), F(x, \cdot), G(\cdot, y)$, and $G(x, \cdot)$ are Lipschitz continuous with constants $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}$, respectively;
(iv) there exist $\tau_{1}>0$ and $\tau_{2}>0$ such that

$$
\begin{aligned}
& 2\left(1-2 \gamma_{1}+64 C_{1} \delta_{1}^{2}\right)^{1 / 2}+\left(1-2 \tau_{1} \xi_{1}+64 C_{1} \tau_{1}^{2} \beta_{1}^{2} \eta_{1}^{2}\right)^{1 / 2}+2 \theta_{1}+\tau_{2} \alpha_{1} \eta_{1}<1, \\
& 2\left(1-2 \gamma_{2}+64 C_{2} \delta_{2}^{2}\right)^{1 / 2}+\left(1-2 \tau_{2} \xi_{2}+64 C_{2} \tau_{2}^{2} \alpha_{2}^{2} \eta_{2}^{2}\right)^{1 / 2}+2 \theta_{2}+\tau_{1} \beta_{2} \eta_{2}<1 .
\end{aligned}
$$

Then for any given $\left(x_{0}, y_{0}\right) \in B_{1} \times B_{2}$ and $\left(u_{0}, v_{0}\right) \in V_{1}\left(x_{0}\right) \times V_{2}\left(y_{0}\right)$, the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ and $\left\{\left(u_{n}, v_{n}\right)\right\}$ generated by Algorithm 3.1 converge strongly to some $(x, y) \in B_{1} \times B_{2}$ and $(u, v) \in V_{1}(x) \times V_{2}(y)$, respectively, which solve $S G C C P$ (1.1).

Proof. It follows from iterative schemes (3.4) that

$$
\begin{aligned}
& \left\|x_{n+1}-x_{n}\right\| \\
= & \| x_{n}-g_{1}\left(x_{n}\right)+m_{1}\left(x_{n}\right)+Q_{X_{1}}\left(g_{1}\left(x_{n}\right)-\tau_{1} F\left(u_{n}, v_{n}\right)-m_{1}\left(x_{n}\right)\right) \\
& -\left(x_{n-1}-g_{1}\left(x_{n-1}\right)+m_{1}\left(x_{n-1}\right)+Q_{X_{1}}\left(g_{1}\left(x_{n-1}\right)\right.\right. \\
& \left.\left.-\tau_{1} F\left(u_{n-1}, v_{n-1}\right)-m_{1}\left(x_{n-1}\right)\right)\right) \| \\
\leq & \left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|+\left\|m_{1}\left(x_{n}\right)-m_{1}\left(x_{n-1}\right)\right\| \\
& +\| g_{1}\left(x_{n}\right)-\tau_{1} F\left(u_{n}, v_{n}\right)-m_{1}\left(x_{n}\right)-\left(g_{1}\left(x_{n-1}\right)\right. \\
& \left.-\tau_{1} F\left(u_{n-1}, v_{n-1}\right)-m_{1}\left(x_{n-1}\right)\right) \| \\
\leq & 2\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|+2\left\|m_{1}\left(x_{n}\right)-m_{1}\left(x_{n-1}\right)\right\| \\
& +\left\|x_{n}-x_{n-1}-\tau_{1}\left(F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n-1}\right)\right)\right\| \\
\leq & 2\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|+2\left\|m_{1}\left(x_{n}\right)-m_{1}\left(x_{n-1}\right)\right\| \\
& +\left\|x_{n}-x_{n-1}-\tau_{1}\left(F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right)\right)\right\| \\
& +\tau_{1}\left\|F\left(u_{n-1}, v_{n}\right)-F\left(u_{n-1}, v_{n-1}\right)\right\| .
\end{aligned}
$$

By Proposition 2.3 and the assumptions,

$$
\begin{aligned}
& \left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|^{2} \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}+2\left\langle-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right), J_{1}\left(x_{n}-x_{n-1}\right.\right. \\
& \left.\left.-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right)\right\rangle \\
= & \left\|x_{n}-x_{n-1}\right\|^{2}-2\left\langle g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right), J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \\
& +2\left\langle-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right), J_{1}\left(x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right)\right. \\
& \left.-J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \gamma_{1}\left\|x_{n}-x_{n-1}\right\|^{2}+4 d^{2} \rho_{B_{1}}\left(4\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\| / d\right) \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \gamma_{1}\left\|x_{n}-x_{n-1}\right\|^{2}+64 C_{1}\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|^{2} \\
\leq & \left(1-2 \gamma_{1}+64 C_{1} \delta_{1}^{2}\right)\left\|x_{n}-x_{n-1}\right\|^{2}
\end{aligned}
$$

and

$$
\left\|x_{n}-x_{n-1}-\tau_{1}\left(F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right)\right)\right\|^{2}
$$

$$
\begin{aligned}
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}+2\left\langle-\tau_{1}\left(F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right)\right), J_{1}\left(x_{n}-x_{n-1}\right.\right. \\
& \left.-\tau_{1}\left(F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right)\right)\right\rangle \\
= & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \tau_{1}\left\langle F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right), J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \\
& -2 \tau_{1}\left\langle F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right), J_{1}\left(x_{n}-x_{n-1}-\tau_{1}\left(F\left(u_{n}, v_{n}\right)\right.\right.\right. \\
& \left.\left.\left.-F\left(u_{n-1}, v_{n}\right)\right)\right)-J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \tau_{1} \xi_{1}\left\|x_{n}-x_{n-1}\right\|^{2}+4 d^{2} \rho_{B_{1}}\left(4 \tau_{1} \| F\left(u_{n}, v_{n}\right)\right. \\
& \left.-F\left(u_{n-1}, v_{n}\right) \| / d\right) \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{2}-2 \tau_{1} \xi_{1}\left\|x_{n}-x_{n-1}\right\|^{2} \\
& +64 C_{1} \tau_{1}^{2}\left\|F\left(u_{n}, v_{n}\right)-F\left(u_{n-1}, v_{n}\right)\right\|^{2} \\
\leq & \left(1-2 \tau_{1} \xi_{1}+64 C_{1} \tau_{1}^{2} \beta_{1}^{2} \eta_{1}^{2}\left(1+\frac{1}{n+1}\right)^{2}\right)\left\|x_{n}-x_{n-1}\right\|^{2}
\end{aligned}
$$

where $J_{1}: B_{1} \rightarrow B_{1}^{*}$ is the normalized duality mapping. It follows from the Lipschitz continuity of the mappings m_{1} and F that

$$
\begin{equation*}
\left\|m_{1}\left(x_{n}\right)-m_{1}\left(x_{n-1}\right)\right\| \leq \theta_{1}\left\|x_{n}-x_{n-1}\right\| \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F\left(u_{n-1}, v_{n}\right)-F\left(u_{n-1}, v_{n-1}\right) \leq \beta_{2} \eta_{2}\left(1+\frac{1}{n}\right)\right\| y_{n}-y_{n-1} \| \tag{3.10}
\end{equation*}
$$

From (3.6)-(3.10), we have

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leq & \left\{2\left(1-2 \gamma_{1}+64 C_{1} \delta_{1}^{2}\right)^{1 / 2}\right. \\
& +\left(1-2 \tau_{1} \xi_{1}+64\left(1+\frac{1}{n+1}\right)^{2} C_{1} \tau_{1}^{2} \beta_{1}^{2} \eta_{1}^{2}\right)^{1 / 2} \tag{3.11}\\
& \left.+2 \theta_{1}\right\}\left\|x_{n}-x_{n-1}\right\|+\tau_{1} \beta_{2} \eta_{2}\left(1+\frac{1}{n}\right)\left\|y_{n}-y_{n-1}\right\|
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\| \leq & \left\{2\left(1-2 \gamma_{2}+64 C_{2} \delta_{2}^{2}\right)^{1 / 2}\right. \\
& +\left(1-2 \tau_{2} \xi_{2}+64\left(1+\frac{1}{n+1}\right)^{2} C_{2} \tau_{2}^{2} \alpha_{2}^{2} \eta_{2}^{2}\right)^{1 / 2} \tag{3.12}\\
& \left.+2 \theta_{2}\right\}\left\|y_{n}-y_{n-1}\right\|+\tau_{2} \alpha_{1} \eta_{1}\left(1+\frac{1}{n}\right)\left\|x_{n}-x_{n-1}\right\|
\end{align*}
$$

It follows from (3.11) and (3.12) that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\|+\left\|y_{n+1}-y_{n}\right\| \leq k_{n}\left(\left\|x_{n}-x_{n-1}\right\|+\left\|y_{n}-y_{n-1}\right\|\right) \tag{3.13}
\end{equation*}
$$

where $k_{n}=\max \left\{\varepsilon_{n}, \lambda_{n}\right\}$ and

$$
\begin{array}{rl}
\varepsilon_{n}=2 & \left(1-2 \gamma_{1}+64 C_{1} \delta_{1}^{2}\right)^{1 / 2}+\left(1-2 \tau_{1} \xi_{1}+64\left(1+\frac{1}{n+1}\right)^{2} C_{1} \tau_{1}^{2} \beta_{1}^{2} \eta_{1}^{2}\right)^{1 / 2} \\
& +2 \theta_{1}+\tau_{2} \alpha_{1} \eta_{1}\left(1+\frac{1}{n}\right) \\
\lambda_{n}=2 & 2\left(1-2 \gamma_{2}+64 C_{2} \delta_{2}^{2}\right)^{1 / 2}+\left(1-2 \tau_{2} \xi_{2}+64\left(1+\frac{1}{n+1}\right)^{2} C_{2} \tau_{2}^{2} \alpha_{2}^{2} \eta_{2}^{2}\right)^{1 / 2} \\
& +2 \theta_{2}+\tau_{1} \beta_{2} \eta_{2}\left(1+\frac{1}{n}\right)
\end{array}
$$

Let

$$
\begin{aligned}
\varepsilon=2(1 & \left.-2 \gamma_{1}+64 C_{1} \delta_{1}^{2}\right)^{1 / 2}+\left(1-2 \tau_{1} \xi_{1}+64 C_{1} \tau_{1}^{2} \beta_{1}^{2} \eta_{1}^{2}\right)^{1 / 2} \\
& +2 \theta_{1}+\tau_{2} \alpha_{1} \eta_{1} \\
\lambda=2(1 & \left.-2 \gamma_{2}+64 C_{2} \delta_{2}^{2}\right)^{1 / 2}+\left(1-2 \tau_{2} \xi_{2}+64 C_{2} \tau_{2}^{2} \alpha_{2}^{2} \eta_{2}^{2}\right)^{1 / 2} \\
& +2 \theta_{2}+\tau_{1} \beta_{2} \eta_{2}
\end{aligned}
$$

Then,

$$
\epsilon_{n} \rightarrow \epsilon \quad \text { and } \quad \lambda_{n} \rightarrow \lambda \quad \text { as } \quad n \rightarrow \infty
$$

Let $k=\max \{\varepsilon, \lambda\}$. Then $k_{n} \rightarrow k$ as $n \rightarrow \infty$. It follows from condition (iv) that $0<k<1$. Hence, there are a positive number k_{0} and an integer $n_{0} \geq 1$ such that $k_{n} \leq k_{0}<1$ for all $n \geq n_{0}$.

Now we define $\|\cdot\|_{1}$ on $B_{1} \times B_{2}$ by

$$
\|(x, y)\|_{1}=\|x\|+\|y\|, \quad \forall(x, y) \in B_{1} \times B_{2}
$$

It is easy to see that $\left(B_{1} \times B_{2},\|\cdot\|_{1}\right)$ is a Banach space. Let $z_{n}=\left(x_{n}, y_{n}\right) \in B_{1} \times B_{2}$. It follows from (3.13) that

$$
\left\|z_{n+1}-z_{n}\right\|_{1} \leq k_{n}\left\|z_{n}-z_{n-1}\right\|_{1}
$$

This implies that $\left\{z_{n}\right\}$ is a Cauchy sequence in $\left(B_{1} \times B_{2},\|\cdot\|_{1}\right)$. Suppose that $\left\{z_{n}\right\}$ converges to some $z=(x, y) \in B_{1} \times B_{2}$. Since

$$
\left.\begin{array}{rl}
\left\|x_{n}-x\right\| & \leq\left\|x_{n}-x\right\|+\left\|y_{n}-y\right\| \\
\left\|y_{n}-y\right\| & \leq\left\|z_{n}-z\right\|_{1} \rightarrow 0 \\
& (n \rightarrow+\infty) \\
\| & (n)+\left\|y_{n}-y\right\|
\end{array}\right)\left\|z_{n}-z\right\|_{1} \rightarrow 0 \quad(n \rightarrow+\infty),
$$

it is easy to see that $\left\{x_{n}\right\}$ converges to $x \in B_{1}$ and $\left\{y_{n}\right\}$ converges to $y \in B_{2}$, respectively. By (3.5), we obtain

$$
\left\{\begin{align*}
\left\|u_{n}-u_{n+1}\right\| & \leq\left(1+\frac{1}{n+1}\right) H\left(V_{1}\left(x_{n}\right), V_{1}\left(x_{n+1}\right)\right) \tag{3.14}\\
& \leq\left(1+\frac{1}{n+1}\right) \eta_{1}\left\|x_{n}-x_{n+1}\right\| \\
\left\|v_{n}-v_{n+1}\right\| & \leq\left(1+\frac{1}{n+1}\right) H\left(V_{2}\left(y_{n}\right), V_{2}\left(y_{n+1}\right)\right) \\
& \leq\left(1+\frac{1}{n+1}\right) \eta_{2}\left\|y_{n}-y_{n+1}\right\|
\end{align*}\right.
$$

Let $w_{n}=\left(u_{n}, v_{n}\right) \in B_{1} \times B_{2}$. By (3.14),

$$
\left\|w_{n}-w_{n-1}\right\|_{1} \leq s_{n}\left\|z_{n}-z_{n-1}\right\|_{1}
$$

where

$$
s_{n}=\max \left\{\left(1+\frac{1}{n+1}\right) \eta_{1},\left(1+\frac{1}{n+1}\right) \eta_{2}\right\} .
$$

Since $\left\{z_{n}\right\}$ is a Cauchy sequence, we know that $\left\{w_{n}\right\}$ is also a Cauchy sequence in $B_{1} \times B_{2}$. Suppose that $\left\{w_{n}\right\}$ converges to some $w=(u, v) \in B_{1} \times B_{2}$. Then it is easy to see that $\left\{u_{n}\right\}$ converges to u and $\left\{v_{n}\right\}$ converges to v, respectively. Since $F, G, Q_{X_{i}}, g_{i}, m_{i}$, and V_{i} are all continuous ($i=1,2$), we have

$$
\begin{aligned}
& x=x-g_{1}(x)+m_{1}(x)+Q_{X_{1}}\left(g_{1}(x)-\tau_{1} F(u, v)-m_{1}(x)\right), \\
& y=y-g_{2}(y)+m_{2}(y)+Q_{X_{2}}\left(g_{2}(y)-\tau_{2} G(u, v)-m_{2}(y)\right) .
\end{aligned}
$$

It remains to show that $(u, v) \in V_{1}(x) \times V_{2}(y)$. In fact,

$$
\begin{aligned}
d\left(u, V_{1}(x)\right) & \leq\left\|u-u_{n}\right\|+d\left(u_{n}, V_{1}(x)\right) \\
& \leq\left\|u-u_{n}\right\|+H\left(V_{1}\left(x_{n}\right), V_{1}(x)\right) \\
& \leq\left\|u-u_{n}\right\|+\eta_{1}\left\|x-x_{n}\right\|
\end{aligned}
$$

where

$$
d\left(u, V_{1}(x)\right)=\inf \left\{\|u-z\|: z \in V_{1}(x)\right\} .
$$

It follows that $d\left(u, V_{1}(x)\right)=0$ and so $u \in V_{1}(x)$ since $V_{1}(x)$ is closed. Similarly, we have $v \in V_{2}(y)$. By Theorem 3.2, we know that $(x, y) \in B_{1} \times B_{2}$ and $(u, v) \in V_{1}(x) \times V_{2}(y)$ are solutions of SGCCP (1.1). This completes the proof.

Acknowledgment

The authors are grateful to the referees for their valuable comments and suggestions.

References

1. Y. Alber, Metric and Generalized Projection Operators in Banach space: Properties and Applications, in Theory and Applications of Nonlinear Operators of Monotone and Accretive Type, (ed. by A. Kartsatos), Marcel Dekker, New York, 1996.
2. S. S. Chang and N. J. Huang, Generalized strongly nonlinear quasi-complementarity problem in Hilbert space, J. Math. Anal. Appl., 158 (1991), 194-202.
3. J. Y. Chen, N. C. Wong and J. C. Yao, Algorithm for generalized co-complementarity problems in Banach space, Computers Math. Appl., 43 (2002), 49-54.
4. K. Goebel and S. Reich, Uniformly Convexity, Hyperbolic Geometry and Nonexpansive Mapping, Marcel Dekker, New York, 1984.
5. G.J. Habetler and A.L. Price, Existence theory for generalized nonlinear complementarity problems, J. Optim. Theory Appl., 7 (1971), 223-239.
6. G. Isac, Complementarity Problem, Springer-Verlag, Berlin, 1992.
7. G. Isac, Topological Methods for Complementarity Theory, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.
8. C.R. Jou and J.C. Yao, Algorithm for generalized multivalued variational inequalities in Hilbert space, Computers Math. Applic., 25 (1993), 7-13.
9. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287-292.
10. S. Karamardian, Generalized complementarity problems, J. Optim. Theory Appl., $\mathbf{8}$ (1971), 161-168.
11. S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475488.

Fu-Quan Xia
Department of Mathematics,
Sichuan Normal University,
Chengdu, Sichuan 610066,
P. R. China
E-mail: fuquanxia@sina.com
Nan-Jing Huang
Department of Mathematics, Sichuan University,
Chengdu, Sichuan 610064,
P. R. China
E-mail: nanjinghuang@hotmail.com

[^0]: Received December 17, 2005, accepted October 13, 2006.
 Communicated by Sen-Yen Shaw.
 2000 Mathematics Subject Classification: 90C33, 49J40, 47H10.
 Key words and phrases: A system of co-complementarity problems, Iterative algorithm, Sunny nonexpansive retraction mapping, Set-valued mapping, Strongly accretive mapping.
 This work was supported by the National Natural Science Foundation of China, the Applied Research Project of Sichuan Province (05JY029-009-1), the Educational Science Foundation of Chongqing (KJ051307) and the Natural Science Foundation of Sichuan Education Department of China (072B068)

