AN ENGEL CONDITION WITH GENERALIZED DERIVATIONS ON LIE IDEALS

N. Argaç, L. Carini and V. De Filippis

Abstract

Let R be a prime ring, with extended centroid C, g a non-zero generalized derivation of R, L a non-central Lie ideal of $R, k \geq 1$ a fixed integer. If $[g(u), u]_{k}=0$, for all u, then either $g(x)=a x$, with $a \in C$ or R satisfies the standard identity s_{4}. Moreover in the latter case either $\operatorname{char}(R)=2$ or $\operatorname{char}(R) \neq 2$ and $g(x)=a x+x b$, with $a, b \in Q$ and $a-b \in C$.

We also prove a more generalized version by replacing L with the set $[I, I]$, where I is a right ideal of R.

1. Introduction

Let R be a prime ring with center $Z(R)$ and extended centroid C, Q the Martindale quotients ring, U the Utumi quotients ring. We denote by $[a, b]=a b-b a$ the simple commutator of the elements $a, b \in R$ and by $[a, b]_{k}=\left[[a, b]_{k-1}, b\right]$, for $k>1$, the k-th commutator of a, b. A well known result of Posner [16] says that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for all $x \in R$, then R is commutative. In [7] Lanski generalizes the result of Posner, by replacing the element $x \in R$ with an element of a non-central Lie ideal L of R. More precisely he proves that if $[d(x), x]_{k}=0$ for all $x \in L$ and $k \geq 1$ a fixed integer, then $\operatorname{char}(R)=2$ and R satisfies s_{4}, the standard identity of degree 4 . Later in [8] Lee and Lee consider a similar Engel-condition, $[d(x), x]_{k}=0$, in case $x \in\left\{f\left(x_{1}, . ., x_{n}\right), x_{1}, . ., x_{n} \in I\right\}$, where I is a two-sided ideal of R and $f\left(x_{1}, . ., x_{n}\right)$ a multilinear polynomial in R. They show that either $f\left(x_{1}, . ., x_{n}\right)$ is central valued in R or $\operatorname{char}(R)=2$ and R satisfies s_{4}. More recently in [9] Lee extendes this last result to the case when the valutations of $f\left(x_{1}, . ., x_{n}\right)$ are in a right ideal I of R. In particular the author studies what happens when $f\left(x_{1}, . . x_{n}\right)$ is multilinear. In this case, the conclusion

[^0]is that $I=e R C$ for a suitable idempotent element $e \in I$ and either $f\left(x_{1}, . ., x_{n}\right)$ is central valued in $e R C e$ or $\operatorname{char}(R)=2$ and $e R C e$ satisfies s_{4}.

In this paper we will continue the line of investigation concerning the Engelconditions $[g(x), x]_{k}=0$ for all $x \in S$ a suitable subset of R, with g additive mapping in R. More precisely, in what follows $S=L$ denotes a non-central Lie ideal of R and g is a generalized derivation on R, i.e. an additive mapping on R such that $g(x y)=g(x) y+x d(y)$, for all $x, y \in R$ and d a derivation of R. In the first section we will prove the following:

Theorem. Let R be a prime ring, with extended centroid C, g a non-zero generalized derivation of R, L a non-central Lie ideal of $R, k \geq 1$ a fixed integer. If $[g(u), u]_{k}=0$, for all u, then either $g(x)=a x$, with $a \in C$ or R satisfies the standard identity s_{4}. Moreover in the latter case either $\operatorname{char}(R)=2$ or $\operatorname{char}(R) \neq 2$ and $g(x)=a x+x b$, with $a, b \in Q$ and $a-b \in C$.

Then we will extend the above result to the one-sided case, more precisely we will prove:

Theorem. Let R be a prime ring, g a non-zero generalized derivation of R, I a non-zero right ideal of R such that $[I, I] I \neq 0, k \geq 1$.

If $\left[g\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either $g(x)=c x$, for suitable $c \in R$, such that $(c-\gamma) I=0$ for a suitable $\gamma \in C$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and eRCe satisfies s_{4}. In the latter case either $\operatorname{char}(R)=2$ or $\operatorname{char}(R) \neq 2$ and $g(x)=c x+x b$, for suitable $c, b \in R$ and there exists $\gamma \in C$ such that $(c-b+\gamma) I=0$.

We would like to point out that in [10] Lee proves that every generalized derivation can be uniquely extended to a generalized derivation of U and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U. In particular Lee proves the following result:

Theorem 3 in [10]. Every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form $g(x)=a x+d(x)$, for some $a \in U$ and a derivation d on U.

For more details on generalized derivations we refer the reader to [5, 10, 14].

1. Engel Condition on Lie Ideals

Here we begin with the following:

Theorem 1. Let R be a non-commutative prime ring, $a, b \in R, I$ a two-sided ideal of $R, k \geq 1$ a fixed integer such that $\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$. Then either $a, b \in Z(R)$ or R satisfies the standard identity s_{4}. In the latter case either char $(R)=2$ or char $(R) \neq 2$ and $a-b \in Z(R)$.

Proof. Suppose that either $a \notin Z(R)$ or $b \notin Z(R)$. In both cases

$$
\left[a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}
$$

is a non-trivial generalized polynomial identity for I ando so also for R. By Theorem 2 in [1], $\left[a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}$ is also an identity for $R C$. By Martindale's result in [15] $R C$ is a primitive ring with non-zero socle. There exists a vectorial space V over a division ring D such that $R C$ is dense of D-linear transformations over V.

Suppose that $\operatorname{dim}_{D} V \geq 3$ and $\{v, v a\}$ are linearly D -independent for some $v \in V$. By the density of $R C$, there exists $w \in V$ such that $\{w, v, v a\}$ are linearly Dindependent and $x_{0}, y_{0} \in R C$ such that $v x_{0}=0, v y_{0}=0,(v a) x_{0}=w,(v a) y_{0}=0$ $w y_{0}=v a$. This leads to the contradiction $0=v\left[a\left[x_{0}, y_{0}\right]+\left[x_{0}, y_{0}\right] b,\left[x_{0}, y_{0}\right]\right]_{k}=$ $v a \neq 0$. Thus $\{v, v a\}$ are linearly D-dependent, for all $v \in V$, which implies that $a \in C$. From this, $R C$ satisfies $\left[\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}$. As above suppose that there exists $v \in V$ such that $\{v, v b\}$ are linearly D-independent. Then there exists $w \in V$ such that $\{v, v b, w\}$ are linearly D -independent and there exist $x_{0}, y_{0} \in R C$ such that $v x_{0}=w, v y_{0}=0, w y_{0}=v,(v b) x_{0}=v,(v b) y_{0}=0$. This implies that $0=v\left[\left[x_{0}, y_{0}\right] b,\left[x_{0}, y_{0}\right]\right]_{k}=(-1)^{k} v b \neq 0$, a contradiction. Also in this case we conclude that $\{v, v b\}$ are linearly D-dependent, for all $v \in V$, and so $b \in C$.

Consider now the case when $\operatorname{dim}_{D} V \leq 2$. In this condition $R C$ is a simple ring which satisfies a non-trivial generalized polynomial identity. By [17, Theorem 2.3.29] $R C \subseteq M_{t}(F)$, for a suitable field F, moreover $M_{t}(F)$ satisfies the same generalized identity of $R C$, hence $\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in$ $M_{t}(F)$. If $t \geq 3$, by the above argument, we get $a, b \in F$. If $t=1$ there is nothing to prove. Let $t=2$.

Suppose that $\operatorname{char}(R) \neq 2$, if not we are done. Denote $e_{i j}$ the usual matrix unit and $a=\sum a_{i j} e_{i j}, b=\sum b_{i j} e_{i j}$, for $a_{i j}, b_{i j} \in F$.

Notice that, if k is even:

$$
\begin{align*}
& {\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k} } \\
= & 2^{k-1}\left((a-b)\left[r_{1}, r_{2}\right]^{k+1}-\left[r_{1}, r_{2}\right]^{k+1}(a-b)\right) \tag{1}
\end{align*}
$$

and if k is odd:

$$
\begin{align*}
& {\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k} } \\
= & 2^{k-1}\left((a-b)\left[r_{1}, r_{2}\right]^{k+1}-\left[r_{1}, r_{2}\right]^{k}(a-b)\left[r_{1}, r_{2}\right]\right) \tag{2}
\end{align*}
$$

Choose $\left[r_{1}, r_{2}\right]=e_{i i}-e_{j j}$ for any $i \neq j$.
In case k is even, from (1) and since $\operatorname{char}(R) \neq 2$, we get

$$
0=(a-b)\left(e_{i i}-e_{j j}\right)-\left(e_{i i}-e_{j j}\right)(a-b)
$$

and right multiplying by $e_{i i}$ and left multiplying by $e_{j j}$:

$$
0=e_{j j}(a-b) e_{i i}+e_{j j}(a-b) e_{i i}
$$

that is $2\left(a_{j i}-b_{j i}\right)=0$, which means that $a-b$ is a diagonal matrix.
In case k is odd, from (2) and since $\operatorname{char}(R) \neq 2$,

$$
0=(a-b)-\left(e_{i i}-e_{j j}\right)(a-b)\left(e_{i i}-e_{j j}\right)
$$

and again right multiplying by $e_{i i}$ and left multiplying by $e_{j j}$:

$$
0=e_{j j}(a-b) e_{i i}+e_{j j}(a-b) e_{i i}
$$

that is $a-b$ is a diagonal matrix as above.
Let now φ is an automorphism of $M_{2}(F)$, the same conclusion holds for $\varphi(a-b)$, since as above, for all $r_{1}, r_{2} \in M_{2}(F)$

$$
0=\left[\varphi(a) \varphi\left(\left[r_{1}, r_{2}\right]\right)+\varphi\left(\left[r_{1}, r_{2}\right]\right) \varphi(b), \varphi\left(\left[r_{1}, r_{2}\right]\right)\right]_{k}
$$

Therefore $\varphi(a-b)$ must be a diagonal matrix. In particular choose $\varphi(x)=(1+$ $\left.e_{i j}\right) x\left(1-e_{i j}\right)$ for $i \neq j$. Thus the (i, j) entry of the matrix $\varphi(a-b)$ must be zero, that is $a_{j j}-b_{j j}=a_{i i}-b_{i i}$ for all $i \neq j$, which means that $a-b$ is a central element.

As a natural consequence we obtain the following:
Corollary 1. Let R be a non-commutative prime ring, $a \in R, I$ a two-sided ideal of $R, k \geq 1$ a fixed integer.

If $\left[a\left[r_{1}, r_{2}\right],\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either $a \in Z(R)$ or $\operatorname{char}(R)=2$ and R satisfies the standard identity s_{4}.

Corollary 2. Let R be a non-commutative prime ring, $b \in R, I$ a two-sided ideal of $R, k \geq 1$ a fixed integer.

If $\left[\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either $b \in Z(R)$ or $\operatorname{char}(R)=2$ and R satisfies the standard identity s_{4}.

Now we will consider the Engel condition on Lie ideals:
Theorem 2. Let R be a prime ring, with extended centroid C, g a nonzero generalized derivation of R, L a non-central Lie ideal of $R, k \geq 1$ a fixed
integer. If $[g(u), u]_{k}=0$, for all u, then either $g(x)=a x$, with $a \in C$ or R satisfies the standard identity s_{4}. Moreover in the latter case either char $(R)=2$ or $\operatorname{char}(R) \neq 2$ and $g(x)=a x+x b$, with $a, b \in Q$ and $a-b \in C$.

Proof. Since L is a non-central Lie ideal, by [4, pages 4-5] we have that either $\operatorname{char}(R)=2$ and R satisfies s_{4}, or there exists a two-sided ideal I of R such that $[I, I] \subseteq L$. In this last case we get that $\left[g\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]_{k}=0$ for any r_{1}, r_{2} $\in I$.

Denote $g(x)=a x+d(x)$, for $a \in Q$, the Martindale quotient ring of R, and d a derivation of U.

If d is an inner derivation induced by an element $c \in Q$, it follows that

$$
\left[(a+c)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] c,\left[r_{1}, r_{2}\right]\right]_{k}=0
$$

for any $r_{1}, r_{2} \in I$, and by theorem 1 we have that one of the following holds:
(i) $\operatorname{char}(R)=2$ and R satisfies s_{4}, and we are done;
(ii) $a+c$ and c are central elements, that is $a, c \in C$, so that $d=0$ and $g(x)=a x$;
(iii) $\operatorname{char}(R) \neq 2, R$ satisfies s_{4} and $(a+c)-(-c)=a+2 c \in C$, which means that $g(x)=a^{\prime} x+x b^{\prime}$, with $a^{\prime}=a+c, b^{\prime}=-c$ and $a^{\prime}-b^{\prime} \in C$.

Let now d an outer derivation. Since

$$
\begin{equation*}
0=\left[a\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right],\left[x_{1}, x_{2}\right]\right]_{k} \tag{3}
\end{equation*}
$$

is an identity for I, by Kharchenko's result in [6], it follows that $\left[a\left[r_{1}, r_{2}\right],\left[r_{1}, r_{2}\right]\right]_{k}=$ 0 for any $r_{1}, r_{2} \in I$ and we end up, by Corollary 1 , that either $\operatorname{char}(R)=2$ and R satisfies s_{4}, or $a \in C$. In this last case, from (3), we have that

$$
\left[\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right],\left[x_{1}, x_{2}\right]\right]_{k}
$$

is an identity for I and again by Kharchenko's theorem in [6], it follows that $\left[\left[x_{1}, x_{3}\right],\left[x_{1}, x_{2}\right]\right]_{k}$ is an identity for I. This implies obviously that R is a P.I.-ring satisfying $\left[\left[x_{1}, x_{3}\right],\left[x_{1}, x_{2}\right]\right]_{k}$. Thus there exists a field F such that R and $M_{t}(F)$, the ring of $t \times t$ matrices over F, satisfy the same polynomial identities. If $t=1 R$ is commutative, which is a contradiction since L is not central. Moreover in case $t=2$ and $\operatorname{char}(R)=2$ we are also done.

Suppose $t=2$ and $\operatorname{char}(R) \neq 2$. Pick $x_{1}=e_{12}, x_{2}=e_{21}$ and $x_{3}=e_{22}$. By calculation we have the contradiction $0=\left[\left[x_{1}, x_{3}\right],\left[x_{1}, x_{2}\right]\right]_{k}=(-2)^{k} e_{12}$.

Assume now that $t \geq 3$ and choose $x_{1}=e_{13}, x_{2}=e_{31}, x_{3}=e_{32}$. Also in this case we get the contradiction $0=\left[\left[x_{1}, x_{3}\right],\left[x_{1}, x_{2}\right]\right]_{k}=(-1)^{k} e_{12}$.

2. Engel Condition on Right Ideals

Now we extend the previous results to a non-zero right ideal of R and prove the following:

Theorem. Let R be a prime ring, g a non-zero generalized derivation of R, I a non-zero right ideal of R such that $[I, I] I \neq 0, k \geq 1$.

If $\left[g\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either $g(x)=c x$, for suitable $c \in R$, such that $(c-\gamma) I=0$ for a suitable $\gamma \in C$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and eRCe satisfies s_{4}. In the latter case either $\operatorname{char}(R)=2$ or $\operatorname{char}(R) \neq 2$ and $g(x)=c x+x b$, for suitable $c, b \in R$ and there exists $\gamma \in C$ such that $(c-b+\gamma) I=0$.

We begin this section with:
Lemma 1. Let R be a prime ring, g a non-zero generalized derivation of R, I a non-zero right ideal of $R, k \geq 1$ a fixed integer such that $\left[g\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$. Then R satisfies a non-trivial generalized polynomial identity, except when $g(x)=a x$, with $a \in Q$ and there exists $\lambda \in C$ such that $(a-\lambda) I=0$.

Proof. Consider the generalized derivation g assuming the form $g(x)=a x+$ $d(x)$, for an usual derivation d of R. We divide the proof into two cases:

Case 1. Suppose that the derivation d is inner, induced by some element $q \in Q$, that is $d(x)=[q, x]$.

Thus we have, for all $r_{1}, r_{2} \in I$

$$
\left.\left[a\left[r_{1}, r_{2}\right]+d\left(\left[r_{1}, r_{2}\right]\right)\right),\left[r_{1}, r_{2}\right]\right]_{k}=\left[(a+q)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] q,\left[r_{1}, r_{2}\right]\right]_{k}=0
$$

and denote $a+q=c$, so that

$$
\left[c\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] q,\left[r_{1}, r_{2}\right]\right]_{k}=0
$$

If both c and q are central elements we conclude that $g(x)=a x, a \in C$. Thus consider that one of q and c is non-central.

Let $u \in I$ such that $\{c u, u\}$ are linearly C-independent. If $q u=\beta u$ for some $\beta \in C$, then R satisfies

$$
\begin{aligned}
& \sum_{i+j=k-1}\left[u x_{1}, u x_{2}\right]^{i}\left(c\left[u x_{1}, u x_{2}\right]-\left[u x_{1}, u x_{2}\right] \beta\right)\left[u x_{1}, u x_{2}\right]^{j} \\
& \quad+\left[u x_{1}, u x_{2}\right]^{k}\left(c\left[u x_{1}, u x_{2}\right]-\left[u x_{1}, u x_{2}\right] q\right)
\end{aligned}
$$

which is a non-trivial GPI. On the other hand

$$
\left[c\left[u x_{1}, u x_{2}\right]-\left[u x_{1}, u x_{2}\right] q,\left[u x_{1}, u x_{2}\right]\right]_{k}
$$

is a non-trivial GPI also in case $\{q, q u\}$ are linearly C-independent.
Let now $c u=\alpha u$ for some $\alpha \in C$. Then R satisfies

$$
\left[\alpha\left[u x_{1}, u x_{2}\right]-\left[u x_{1}, u x_{2}\right] q,\left[u x_{1}, u x_{2}\right]\right]_{k}
$$

which is again a non-trivial GPI for R.
Case 2. Let now d be an outer derivation. Since I satisfies

$$
\left.\left[a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right),\left[x_{1}, x_{2}\right]\right]_{k}
$$

it also satisfies

$$
\left[(a-\lambda)\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right),\left[x_{1}, x_{2}\right]\right]_{k}
$$

for any $\lambda \in C$.
Note that, if there exists $\lambda \in C$ such that $(a-\lambda) I=0$, then $\left[d\left(\left[x_{1}, x_{2}\right]\right),\left[x_{1}, x_{2}\right]\right]_{k}$ is a differential identity for I. In this case, by [9], one of the following holds:

- $\left[x_{1}, x_{2}\right] x_{3}$ is an identity for I, so R is a GPI-ring;
$-\operatorname{char}(R)=2$ and $s_{4}(I, I, I, I) I=0$ and again R is GPI;
- $d=0$ and so $g(x)=a x$ for $(a-\lambda) I=0$, and again we are done.

Consider the case when $(a-\alpha) I \neq 0$, for all $\alpha \in C$. We note that, under this assumption, there exists $u \in I$ such that $a u \neq \alpha u$, for all $\alpha \in C$. In fact, if suppose that $\{a y, y\}$ are linearly C-dependent, for all $y \in I$, then, by Lemma 3 in [11], there exists $\beta \in C$ such that $(a-\beta) I=0$, a contradiction.

Since I and $I U$ satisfy the same differential identities,

$$
\left[a\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right),\left[x_{1}, x_{2}\right]\right]_{k}
$$

is an identity for $I U$, that is

$$
\left[a\left[u x_{1}, u x_{2}\right]+d\left(\left[u x_{1}, u x_{2}\right]\right),\left[u x_{1}, u x_{2}\right]\right]_{k}
$$

is an identity for U. Thus U satisfies the following

$$
\left[a\left[u x_{1}, u x_{2}\right]+\left[d(u) x_{1}+u d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d(u) x_{2}+u d\left(x_{2}\right)\right],\left[u x_{1}, u x_{2}\right]\right]_{k} .
$$

Since d is an outer derivation, by Kharchenko's result in [6], U satisfies the identity

$$
\left[a\left[u x_{1}, u x_{2}\right]+\left[d(u) x_{1}+u y_{1}, x_{2}\right]+\left[x_{1}, d(u) x_{2}+u y_{2}\right],\left[u x_{1}, u x_{2}\right]\right]_{k} .
$$

which is a non-trivial GPI for R, since $a u$ and u are linearly C-independent.
Remark 1. Without loss of generality R is simple and equal to its own socle, $I R=I$.

In fact by Lemma $1, R$ is GPI and so $R C$ has non-zero socle H with non-zero right ideal $J=I H$ [15]. Note that H is simple, $J=J H$ and J satisfies the same basic conditions as I [13]. Now just replace R by H, I by J and we are done.

Remark 2. It is well known that all the following statements hold (see [12]):
(1) If $\left[x_{1}, x_{2}\right] x_{3}$ is an identity for I, then there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and $e R C e$ is commutative;
(2) if $\operatorname{char}(R)=2$ and I satisfies $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) x_{5}$ then there exists $e^{2}=e \in$ $\operatorname{soc}(R C)$ such that $I C=e R C$ and $s_{4}\left(x_{1}, . ., x_{4}\right)$ is an identity for $e R C e$;

Remark 3. Since $R=H$ is a regular ring, then for any $a_{1}, \ldots, a_{n} \in I$ there exists $h=h^{2} \in R$ such that $\sum_{i=1}^{n} a_{i} R=h R$. Then $h \in I R=I$ and $a_{i}=h a_{i}$ for each $i=1, . ., n$.

In order to continue our line of investigation, we need the following:
Lemma 2. Let R be a prime ring, $a \in R, I$ a non-zero right ideal of R, $k \geq 1$, such that $[I, I] I \neq 0$. If $\left[a\left[r_{1}, r_{2}\right],\left[r_{1}, r_{2}\right]\right]_{k}=0$ for all $r_{1}, r_{2} \in I$, then either $(a-\gamma) I=0$ for a suitable $\gamma \in C$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C, \operatorname{char}(R)=2$ and $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is an identity for $e R C e$.

Proof. Suppose by contradiction that there exist $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9} \in$ I such that
$-\left[c_{1}, c_{2}\right] c_{3} \neq 0 ;$

- if $\operatorname{char}(R)=2, s_{4}\left(c_{4}, c_{5}, c_{6}, c_{7}\right) c_{8} \neq 0 ;$
$-\left\{c_{9}, a c_{9}\right\}$ are linearly C-independent.
By Remark 3, there exists an idempotent element $h \in I H=I R$ such that $h R=$ $\sum_{i=1}^{9} c_{i} R$ and $c_{i}=h c_{i}$, for any $i=1, . ., 9$. Since $\left[a\left[h x_{1}, h x_{2}\right],\left[h x_{1}, h x_{2}\right]\right]_{k}$ is satisfied by $R=H$, left multiplying by $(1-h)$, we get that R satisfies ($1-$ h) $a\left[h x_{1}, h x_{2}\right]^{k+1}$. By [2] it follows that either $(1-h) a h=0$ or $\left[h x_{1}, h x_{2}\right] h x_{3}$ is a generalized identity for R. Since this last contradicts with $\left[c_{1}, c_{2}\right] c_{3} \neq 0$, we have that $a h=h a h$. Moreover $\left[a\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}\right]\right]_{k}$ is also satisfied by $h R h$.

By Corollary 1, again since $\left[c_{1}, c_{2}\right] c_{3} \neq 0$, we get either $a h \in C h$ or $\operatorname{char}(R)=$ 2 and $h R h$ satisfies s_{4}.

In the last case we get a contradiction since $s_{4}\left(c_{4}, c_{4}, c_{6}, c_{7}\right) c_{8} \neq 0$ when $\operatorname{char}(R)=2$. In the first case, if $a h \in C h$, then there exists $\lambda \in C$ such that $a h c_{9}=(\lambda) h c_{9}$, that is $a c_{9}=\lambda c_{9}$, a contradiction again.

Lemma 3. Let $R=M_{n}(F)$ the ring of $n \times n$ matrices over the field F. Let $b \in R$ and I a non-zero right ideal of R such that $s_{4}(I, I, I, I) I \neq 0$. If $\left[\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for all $r_{1}, r_{2} \in I$, then $b \in F$.

Proof. We denote again $e_{i j}$ the usual matrix unit with 1 in the (i, j)-entry and zero elsewhere and write $b=\sum b_{i j} e_{i j}$, with $b_{i j}$ elements of F. Moreover assume $I=e R$ for some $e=\sum_{i=1}^{t} e_{i i}$ and $t \geq 3$.

Since $s_{4}(I, I, I, I) I \neq 0$, there exist $c_{1}, c_{2}, c_{3}, c_{4}, c_{5} \in I$ such that $s_{4}\left(c_{1}, c_{2}\right.$, $\left.c_{3}, c_{4}\right) c_{5} \neq 0$. Let $[x, y]=\left[e_{i j}, e_{j i}\right]=e_{i i}-e_{j j} \in[I, I]$, for $1 \leq i, j \leq t$ and $i \neq j$. Then $0=\left[\left(e_{i i}-e_{j j}\right) b,\left(e_{i i}-e_{j j}\right)\right]_{k}$ and right multiplying by $e_{r r}$, for $r \neq i, j$, we have $0=\left(e_{i i}-e_{j j}\right)^{k+1} b e_{r r}$. Left multiplying by $e_{i i}$ we have that $b_{i r}=0$ for all $r \neq i, j$. Choose now another index $l \neq j$ such that $1 \leq l \leq t$ and $l \neq i$. As above we get the condition $0=\left(e_{i i}-e_{l l}\right)^{k+1} b e_{r r}$ for all $r \neq i, l$ and once again, left multiplying by $e_{i i}$, we have $b_{i r}=0$ for all $r \neq i, l$. In particular, since $j \neq l$, one has that $b_{i j}=0$. All this says that, if you fix an index $i \leq t$, it follows that $b_{i r}=0$ for any $r \neq i$.

Let now $i, j \leq t$ be different indeces and $r>t, s \neq i, j, r$. For $[x, y]=$ $\left[e_{i j}, e_{j r}+e_{j i}\right]=e_{i r}+e_{i i}-e_{j j} \in[I, I]$,

$$
0=\left[\left(e_{i r}+e_{i i}-e_{j j}\right) b, e_{i r}+e_{i i}-e_{j j}\right]_{k}
$$

and right multiplying by $e_{s s}$

$$
0=\left(e_{i r}+e_{i i}-e_{j j}\right)^{k+1} b e_{s s}=\left(e_{i r}+e_{i i}+(-1)^{k+1} e_{j j}\right) b e_{s s}
$$

Since we have proved above that $b_{i s}=0$ and $b_{j s}=0$, in this last case we get $b_{r s}=0$ for all $r>t$ and $s \neq i, j, r$. As above, since $t \geq 3$, by repeating this process for any couple $(i \neq j)$, we get that $b_{r s}=0$ for all $r>t$ and $s \neq r$.

The previous argument says that $b=\sum_{i=1, n} b_{i i} e_{i i}$.
Let $r \neq s$ be both $\leq t$ and f be the F-automorphism of R defined by $f(x)=(1-$ $\left.e_{r s}\right) x\left(1+e_{r s}\right)$. Thus we have that $f(x) \in I$, for all $x \in I$ and $\left[\left[r_{1}, r_{2}\right] f(b),\left[r_{1}, r_{2}\right]\right]_{k}=$ 0 , for all $r_{1}, r_{2} \in I$. Since $f(b)=\left(1-e_{r s}\right) b\left(1+e_{r s}\right)=b+b_{r r} e_{r s}-b_{s s} e_{r s}$ we have that $b_{r r}=b_{s s}$ for all $r, s \leq t$, that is $b=\beta e+\sum_{i=t+1, n} b_{i i} e_{i i}$, for a suitable $\beta \in F$.

This means that there exists $\beta \in F$ such that $(b-\beta) I=0$. Denote $b-$ $\beta=p, p I=0$. Since $\left[\left[r_{1}, r_{2}\right] p,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for all $r_{1}, r_{2} \in I$, we have that $\left[r_{1}, r_{2}\right]^{k+1} p=0$. In this case, by the assumption that $s_{4}\left(c_{1}, c_{2}, c_{3}, c_{4},\right) c_{5} \neq 0$ and by [2] we have $p=0$ that is $b \in F$.

Lemma 4. Let R be a prime ring, $b \in R$ and I a non-zero right ideal of R such that $s_{4}(I, I, I, I) I \neq 0$. If $\left[\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for all $r_{1}, r_{2} \in I$, then $b \in C$.

Proof. We consider the only case when R satisfies a non-trivial generalized polynomial identity, as a reduction of Lemma 1.

Thus the Martindale quotients ring Q of R is a primitive ring with non-zero socle $H=\operatorname{Soc}(Q) . \quad H$ is a simple ring with minimal right ideals. Let D the associated division ring of H, it is well known that D is a simple central algebra finite dimensional over $C=Z(Q)$. Thus $H \otimes_{C} F$ is a simple ring with minimal right ideals, with F the central closure of C. Let b an element of R which induces the derivation d. Moreover $\left[\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for all $r_{1}, r_{2} \in I H \otimes_{C} F$ (see for instance [1, theorem 2]). Notice that if C is finite, we choose $F=C$.

Suppose that there exist $c_{1}, c_{2} \in I H$ and such that $\left[b, c_{1}\right] c_{2} \neq 0$. Moreover we know that $\left[\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for all $r_{1}, r_{2} \in I H$. Since H is regular, by Litoff's theorem (see [3]), there exists $g^{2}=g \in I H$, such that $c_{1}, c_{2} \in g\left(I H \otimes_{C} F\right)$, and $e^{2}=e \in H \otimes_{C} F$, such that

$$
g, b g, g b, c_{1}, c_{2}, b c_{1}, c_{1} b \in e\left(H \otimes_{C} F\right) e \cong M_{n}(F) \quad \text { and } \quad n \geq 3
$$

Let $x_{1}, x_{2} \in g e\left(H \otimes_{C} F\right) e \subseteq\left(I H \otimes_{C} F\right) \cap M_{n}(F)$, then

$$
0=\left[\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k} e=\left[\left[x_{1}, x_{2}\right] \text { ebe },\left[x_{1}, x_{2}\right]\right]_{k} .
$$

By Lemma 3 we have that $\left[e b e, g e\left(H \otimes_{C} F\right) e\right] g e\left(H \otimes_{C} F\right) e=0$. In particular $\left[e b e, g c_{1}\right] g c_{2}=0$ and hence $\left[b, c_{1}\right] c_{2}=0$ a contradiction. This means that $[b, I H] I H=0$ and so there exists $\beta \in C$ such that $(b-\beta) I=0$. Denote $b^{\prime}=$ $(b-\beta)$, so $b^{\prime} I=0$ and, for all $r_{1}, r_{2} \in I H, 0=\left[\left[r_{1}, r_{2}\right] b^{\prime},\left[r_{1}, r_{2}\right]\right]_{k}=\left[r_{1}, r_{2}\right]^{k+1} b^{\prime}$. Since $s_{4}(I, I, I, I) I \neq 0$, it follows from [2] that $b^{\prime}=0$, that is $b \in C$.

Theorem 3. Let R be a prime ring, $a, b \in R, I$ a non-zero right ideal of R such that $[I, I] I \neq 0, k \geq 1$.

If $\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either there exist $\alpha, \beta \in C$ such that $(a-\alpha) I=0$ and $b=\beta$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and eRCe satisfies s_{4}. Moreover in the latter case either char $(R)=2$ or there exists $\gamma \in C$ such that $(a-b+\gamma) I=0$ and $\operatorname{char}(R) \neq 2$.

Proof. First suppose that there exist $c_{1}, . ., c_{5} \in I$ such that $s_{4}\left(c_{1}, c_{2}, c_{3}, c_{4}\right) c_{5} \neq$ 0.

Of course we are done if there exists $\alpha \in C$ such that $(a-\alpha) I=0$. In fact in this case we have that for $a^{\prime}=(a-\alpha)$:

$$
0=\left[a^{\prime}\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}=\left[\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}
$$

for all $x_{1}, x_{2} \in I$ and we conclude by lemma 4. Therefore suppose that there exists $c_{6} \in I$ such that $\left\{a c_{6}, c_{6}\right\}$ are linearly C -independent. Again there exists
an idempotent element $h \in I R$ such that $h R=\sum_{i=1}^{6} c_{i} R$ and $c_{i}=h c_{i}$, for all $i=1, . ., 6$. Of course

$$
\left[a\left[h x_{1} h, h x_{2} h\right]+\left[h x_{1} h, h x_{2} h\right] b,\left[h x_{1} h, h x_{2} h\right]\right]_{k}
$$

is satisfied by R. Thus, a fortiori,

$$
h\left[a\left[h x_{1} h, h x_{2} h\right]+\left[h x_{1} h, h x_{2} h\right] b,\left[h x_{1} h, h x_{2} h\right]\right]_{k} h
$$

is satisfied by R and so also

$$
\left[(h a h)\left[h x_{1} h, h x_{2} h\right]+\left[h x_{1} h, h x_{2} h\right](h b h),\left[h x_{1} h, h x_{2} h\right]\right]_{k} .
$$

Therefore, by applying the theorem 1 to the ring $h R h$, we have that $h a h, h b h \in C h$, since $s_{4}(h R h, h R h, h R h, h R h) h R h \neq 0$.

Moreover

$$
\begin{equation*}
\left[a\left[h r_{1}, h r_{2}\right]+\left[h r_{1}, h r_{2}\right] b,\left[h r_{1}, h r_{2}\right]\right]_{k}=0 \tag{E1}
\end{equation*}
$$

for any $r_{1}, r_{2} \in R$. Left multiplying the (E1) by $(1-h)$ we get $(1-h) a\left[h r_{1}, h r_{2}\right]^{k+1}=$ 0 and by [2] it follows that $(1-h) a h=0$, since $[h R, h R] h R \neq 0$. This implies that $a h=h a h \in C h$, so $(a-\alpha) h=0$ for a suitable $\alpha \in C$ and this contradicts with $(a-\alpha) h c_{6}=(a-\alpha) c_{6} \neq 0$.

Now suppose that $s_{4}(I, I, I, I) I=0$. By remark 2, there exists an idempotent $e^{2}=e \in \operatorname{soc}(R C)$ such that $I=e R C$ and $s_{4}(e R C e, e R C e, e R C e, e R C e)=0$.If $\operatorname{char}(R)=2$ we are done. Consider that case when $\operatorname{char}(R) \neq 2$.

Again we repeat the same above argument: since $\left[a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}$ is satisfied by $e R e$, by Theorem 1 we have that either eae, ebe $\in C e$, or (eae-ebe) \in $C e$, since $\operatorname{char}(R) \neq 2$. Moreover, as above we have that $(1-e) a e=0$ that is $a e=e a e$.

Also we have that

$$
\begin{equation*}
\left[a\left[e r_{1} e, e r_{2} e\right]+\left[e r_{1} e, e r_{2} e\right] b,\left[e r_{1} e, e r_{2} e\right]\right]_{k}=0 \tag{E2}
\end{equation*}
$$

for all $r_{1}, r_{2} \in R$. Right multiplying the (E2) by (1-e) it follows that $\left[e r_{1} e, e r_{2} e\right]^{k+1}$ $b(1-e)=0$, that is again $e b(1-e)=0$ by [2], since $[e R, e R] e R \neq 0$ and so $e b=e b e$.

Case 1. If $a e, e b \in C e$ we may repeat the same proof of the first part of this lemma and conclude that $(a-\alpha) e=0$, for a suitable $\alpha \in C$, that is $(a-\alpha) I=0$ and $b \in C$.

Case 2. If $(a e-e b) \in C e$, consider $h=e+e r(1-e)$ for an arbitrary element $r \in R$. Notice that $h^{2}=h$ and $e R=h R$. Moreover $\left[a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]\right]_{k}$
is satisfied by $h R C h$ and also $s_{4}(h R C h, h R C h, h R C h, h R C h)=0$. This means that we may repeat the same above argument replacing $I=e R C$ with $I=h R C$. Therefore, as we have seen before, we are done in any case, unless when $a h-h b \in$ $C h$. Hence, to complete the proof we have to analyze this last case. We have that $a h-h b \in C h$ means

$$
\begin{equation*}
a(e+e r(1-e))-(e+e r(1-e)) b=\lambda(e+e r(1-e)) \tag{E3}
\end{equation*}
$$

for all $r \in R$ and λ depending on the choice of r. The (E3) says

$$
a e+a e r(1-e)-e b-e r(1-e) b=\lambda(e+e r(1-e))
$$

and right multiplying by e we have

$$
a e-e b-e r(1-e) b e=\lambda e
$$

Since $a e-e b \in C e$, it follows that for all $r \in R$ there exists $\lambda \in C$, depending on the choice of r, such that $\operatorname{er}(1-e) b e=\lambda e$.

If, for any $r \in R, \operatorname{er}(1-e) b e=0$ then $(1-e) b e=0$, hence $b e=e b e=e b$, that is $(a e-b e) \in C e$ and so $(a-b) I=\alpha I$, for a suitable $\alpha \in C$, and we are done.

Thus suppose that there exists $r_{0} \in R$ such that $\operatorname{er}_{0}(1-b) e=\mu e \neq 0$, for $0 \neq \mu \in C$.

Choose $r=\left[r_{0}, y e\right]$ for all $y \in R$. There exists a suitable $\gamma \in C$ such that:

$$
\gamma e=e\left[r_{0}, y e\right](1-e) b e=e^{y e r}(1-e) b e=\mu e y e \quad(E 4)
$$

Since (E4) means that eye $\in C e$ for all $y \in R$, it follows that $[e R C, e R C] e R C=$ $[I, I] I=0$, a contradiction.

Theorem 4. Let R be a prime ring, g a non-zero generalized derivation of R, I a non-zero right ideal of R such that $[I, I] I \neq 0, k \geq 1$.

If $\left[g\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]_{k}=0$, for any $r_{1}, r_{2} \in I$, then either $g(x)=c x$, for suitable $c \in R$, such that $(c-\gamma) I=0$ for a suitable $\gamma \in C$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and $e R C e$ satisfies s_{4}. Moreover in the latter case either $\operatorname{char}(R)=2$ or $\operatorname{char}(R) \neq 2, g(x)=c x+x b$, for suitable $c, b \in R$ and there exists $\gamma \in C$ such that $(c-b+\gamma) I=0$.

Proof. As we have already remarked, every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form $g(x)=$ $a x+d(x)$, for some $a \in U$ and a derivation d on U.

If $d=0, g(x)=a x$ and we conclude by Lemma 2. Thus we suppose that $d \neq 0$.

For $u \in I, U$ satisfies the following differential identity

$$
\left[a\left[u x_{1}, u x_{2}\right]+d\left(\left[u x_{1}, u x_{2}\right]\right),\left[u x_{1}, u x_{2}\right]\right]_{k} .
$$

In light of Kharchenko's theory ([6], [13]), we divide the proof into two cases:
Case 1. Let d the inner derivation induced by the element $q \in U$, that is $d(x)=[q, x]$, for all $x \in U$. Thus I satisfies the generalized polynomial identity

$$
\begin{gathered}
{\left[a\left[x_{1}, x_{2}\right]+q\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q,\left[x_{1}, x_{2}\right]\right]_{k}} \\
=\left[(a+q)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] q,\left[x_{1}, x_{2}\right]\right]_{k} .
\end{gathered}
$$

If denote $-q=b$ and $a+q=c$, the generalized derivation g is defined as $g(x)=$ $c x+x b$, and we get the conclusion thanks to Theorem 3 .

Case 2. Let now d an outer derivation of U. Since $[I, I] I \neq 0$, there exist $c_{1}, c_{2}, c_{3} \in I$ such that $\left[c_{1}, c_{2}\right] c_{3} \neq 0$. By the regurality of R there exists $e^{2}=e \in$ $I R$ such that $e R=c_{1} R+c_{2} R+c_{3} R$ and $c_{i}=e c_{i}$ for $i=1,2,3$. By

$$
\left[a\left[e x_{1}, e x_{2}\right]+d\left(\left[e x_{1}, e x_{2}\right]\right),\left[e x_{1}, e x_{2}\right]\right]_{k}=0
$$

we have that

$$
\left[a\left[e x_{1}, e x_{2}\right]+\left[d(e) x_{1}+e d\left(x_{1}\right), e x_{2}\right]+\left[e x_{1}, d(e) x_{2}+e d\left(x_{2}\right)\right],\left[e x_{1}, e x_{2}\right]\right]_{k}=0
$$

Since d is an outer derivation, by Kharchenko's result in [6], R satisfies the identity

$$
\left[a\left[e x_{1}, e x_{2}\right]+\left[d(e) x_{1}+e y_{1}, e x_{2}\right]+\left[e x_{1}, d(e) x_{2}+e y_{2}\right],\left[e x_{1}, e x_{2}\right]\right]_{k} .
$$

Since for $y_{1}=y_{2}=0, U$ satisfies the blended component

$$
\left[a\left[e x_{1}, e x_{2}\right]+\left[d(e) x_{1}, e x_{2}\right]+\left[e x_{1}, d(e) x_{2}\right],\left[e x_{1}, e x_{2}\right]\right]_{k}
$$

it follows that U satisfies also the following

$$
\left[\left[e y_{1}, e x_{2}\right]+\left[e x_{1}, e y_{2}\right],\left[e x_{1}, e x_{2}\right]\right]_{k} .
$$

Again for $y_{1}=x_{2} U$ satisfies $\left[\left[e x_{1}, e y_{2}\right],\left[e x_{1}, e x_{2}\right]\right]_{k}$. In particular :

$$
0=\left[\left[e x_{1}, e y_{2}(1-e)\right],\left[e x_{1}, e x_{2}\right]\right]_{k}=\left[e x_{1}, e x_{2}\right]^{k} e x_{1} e y_{2}(1-e)=0
$$

that is $\left[e x_{1}, e x_{2}\right]^{k} e=0$. By [2] we have that $[e R, e R] e R=0$ a contradiction.

References

1. C. L. Chuang, GPIs' having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
2. C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24(2) (1996), 177-185.
3. C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1963), 369-371.
4. I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, 1969.
5. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), 11471166.
6. V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), 155-168.
7. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118(3) (1993), 731-734.
8. P. H. Lee and T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc., 124 (1996), 2625-2629.
9. T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Coll., 5(1) (1998), 13-24.
10. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
11. T. K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc., 347 (1995), 3159-3165.
12. T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Coll., 3 (1996), 19-24.
13. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
14. T. K. Lee and W. K. Shiue, Identities with generalized derivations, Comm. Algebra, 29(10) (2001), 4437-4450.
15. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
16. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 10931100.
17. L. Rowen, Polynomial identities in ring theory, Pure and Applied Math., 1980.

Nurçan Argaç
Department of Mathematics.
Ege University
Science Faculty, 35100,
Bornova, Izmir,
Turkey
E-mail: argac@sci.ege.edu.tr
Luisa Carini
Dipartimento di Matematica, Universitá di Messina,
Contrada Papardo, Salita Sperone 31,
98166 Messina,
Italy
E-mail: lcarini@dipmat.unime.it
Vincenzo De Filippis
Dipartimento di Matematica, Universitá di Messina,
Contrada Papardo,
Salita Sperone 31, 98166 Messina,
Italy
E-mail: defilippis@unime.it

[^0]: Received December 12, 2005, accepted September 14, 2006.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: Primary 16N60, Secondary 16W25.
 Key words and phrases: Generalized derivation, Differential identity, Generalized polynomial identity.

