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AN ENGEL CONDITION WITH GENERALIZED
DERIVATIONS ON LIE IDEALS

N. Argag, L. Carini and V. De Filippis

Abstract. Let R be a prime ring, with extended centroid C, g a non-zero
generalized derivation of R, L a non-central Lie ideal of R, £ > 1 a fixed
integer. If [g(u),u]x = 0, for all u, then either g(x) = az, with a € C
or R satisfies the standard identity s4. Moreover in the latter case either
char(R) = 2 or char(R) # 2 and g(xz) = ax + b, with a,b € @ and
a—beC.

We also prove a more generalized version by replacing L with the set
[1, I], where I is a right ideal of R.

1. INTRODUCTION

Let R be a prime ring with center Z(R) and extended centroid C, ) the Mar-
tindale quotients ring, U the Utumi quotients ring. We denote by [a, b] = ab — ba
the simple commutator of the elements a,b € R and by [a, b]; = [[a, b]x—1, ], for
k > 1, the k-th commutator of a,b. A well known result of Posner [16] says that
if d is a derivation of R such that [d(z),z] € Z(R), for all x € R, then R is com-
mutative. In [7] Lanski generalizes the result of Posner, by replacing the element
x € R with an element of a non-central Lie ideal L of R. More precisely he proves
that if [d(x), 2], = 0 for all z € L and k > 1 a fixed integer, then char(R) = 2 and
R satisfies s4, the standard identity of degree 4. Later in [8] Lee and Lee consider
a similar Engel-condition, [d(z), x]x = 0, in case x € {f(x1,..,2p), T1,.., Ty € [},
where I is a two-sided ideal of R and f(x1, .., 2,) a multilinear polynomial in R.
They show that either f(z1,..,x,) is central valued in R or char(R) = 2 and R
satisfies s4. More recently in [9] Lee extendes this last result to the case when
the valutations of f(z1,..,z,) are in a right ideal I of R. In particular the author
studies what happens when f(x1,..z,) is multilinear. In this case, the conclusion
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is that I = eRC for a suitable idempotent element e € I and either f(z1,..,2,) is
central valued in eRCe or char(R) = 2 and eRCe satisfies sy4.

In this paper we will continue the line of investigation concerning the Engel-
conditions [g(x),z]; = O for all x € S a suitable subset of R, with g additive
mapping in R. More precisely, in what follows S = L denotes a non-central Lie
ideal of R and g is a generalized derivation on R, i.e. an additive mapping on R
such that g(zy) = g(x)y + xd(y), for all x,y € R and d a derivation of R. In the
first section we will prove the following:

Theorem. Let R be a prime ring, with extended centroid C, g a non-zero
generalized derivation of R, L a non-central Lie ideal of R, k > 1 a fixed integer.
If [g(u),uly = 0, for all u, then either g(x) = ax, with a € C or R satisfies
the standard identity s,. Moreover in the latter case either char(R) = 2 or
char(R) # 2 and g(x) = ax + xb, with a,b € Q) and a —b € C.

Then we will extend the above result to the one-sided case, more precisely we
will prove:

Theorem. Let R be a prime ring, g a non-zero generalized derivation of R, 1
a non-zero right ideal of R such that [I,I1I #0, k > 1.

If [9([r1,72]), [r1,7m2)]k = O, for any r1,r9 € I, then either g(x) = cx, for
suitable ¢ € R, such that (¢ — ) = 0 for a suitable v € C or there exists an
idempotent element e € soc(RC') such that IC = eRC and eRCe satisfies s 4.
In the latter case either char(R) = 2 or char(R) # 2 and g(x) = cx + zb, for
suitable ¢,b € R and there exists vy € C such that (¢ —b+~v)I = 0.

We would like to point out that in [10] Lee proves that every generalized deriva-
tion can be uniquely extended to a generalized derivation of U and thus all gener-
alized derivations of R will be implicitly assumed to be defined on the whole U.
In particular Lee proves the following result:

Theorem 3 in [10]. Every generalized derivation g on a dense right ideal of R
can be uniquely extended to U and assumes the form g(z) = ax + d(x), for some

a € U and a derivation d on U.

For more details on generalized derivations we refer the reader to [5, 10, 14].

1. ENGEL CONDITION ON LIE IDEALS

Here we begin with the following:
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Theorem 1. Let R be a non-commutative prime ring, a,b € R, I a two-sided
ideal of R, k > 1 a fixed integer such that [a[r1,7r3] + [r1,1r2)b, [r1,72]]x = O, for
any r1,79 € I. Then either a,b € Z(R) or R satisfies the standard identity s 4. In
the latter case either char(R) = 2 or char(R) # 2 and a — b € Z(R).

Proof. Suppose that either a ¢ Z(R) or b ¢ Z(R). In both cases
lalz1, 22] + [z1, 22]b, [21, 22]]K

is a non-trivial generalized polynomial identity for I ando so also for R. By Theorem
2in[1], [a[z1, x2] + [z1, 22]b, [x1, 22]]k is also an identity for RC. By Martindale’s
result in [15] RC is a primitive ring with non-zero socle. There exists a vectorial
space V' over a division ring D such that RC' is dense of D-linear transformations
over V.

Suppose that dimpV > 3 and {v,va} are linearly D-independent for some
v € V. By the density of RC, there exists w € V such that {w, v, va} are linearly D-
independent and x¢, yo € RC such that vzy = 0, vyg = 0, (va)zy = w, (va)yo =0
wyp = va. This leads to the contradiction 0 = v[a[xo, yo] + [%0, Yob, [0, Yo]]x =
va # 0. Thus {v,va} are linearly D-dependent, for all v € V, which implies that
a € C. From this, RC satisfies [[x1, 22]b, [x1, z2]]k. As above suppose that there
exists v € V such that {v, vb} are linearly D-independent. Then there exists w € V'
such that {v, vb, w} are linearly D-independent and there exist z¢, yo € RC such
that vzy = w, vyy = 0, wyy = v, (vb)xg = v, (vb)yp = 0. This implies that
0 = v[[zo, Yolb, [xo, yollx = (—1)Fvb # 0, a contradiction. Also in this case we
conclude that {v, vb} are linearly D-dependent, for all v € V, and so b € C.

Consider now the case when dimpV < 2. In this condition RC is a simple
ring which satisfies a non-trivial generalized polynomial identity. By [17, Theorem
2.3.29] RC C M;(F), for a suitable field F', moreover M;(F') satisfies the same
generalized identity of RC, hence [a[r1, 7o]+[r1, r2]b, [r1, 72]]x = 0, for any r1, 79 €
M (F). If t > 3, by the above argument, we get a,b € F. If t = 1 there is nothing
to prove. Let t = 2.

Suppose that char(R) # 2, if not we are done. Denote e;; the usual matrix unit
and a = Zazjezj, b= sz‘jez‘j, for Qjj, bz‘j e F.

Notice that, if £ is even:

[a]r1, o] + [r1,72)b, [r1, T2] ]k

. =251 (= B, ral™* = 1,72l (@ = 1))
and if k£ is odd:

la[r1, 2] + [r1,72]b, [r1, 72] |k

2
2) = k-1 ((a —b)[ry, 1"2]’“+1 — [r1, rz]k(a —b)[r1, 7“2]) .
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Choose [r1, 2] = e;; — e;; for any i # j.
In case k is even, from (1) and since char(R) # 2, we get

0= (a—b)(ei — ej5) — (eii — ¢j5)(a = b)
and right multiplying by e;; and left multiplying by e;;:
0= ejj(a — b)eii + ejj(a — b)e“‘

that is 2(aj; — b;;) = 0, which means that a — b is a diagonal matrix.
In case k is odd, from (2) and since char(R) # 2,

0= (a—b) = (eii — ¢j;)(a = b)(eii — ¢j5)
and again right multiplying by e;; and left multiplying by e;;:
0= ejj(a — b)eii + ejj(a — b)e“‘

that is @ — b is a diagonal matrix as above.
Let now ¢ is an automorphism of Ms(F'), the same conclusion holds for ¢ (a—b),
since as above, for all 7, ry € My(F)

0 = [p(a)e([r1, ra]) + @([r1, 2] (b), @([r1, 2] k-

Therefore ¢(a — b) must be a diagonal matrix. In particular choose ¢(z) = (1 +
eij)x(1 —e;;) for i # j. Thus the (4, j) entry of the matrix ¢ (a — b) must be zero,
that is aj;—b;; =a;;—b;; for all 7 # j, which means that a — b is a central element. ®

As a natural consequence we obtain the following:

Corollary 1. Let R be a non-commutative prime ring, a € R, I a two-sided
ideal of R, k > 1 a fixed integer.

If [a[r1,ra), [r1,7m2)lk = O, for any ri,79 € I, then either a € Z(R) or
char(R) = 2 and R satisfies the standard identity s 4.

Corollary 2. Let R be a non-commutative prime ring, b € R, I a two-sided
ideal of R, k > 1 a fixed integer.

If [[r1,7r2)b, [r1, o)l = O, for any ri,79 € I, then either b € Z(R) or
char(R) = 2 and R satisfies the standard identity s 4.

Now we will consider the Engel condition on Lie ideals:

Theorem 2. Let R be a prime ring, with extended centroid C, g a non-
zero generalized derivation of R, L a non-central Lie ideal of R, k > 1 a fixed
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integer. If [g(u),u]x = 0, for all u, then either g(x) = ax, with a € C or R
satisfies the standard identity s 4. Moreover in the latter case either char(R) = 2
or char(R) # 2 and g(x) = ax + b, witha,b€ Q and a —b € C.

Proof. Since L is a non-central Lie ideal, by [4, pages 4-5] we have that either
char(R) = 2 and R satisfies s4, or there exists a two-sided ideal I of R such that
[I,I] C L. In this last case we get that [g([r1,72]), [r1, 72]]x = O for any 7,79
eI

Denote g(z) = ax + d(x), for a € @, the Martindale quotient ring of R, and d
a derivation of U.

If d is an inner derivation induced by an element ¢ € @, it follows that

[(a+c)[r1,ra] — [r1,mo)c, [r1, 2]k = 0

for any 7,7y € I, and by theorem 1 we have that one of the following holds:

(i) char(R) =2 and R satisfies s4, and we are done;
(ii) a+c and c are central elements, that is a, c€ C, so that d=0 and g(z) =az;

(iii) char(R) # 2, R satisfies s4 and (a+ ¢) — (—¢) = a + 2¢ € C, which means
that g(x) = 'z + zb/, witha’ =a+¢, ' = —cand ' — V' € C.

Let now d an outer derivation. Since

(3) 0 = [a[z1, m2] + [d(@1), x2] + w1, d(22)], [#1, x2]]k

is an identity for I, by Kharchenko’s result in [6], it follows that [a[r1, 2], [r1, 72]]x =
0 for any 71,79 € I and we end up, by Corollary 1, that either char(R) = 2 and R
satisfies s4, or a € C. In this last case, from (3), we have that

[[d(x1), zo] + [x1, d(z2)], [21, 22]]k

is an identity for I and again by Kharchenko’s theorem in [6], it follows that
[[1, z3], [x1, 22]]k is an identity for I. This implies obviously that R is a P.L-ring
satisfying [[x1, z3], [x1, 2]]k. Thus there exists a field F' such that R and M, (F),
the ring of ¢ x ¢ matrices over F', satisfy the same polynomial identities. If ¢t =1 R
is commutative, which is a contradiction since L is not central. Moreover in case
t = 2 and char(R) = 2 we are also done.

Suppose t = 2 and char(R) # 2. Pick x1 = e19, T2 = ez1 and x3 = ezo. By
calculation we have the contradiction 0 = [[z1, x3], [z1, 2]k = (—2)*e12.

Assume now that ¢ > 3 and choose 1 = e13, T9 = €31, 3 = €e32. Also in this

case we get the contradiction 0 = [[21, 23], [x1, z2]]x = (—1)Feqn. |
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2. ENGEL CONDITION ON RIGHT IDEALS

Now we extend the previous results to a non-zero right ideal of R and prove
the following:

Theorem. Let R be a prime ring, g a non-zero generalized derivation of R, 1
a non-zero right ideal of R such that [I,I]I #0, k > 1.

If [9([r1,72]), [r1,7m2)]k = O, for any r1,r9 € I, then either g(x) = cx, for
suitable ¢ € R, such that (¢ — ) = 0 for a suitable v € C or there exists an
idempotent element e € soc(RC') such that IC = eRC and eRCe satisfies s 4.
In the latter case either char(R) = 2 or char(R) # 2 and g(x) = cx + zb, for
suitable ¢,b € R and there exists -y € C such that (¢ —b+~v)I = 0.

We begin this section with:

Lemma 1. Let R be a prime ring, g a non-zero generalized derivation of R, I a
non-zero right ideal of R, k > 1 a fixed integer such that [g([r 1,72]), [r1,r2)]x = 0,
for any ri,r9 € 1. Then R satisfies a non-trivial generalized polynomial identity,
except when g(x) = ax, with a € Q) and there exists A\ € C such that (a—\)I = 0.

Proof. Consider the generalized derivation g assuming the form g(x) = ax +
d(x), for an usual derivation d of R. We divide the proof into two cases:

Case 1. Suppose that the derivation d is inner, induced by some element g € @),
that is d(z) = [q, x].
Thus we have, for all 7,79 € T

[ar1, 7o) + d([r1,72)), [r1, o)k = [(a + @)[r1, m2) — [r1, 72]q, [r1, 72]]k = O
and denote a + g = ¢, so that
[c[r1, 2] = [r1, 2], [r1, 2]k = O.

If both ¢ and ¢ are central elements we conclude that g(x) = ax, a € C. Thus
consider that one of ¢ and c¢ is non-central.

Let w € I such that {cu, u} are linearly C-independent. If gu = [u for some
06 € C, then R satisfies

Z [uzy, uzs)’(cluxy, uws) — [uxy, uws) B)[uxy, uzs)’
itj=k—1
+uxy, uwo)F(cluxy, uzs] — [UT1, UT2)q)
which is a non-trivial GPI. On the other hand

[cluxy, uzs] — [uxy, uwslq, [UT1, UT2]K
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is a non-trivial GPI also in case {g¢, qu} are linearly C-independent.
Let now cu = au for some « € C. Then R satisfies

[auxy, uzs] — [uxy, uxs)q, [UT1, UK
which is again a non-trivial GPI for R.
Case 2. Let now d be an outer derivation. Since [ satisfies
[alzy, wo] + d([1, x2])), [x1, 2],

it also satisfies
[(@ = A)[z1, 22] + d([w1, 22]), [71, 22]]

for any A € C.
Note that, if there exists A € C such that (a—\)I = 0, then [d([x1, z2]), [z1, Z2]]k
is a differential identity for . In this case, by [9], one of the following holds:

— [x1, xo]xs is an identity for I, so R is a GPI-ring;
— char(R) =2 and s4(I,1,1,I)I =0 and again R is GPI;

— d =0 and so g(x) = ax for (a — \)I = 0, and again we are done.

Consider the case when (a — a)l # 0, for all & € C. We note that, under
this assumption, there exists v € I such that au # au, for all « € C. In fact, if
suppose that {ay, y} are linearly C-dependent, for all y € I, then, by Lemma 3 in
[11], there exists 3 € C such that (a — 3)I = 0, a contradiction.

Since I and IU satisfy the same differential identities,

[a[z1, 2] + d([x1, z2]), [21, 22]],,
is an identity for IU, that is
[a[ux, uzs] + d([uzt, uxs)), [uzt, Uzl
is an identity for U. Thus U satisfies the following
[a[ux, uxe] + [d(u)z1 + ud(z1), 2] + [21, d(u)x2 + ud(x2)], [UX1, UT]) -
Since d is an outer derivation, by Kharchenko’s result in [6], U satisfies the identity
laluxy, uxs] + [d(u)x1 + uyr, x2] + [x1, d(u)x2 + uys), [ux1, uxs)]) -

which is a non-trivial GPI for R, since au and u are linearly C-independent. ]

Remark 1. Without loss of generality R is simple and equal to its own socle,
IR=1.
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In fact by Lemma 1, R is GPI and so RC' has non-zero socle H with non-zero
right ideal J = I H [15]. Note that H is simple, J = JH and J satisfies the same
basic conditions as I [13]. Now just replace R by H, I by J and we are done.

Remark 2. It is well known that all the following statements hold (see [12]):

(1) If [x1,29]xs is an identity for I, then there exists an idempotent element
e € soc(RC) such that IC = eRC' and eRCe is commutative;

(2) if char(R) = 2 and I satisfies s4(x1, 2o, 23, 74) 75 then there exists e? = e €
soc(RC') such that IC = eRC' and s4(z1, .., x4) is an identity for eRCe;

Remark 3. Since R = H is a regular ring, then for any a1, ..,a, € I there
exists h = h? € R such that Z?Zl a;R = hR. Then h € IR = I and a; = ha; for
eachi=1,..,n.

In order to continue our line of investigation, we need the following:

Lemma 2. Let R be a prime ring, a € R, I a non-zero right ideal of R,
k > 1, such that [I,I]I # 0. If [a[r1,79, [r1, 7))k = O for all r1,79 € I, then
either (a —~v)I = 0 for a suitable v € C or there exists an idempotent element
e € soc(RC) such that IC = eRC, char(R) = 2 and s4(x1,x2,x3,24) is an
identity for eRCe.

Proof. Suppose by contradiction that there exist c1, ¢, c3, ¢4, C5, Cg, C7, C8, Cg €
I such that

— [e1, e2)e3 # 05
— if char(R) = 2, s4(cy, c5, g, c7)cg # 0;

— {cg, acg} are linearly C-independent.

By Remark 3, there exists an idempotent element h € IH = IR such that hR =
S iR and ¢; = he;, for any i = 1,...,9. Since [a[hx1, haa), [ha1, hao]y is
satisfied by R = H, left multiplying by (1 — h), we get that R satisfies (1 —
h)alhzy, hxg]k“. By [2] it follows that either (1 — h)ah = 0 or [hx1, haslhzs is
a generalized identity for R. Since this last contradicts with [c1, c2|cs # 0, we have
that ah = hah. Moreover [a]x1, x|, [1, x2]]i 1s also satisfied by hRh.

By Corollary 1, again since [c1, c2|cs # 0, we get either ah € Ch or char(R) =
2 and hRh satisfies s4.

In the last case we get a contradiction since s4(cq, ¢4, cs,c7)cg # 0 when
char(R) = 2. In the first case, if ah € Ch, then there exists A € C such that
ahcg = (A)hey, that is acg = Acy, a contradiction again. ]
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Lemma 3. Let R = M,(F) the ring of n X n matrices over the field F.
Let b € R and I a non-zero right ideal of R such that s4(I,1,1,1)I # 0. If
[r1,72)b, [r1,72)]k = O, for all 11,75 € I, then b € F.

Proof. We denote again e;; the usual matrix unit with 1 in the (i,j)-entry and
zero elsewhere and write b = ) b;je;;, with b;; elements of F'. Moreover assume
I = eR for some e = Zle e; and t > 3.

Since s4(I,1,1,1)I # 0, there exist ci, co, c3,cq,c5 € I such that ss(cy, ca,
c3, C4)C5 #£0. Let [m,y] = [eij, eji] =e; — €55 € [I, I], for 1 <i,j <t andi# j.
Then 0 = [(ei; — €;;5)b, (esi — €j;)]x and right multiplying by e, for  # i, j, we
have 0 = (e;; — ej;)¥1be,. Left multiplying by e;; we have that b;,, = 0 for all
r # i,7. Choose now another index [ # j such that 1 <[ < ¢t and [ # i. As
above we get the condition 0 = (e;; — e;;)*+1be,.,. for all r # 4,1 and once again,
left multiplying by e;;, we have b;. = 0 for all r # 4,[. In particular, since j # [,
one has that b;; = 0. All this says that, if you fix an index ¢ < ¢, it follows that
b;» = 0 for any r # i.

Let now 4,7 < t be different indeces and r > ¢, s # i,j,r. For [z,y] =
[eijs ejr + €5i] = €ir + €ii — €55 € [I, 1],

0 = [(eir + €ii — €55)b, eir + €ii — €5k
and right multiplying by egs
0= (eir + e — ejj)k+lbess = (eir + e + (—1)k+lejj)bess.

Since we have proved above that b;s = 0 and b;s = 0, in this last case we get
brs = 0 for all » > ¢ and s # ¢,j,r. As above, since t > 3, by repeating this
process for any couple (i # j), we get that b., = 0 for all » > ¢ and s # 7.

The previous argument says that b = >, bi;€i;.

Letr # s be both < ¢ and f be the F-automérphism of R defined by f(z) = (1—
ers)x(14e,5). Thus we have that f(z) € I, forallz € I and [[r1, ro] f(b), [r1, 72)]k =
0, for all 71,7y € I. Since f(b) = (1 — ey5)b(1 + €45) = b+ byreps — bssers We
have that b,,, = by, for all r, s < t, that is b = fFe + Zi:t fin biieqi, for a suitable
B eF.

This means that there exists § € F' such that (b — 3)I = 0. Denote b —
B = p, pI = 0. Since [[r1,72o]p, [r1,72]]x = 0, for all r1,79 € I, we have that
[r1,79]**1p = 0. In this case, by the assumption that s4(c1, co, c3, ¢4, )5 # 0 and
by [2] we have p =0 that is b € F. [

Lemma 4. Let R be a prime ring, b € R and I a non-zero right ideal of R
such that s4(I,1,1,1)I # 0. If [[r1,72]b, [r1,72]]x = 0, for all r1,ro € I, then
becC.
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Proof.  We consider the only case when R satisfies a non-trivial generalized
polynomial identity, as a reduction of Lemma 1.

Thus the Martindale quotients ring ) of R is a primitive ring with non-zero
socle H = Soc(Q). H is a simple ring with minimal right ideals. Let D the
associated division ring of H, it is well known that D is a simple central algebra
finite dimensional over C' = Z(Q). Thus H ®¢ F is a simple ring with minimal
right ideals, with F' the central closure of C'. Let b an element of R which induces
the derivation d. Moreover [[ry, 72]b, [r1,72]]x = 0, for all 1,79 € TH ®c F (see
for instance [1, theorem 2]). Notice that if C' is finite, we choose F' = C.

Suppose that there exist ¢1,co € IH and such that [b, ciJca # 0. Moreover
we know that [[r1, 72D, [r1, ro]]x = 0, for all r1,79 € TH. Since H is regular, by
Litoff’s theorem (see [3]), there exists g2 = g € I H, such that ¢y, c2 € g(IH®cF),
and e? = e € H ®¢ F, such that

g,bg, gb, c1,co,ber, c1b € e(H @¢ Fe = M, (F) and n > 3.
Let 21,29 € ge(H ®c F)e C (IH ®@c F) N M, (F), then
0 = [[21, 22]b, [21, T2]|e = [[x1, 22]ebe, [21, 22| |k

By Lemma 3 we have that [ebe, ge(H ®c F)elge(H @c F)e = 0. In partic-
ular [ebe, gc1]lgea = 0 and hence [b, ¢1]ca = 0 a contradiction. This means that
[b, TH|IH = 0 and so there exists 5 € C such that (b — ) = 0. Denote b’ =
(b—3),s0b'I = 0and, for all 71,7y € TH, 0 = [[ry, ro)V/, [r1, m2)]s = [r1, m2]FH10.
Since s4(I,I,1,1)I # 0, it follows from [2] that b’ = 0, that is b € C. [

Theorem 3. Let R be a prime ring, a,b € R, I a non-zero right ideal of R
such that [I,I1I #0, k> 1.

If [a[r1, o] + [r1,72)b, [r1, 72]]k = O, for any r1,7m9 € I, then either there exist
a, 3 € C such that (a — a)I = 0 and b = 3 or there exists an idempotent element
e € soc(RC) such that IC = eRC and eRCe satisfies s4. Moreover in the latter
case either char(R) = 2 or there exists v € C such that (a — b+ ~v)I = 0 and
char(R) # 2.

Proof. First suppose that there exist c1, .., ¢5 € I such that s4(cy, 2, ¢3, c4)c5 #

Of course we are done if there exists a € C such that (a — «)I = 0. In fact in
this case we have that for o’ = (a — «):

0 = [a'[x1, xo] + [m1, 22)b, [21, 22|k = [[21, 22]b, [71, T2]]k

for all 1,29 € I and we conclude by lemma 4. Therefore suppose that there
exists c¢g € I such that {acg, cg} are linearly C-independent. Again there exists
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an idempotent element A € IR such that hR = Z?:1 ¢;R and ¢; = he;, for all
i =1,..,6. Of course

[a[hz1h, hxoh] + [hazih, hxahlb, [haih, haoh])
is satisfied by R. Thus, a fortiori,
hlalhxih, hxoh] 4 [hxih, haoh)b, [haih, haohl]]kh
is satisfied by R and so also
[(hah)[hx1h, haoh] 4 [hazyh, haah|(hbR), [haih, haah]k.

Therefore, by applying the theorem 1 to the ring hRh, we have that hah, hbh € Ch,
since s4(hRh, hRh, hRh, hRh)hRh # 0.
Moreover

(E1) [a[hr1, hra] 4 [hry, hralb, [hiry, hrg]] = 0

for any 71, 7o € R. Left multiplying the (E1) by (1—h) we get (1—h)a[hry, hro]F 1 =
0 and by [2] it follows that (1 — h)ah = 0, since [hR, hR]hR # 0. This implies
that ah = hah € Ch, so (a — a)h = 0 for a suitable « € C' and this contradicts
with (a — a)hcg = (a — a)cg # 0.

Now suppose that s4(I,I,1,I)I = 0. By remark 2, there exists an idempotent
e? = e € soc(RO) such that I = eRC and s4(eRCe,eRCe,eRCe,eRCe) = 0.If
char(R) = 2 we are done. Consider that case when char(R) # 2.

Again we repeat the same above argument: since [a[z1, xo]+[x1, x2]b, [T1, Z2]]k
is satisfied by e Re, by Theorem 1 we have that either eae, ebe € Ce, or (eae—ebe) €
Ce, since char(R) # 2. Moreover, as above we have that (1 — e)ae = 0 that is
ae = eae.

Also we have that

(E2) [alerie, erqe] + [erie, erqe]b, [erie, erge]]r = 0

for all 71, 7o € R. Right multiplying the (E2) by (1—e) it follows that [er;e, erqe]**1
b(1 —e) = 0, that is again eb(1 — e) = 0 by [2], since [eR, eR]eR # 0 and so
eb = ebe.

Case 1. If ae,eb € C'e we may repeat the same proof of the first part of this
lemma and conclude that (a — a)e = 0, for a suitable « € C, that is (a — a)l =0
and b € C.

Case 2. If (ae —eb) € Ce, consider h = e+ er(1 —e) for an arbitrary element
r € R. Notice that h?> = h and eR = hR. Moreover [a[z1, zo] +[21, 2], [x1, 22]]x
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is satisfied by hRCh and also s4(hRCh, hRCh, hRCh, hRCh) = 0. This means
that we may repeat the same above argument replacing I = eRC with [ = hRC.
Therefore, as we have seen before, we are done in any case, unless when ah — hb €
Ch. Hence, to complete the proof we have to analyze this last case. We have that
ah — hb € Ch means

(E'3) ale+er(l—e))—(e+er(l—e))b=Ae+er(l—e))
for all » € R and X\ depending on the choice of r. The (E3) says
ae+aer(l—e) —eb—er(l—e)b=Ae+er(l—e))
and right multiplying by e we have
ae —eb —er(1l — e)be = Xe.

Since ae — eb € Ce, it follows that for all » € R there exists A € C, depending on
the choice of 7, such that er(1 — e)be = Ae.

If, for any r € R, er(1 — e)be = 0 then (1 — e)be = 0, hence be = ebe = eb,
that is (ae — be) € Ce and so (a — b)I = al, for a suitable & € C, and we are
done.

Thus suppose that there exists 7o € R such that erg(1 — b)e = pe # 0, for
0#uedC.

Choose r = [r, ye] for all y € R. There exists a suitable v € C' such that:

ve = e[ro, ye](1 — e)be = eyery(1 — e)be = peye (E4).

Since (E4) means that eye € Ce for all y € R, it follows that [eRC, eRC]eRC =
[1,I]I =0, a contradiction. n

Theorem 4. Let R be a prime ring, g a non-zero generalized derivation of R,
I a non-zero right ideal of R such that [I,1]I #0, k > 1.

If [g([r1,72]), [r1, r2)]k = O, for any 1,79 € I, then either g(x) = cx, for
suitable ¢ € R, such that (¢ — ) = 0 for a suitable v € C or there exists an
idempotent element e € soc(RC') such that IC = eRC and eRCe satisfies s 4.
Moreover in the latter case either char(R) = 2 or char(R) # 2, g(z) = cx + xb,
for suitable c,b € R and there exists v € C such that (¢ — b+ ) = 0.

Proof. As we have already remarked, every generalized derivation g on a dense
right ideal of R can be uniquely extended to U and assumes the form g(x) =
ax + d(z), for some a € U and a derivation d on U.

If d =0, g(x) = ax and we conclude by Lemma 2. Thus we suppose that
d# 0.
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For u € I, U satisfies the following differential identity
[a[uxy, uxs] + d([uz1, uxs)), [uzt, uxsl]) -
In light of Kharchenko’s theory ([6], [13]), we divide the proof into two cases:

Case 1. Let d the inner derivation induced by the element ¢ € U, that is
d(x) = [gq, z], for all = € U. Thus [ satisfies the generalized polynomial identity

la[z1, z2] + q[m1, T2] + [T1, 22]q, [21, 22]],,

= [(a + q)[x1, x2] — [1, 22]q, [x1, 2]]}, -

If denote —g = b and a + ¢ = ¢, the generalized derivation g is defined as g(z) =
cx + xb, and we get the conclusion thanks to Theorem 3.

Case 2. Let now d an outer derivation of U. Since [[, ]I # 0, there exist
c1, ¢, c3 € I such that [c1, co]cz # 0. By the regurality of R there exists ¢ = e €
IR such that eR = c1 R+ coR+ c3R and ¢; = ec; for i = 1,2, 3. By

lalext, exo] + d([ex1, exa]), [ex1, exa]], =0
we have that
lalext, exs] + [d(e)x1 + ed(x1), exa] + [ex1, d(e)xa + ed(x2)], [ex1, exs]];, = 0.

Since d is an outer derivation, by Kharchenko’s result in [6], R satisfies the
identity

lalext, exo] + [d(e)x1 + ey, exa] + [ex1, d(e)xa + eyal, [ex1, exa], -
Since for y; = yo = 0, U satisfies the blended component
[alex1, exo] + [d(€e)x1, exa] + [ex1, d(e)xa], [ex1, ex2]]),
it follows that U satisfies also the following
ey, exa] + [ex1, eyal, [ex1, exa]]}, -
Again for y; = x U satisfies [[ex1, eyo], [ex1, exa]],. In particular :
0 = [[ex1, eya(1 — €)], [ex1, exa]]), = [ex1, exa]"exreya(1 —e) = 0

that is [ex1, exs)¥e = 0. By [2] we have that [eR, eR]eR = 0 a contradiction. m
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