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ANTI-PERIODIC BOUNDARY VALUE PROBLEMS FOR NONLINEAR
HIGHER ORDER IMPULSIVE DIFFERENTIAL EQUATIONS

Yuji Liu and Zhanji Gui

Abstract. This paper is concerned with the anti-periodic boundary value
problems for nonlinear higher order impulsive differential equations



x(n)(t)=f(t, x(t), x′(t), · · · , x(n−1)(t)), t ∈ [0, T ], t �= tk, k = 1, · · · , p,
∆x(i)(tk)= Ii,k(x(tk), x′(tk), · · · , x(n−1)(tk)), k = 1, · · · , p, i = 0, · · · , n− 1,

x(i)(0)=−x(i)(T ), i = 0, · · · , n− 1.

We obtain sufficient conditions for the existence of at least one solution. Ex-
amples are presented to illustrate the main results.

1. INTRODUCTION

There exist many papers concerned with the solvability of periodic boundary
value problems or the existence of periodic solutions for higher order ordinary dif-
ferential equations with or without impulses effects.

For examples, in [1,2], the existence of periodic solutions of the the equation

(1) x(n)(t) = f(t, x(t), x′(t), · · · , x(n−1)(t))

has been studied by many authors [1-7] under a variety of conditions on f . The
authors proved that equation (1) has at least one periodic solution if some conditions
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imposed on f are satisfied. In [3-7], the authors studied the existence of periodic
solutions of the following differential equations

(2) x(2n)(t) +
n−1∑
i=1

aix
(2i)(t) + f(t, x(t)) = 0, t ∈ R,

and

(3) x(2n+1)(t) +
n∑

i=1

aix
(2i−1)(t) + f(t, x(t)) = 0, t ∈ R,

respectively. Equations (2) and (3) are special cases of equation (1).
In paper [12-15], the problems

(4)




x′(t) = f(t, x(t)), t ∈ [0, T ], t �= tk, k = 1, · · · , m,
∆x(tk) = Ik(x(tk)), k = 1, · · · , m,
x(0) = x(T ),

and

(5)




x′′(t) = f(t, x(t), x′(t)), t ∈ [0, T ], t �= tk, k = 1, · · · , m,
∆x(tk) = Ik(x(tk), x′(tk)), k = 1, · · · , m,
∆x′(tk) = Ik(x(tk), x′(tk)), k = 1, · · · , m,

x(0) = x(T ), x′(0) = x′(T )

were studied. The existence results for these problems were established by using
lower and upper solutions methods. Some recent studies on the existence of periodic
solutions and their stability for functional or ordinary differential equations, which
are arise in many applications, with or without impulses effects can be found in
[34-44] and the references therein. The general theory of impulsive differential
equations (IDE) and systems can be found in [27, 31-33].

The existence of solutions for anti-periodic boundary value problems for first
order impulsive ordinary differential equations was studied in [8-11, 16, 21]. When
the impulses are absent, i.e., Ik = 0 for k = 1, · · · , m, anti-periodic boundary
value problems for first order ordinary differential equations were studied in [9-11],
anti-periodic problems for nonlinear differential equations in Hilbert spaces, and for
nonlinear evolution equations have been studied in papers [20,28-30]. Also, anti-
periodic boundary conditions for partial differential equations and abstract differ-
ential equations are considered in [17-19]. Anti-periodic boundary value problems
for higher order differential equations are studied in [22]. Notice that anti-periodic
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boundary value problems appear in physics in a variety of situations, see, for exam-
ple, [19-21, 24-26].

In paper [16], Luo, Shen and Nieto studied the problem

(6)




x′(t) = f(t, x(t)), t ∈ [0, T ], t �= tk, k = 1, · · · , m,
∆x(tk) = Ik(x(tk)), k = 1, · · · , m,
x(0) = −x(T ),

and the following results were obtained.

Theorem. Suppose λ > 0. Assume that there is function ψ : [0,+∞) →
(0,+∞) and a function ρ ∈ L1([0, T ]) with

|f(t, x) + λx| ≤ ρ(t)ψ(|x|),

and there exist bk ≥ 0 such that

|Ik(x)| ≤ bk|x| and
m∑

k=1

bk < 1 + e−λT .

Furthermore, suppose

(7) sup
c≥0

c

ψ(c)
>

||ρ||L1

1 + e−λT −∑m
k=1 bk

.

Then (6) has at least one solution.
Under the assumptions

(8) f(t, u)− f(t, v) ≥ −λ(u− v) +M(u− v)

and that there are a pair of coupled lower and upper solutions for (4), and Ik
are nondecreasing, and other assumptions, the existence result was also proved by
authors in [8,10] using lower and upper solutions methods and monotone iterative
technique.

We note that equation (7) or (8) implies that f(t, x) grows at most linearly in
x. So the problem have not been solved when f(t, x) is supper for x. Furthermore,
there exist no paper concerned with the solvability of anti-periodic problems for
higher order impulsive differential equations.

In this paper, we are concerned with the existence of solutions of the anti-periodic
boundary value problems for nonlinear impulsive functional differential equations
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(9)




x(n)(t) = f(t, x(t), x′(t), · · · , x(n−1)(t)),

t ∈ [0, T ], t �= tk, k = 1, · · · , p,
∆x(i)(tk) = Ii,k(x(tk), x′(tk), · · · , x(n−1)(tk)),

k = 1, · · · , p, i= 0, · · · , n− 1,

x(i)(0) = −x(i)(T ), i = 0, · · · , n− 1.

where n ≥ 2, T > 0, 0 < t1 < · · · < tm < T are constants, f is an impulsive
Carathedeodory function, Ii,k are continuous functions. The purpose is to establish
existence results for solutions of (9). We do not require the assumption that f is at
most linear nor Ii,k are nondecreasing. Finally, some examples illustrate the main
results.

2. MAIN RESULTS AND PROOFS

In this section, we establish the main results. To define solutions of (9), we
introduce the Banach space.

Let u : J = [0, T ] → R, and 0 = t0 < t1 < · · · < tp < tp+1 = T , for
k = 0, · · · , p, define the function uk : (tk, tk+1) → R by uk(t) = u(t). We will
use the following Banach space

X =




u : J → R, u
(i)
k ∈ L1(tk, tk+1), k = 0, · · · , p, i = 0, · · · , n− 1,

the limits exist lim
t→t−k

x(t) = x(tk),

lim
t→t+k

x(t), lim
t→0+

x(t) = x(0), lim
t→T−

x(t) = −x(T )




and
Y = {u ∈ X, uk ∈W 1,1(tk, tk+1), k = 0, · · · , p} ×Rpn

with the norms

||u||X = max{ sup
t∈(tk,tk+1)

|uk(t)|, k = 0, · · · , p}

for u ∈ X and

||y||Y = max
{
||uk||W 1,1(tk,tk+1), k = 0, · · · , p, max

1≤k≤pn
{|xk|}

}

for y = {u, x1, · · · , xpn} ∈ Y .
A function F is an impulsive Carathedeodory function if
∗ F (•, u0, u1, · · · , un) is measurable for each u ∈ R;
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∗ F (t, •, · · · , •) is continuous for a.e. t ∈ J \ {t1, · · · , tp};
∗ for each r > 0 there is hr ∈ L1(J) so that

|F (t, u0, u1, · · · , un)| ≤ lr(t), a.e.t ∈ J \ {t1, · · · , tp}

and every u satisfying ||(u0, u1, · · · , un)|| > r;
∗ and for each (t, u0, u1, · · · , un) ∈ (J \ {t1, · · · , tp}) ×Rn+1 the limits exist

lim
t→0+

F (t, u0, u1, · · · , un) = F (0, u0, u1, · · · , un),

lim
t→t−k

F (t, u0, u1, · · · , un) = F (tk, u0, u1, · · · , un)

and
lim

t→t+k

F (t, u0, u1, · · · , un), k = 1, · · · , p,
lim

t→T +
F (t, u0, u1, · · · , un) = F (T, u0, u1, · · · , un)

exist.
By a solution of (9) we mean a function u ∈ X satisfying (9).
The following abstract existence theorem is also used in this paper, whose proof

can be see in [23].

Lemma 2.1. Let X and Y be Banach spaces. Suppose L : D(L) ⊂ X → Y

is a Fredholm operator of index zero with KerL = {0}, N : X → Y is L−compact
on any open bounded subset of X . If 0 ∈ Ω ⊂ X is a open bounded subset and
Lx �= λNx for all x ∈ D(L)∩ ∂Ω and λ ∈ [0, 1], then there is at least one x ∈ Ω
so that Lx = Nx.

Now, we define the linear operator L : D(L) ⊆ X → Y and the nonlinear
operator N : X → Y by

Lx(t) =




x(n)(t)
∆x(t1)

·
·
·

∆x(tp)
·
·
·

∆x(n−1)(t1)
·
·
·

∆x(n−1)(tp)




for x ∈ D(L)
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where D(L) = {u ∈ X, uk ∈ Cn(tk, tk+1), k = 0, 1, · · · , m} and

Nx(t) =




f(t, x(t), x′(t), · · · , x(n−1)(t))

I0,1(x(tk), x′(tk), · · · , x(n−1)(tk))
·
·
·

I0,p(x(tk), x′(tk), · · · , x(n−1)(tk))
·
·
·

In−1,1(x(tk), x′(tk), · · · , x(n−1)(tk))
·
·
·

In−1,p(x(tk), x′(tk), · · · , x(n−1)(tk))




for x ∈ X.

It is easy to see that L is a Fredholm operator of index zero with KerL = {0}, N
is L−compact on any open bounded subset of X and that x ∈ X is a solution of
problem (9) if and only if x is a solution of the operator equation Lx = Nx.

We set the following assumptions which should be used in Theorem 2.1.

(A) In−1,k(x0, · · · , xn−1)(2xn−1 + In−1,k(x0, · · · , xn−1) ≥ 0 for all x ∈ R.

(B) There are numbers αi,k ≥ 0 such that |Ii,k(x0, · · · , xn−1)| ≤ αi,k|xi| for
all i = 0, · · · , n − 2 and k = 1, · · · , p with ∑p

k=1 αi,k < 1
2 for all i =

0, · · · , n− 2.

(C) There are functions h : [0, T ]× Rn → R and gi : [0, T ]× R→ R such that

(i) f(t, x0, · · · , xn−1) = h(t, x0, · · · , xn−1)+
∑n−1

i=0 gi(t, xi) holds for all (t, x0, · · · ,
xn−1) ∈ [0, T ]×Rn.

(ii) gi(t, x) satisfies that gi(•, x) ∈ X for every x ∈ R and gi(t, •) is continuous
for every t ∈ [0, T ].

(iii) h satisfies that h(•, x0, · · · , xn−1) ∈ C0
p for every (x0, · · · , xn−1) ∈ Rn and

gi(t, •, · · · , •) is continuous for every t ∈ [0, T ].

(iv) There are constants m ≥ 0 and β > 0 so that

h(t, x0, · · · , xn−1)xn−1 ≥ β|xn−1|m+1

holds for all (t, x0, · · · , xn−1) ∈ [0, T ]× Rn.

(v) lim|x|→+∞ supt∈[0,T ]
|gi(t,x)|
|x|m = ri ∈ [0,+∞) for i = 0, · · · , n− 1.
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Theorem 2.1. Suppose (B), (A) and (C) hold. Then problem (9) has at least
one solution if

(10) r0 +
n−1∑
k=1

rk

(
3
2

)m(n−k−2) n−2∏
i=k

(
1

1− 2
∑p

k=1 αi,k

)m

< β.

Proof. Let λ ∈ (0, 1). Suppose x is a solution of the system

(11)




x(n)(t) = λf(t, x(t), x′(t), · · · , x(n−1)(t)),

t ∈ [0, T ], t �= tk, k = 1, · · · , p,
∆x(i)(tk) = λIi,k(x(tk), · · · , x(n−1)(t)),

k = 1, · · · , p, i= 0, · · · , n− 1,

x(i)(0) = −x(i)(T ), i = 0, · · · , n− 1.

For i = 0, · · · , n− 2, from x(i)(0) = −x(i)(T ), we get

x(i)(0) = −1
2

(∫ T

0
x(i+1)(s)ds+

p∑
k=1

Ii,k(x(tk), · · · , x(n−1)(t))

)
.

Then

|x(i)(0)| ≤ 1
2

(∫ T

0
|x(i+1)(s)|ds+

p∑
k=1

|Ii,k(x(tk), · · · , x(n−1)(t))|
)

≤ 1
2

(∫ T

0
|x(i+1)(s)|ds+

p∑
k=1

αi,k|x(i)(tk)|
)
.

So,

|x(i)(t)| ≤
∣∣∣∣
∫ t

0

x(i+1)(s)ds
∣∣∣∣+ ∑

0<tk<t

|Ii,k(x(tk), · · · , x(n−1)(t))|

+
1
2

(∫ T

0
|x(i+1)(s)|ds+

p∑
k=1

αi,k|x(i)(tk)|
)

≤ 3
2

∫ T

0
|x(i+1)(s)|ds+ 2

p∑
k=1

αi,k|x(i)(tk)|.



408 Yuji Liu and Zhanji Gui

We get

||x(i)||∞ ≤ 3

2 − 4
p∑

k=1

αi,k

∫ T

0
|x(i+1)(s)|ds for i = 0, · · · , n− 2.

Hence we get

||x(i)||∞ ≤
(

3
2

)n−2−i n−2∏
k=i

1

1 − 2
p∑

k=1

αi,k

∫ T

0
|x(n−1)(s)|ds for i = 0, · · · , n− 2.

We divide the remainder of the proof into two steps.

Step 1. Prove that there is a constant M > 0 so that
∫ T
0 |x(n−1)(s)|m+1ds ≤

M .
Transforming the first equation of (9) to

(12) x(n)(t)x(n−1)(t) = λf(t, x(t), x′(t), · · · , x(n−1)(t))x(n−1)(t).

Integrating it from 0 to T , we get

−1
2

p∑
k=1

[(
x(n−1)(t+k )

)2
−
(
x(n−1)(t−k )

)2
]

= λ

∫ T

0
f(s, x(t), x′(t), · · · , x(n−1)(t))x(n−1)(s)ds

= λ

(∫ T

0
h(s, x(t), x′(t), · · · , x(n−1)(t))x(n−1)(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+
n−1∑
i=1

∫ T

0
gi(s, x(i)(s))x(n−1)(s)ds+

∫ T

0
r(s)x(n−1)(s)ds

)
.

It follows from (A) that(
x(n−1)(t+k )

)2 −
(
x(n−1)(t−k )

)2

=
(
x(n−1)(t+k ) − x(n−1)(t−k )

)(
x(n−1)(t+k ) + x(n−1)(t−k )

)
= ∆x(n−1)(t−k )

(
2x(n−1)(t−k ) + ∆x(n−1)(t−k )

)
= Ik(x(t−k ), · · · , x(n−1)(t−k ))

(
2x(n−1)(t−k ) + Ik(x(t−k ), · · · , x(n−1)(t−k ))

)
≥ 0.
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So ∫ T

0

h(s, x(t), x′(t), · · · , x(n−1)(t))x(n−1)(s)ds+
∫ T

0

g0(s, x(s))x(n−1)(s)ds

+
n−1∑
i=1

∫ T

0
gi(s, x(i)(s))x(n−1)(s)ds+

∫ T

0
r(s)x(n−1)(s)ds ≤ 0.

It follows from (C) that

β

∫ T

0
|x(n−1)(s)|m+1ds

≤ −
∫ T

0
g0(s, x(s))x(n−1)(s)ds−

n−1∑
i=1

∫ 1

0
gi(s, x(i)(s))x(n−1)(s)ds

−
∫ T

0
r(s)x(n−1)(s)ds

≤
∫ T

0
|g0(s, x(s))||x(n−1)(s)|ds+

n−1∑
i=1

∫ T

0
|gi(s, x(i)(s))||x(n−1)(s)|ds

+
∫ T

0

|r(s)||x(n−1)(s)|ds.

Let ε > 0 satisfy that

(13) (r0 + ε) +
n∑

k=1

(rk + ε)
(

3
2

)m(n−k−2) n−2∏
i=k

(
1

1− 2
∑p

k=1 αi,k

)m

< β.

For such ε > 0, there is δ > 0 so that for every i = 0, 1, · · · , n,
(14) |gi(t, x)| < (ri + ε)|x|m uniformly for t ∈ [0, T ] and |x| > δ.

Let, for i = 1, · · · , n, ∆1,i = {t : t ∈ [0, T ], |x(i)(αi(t))| ≤ δ}, ∆2,i = {t :
t ∈ [0, T ], |x(i)(αi(t))| > δ}, gδ,i = maxt∈[0,T ],|x|≤δ |gi(t, x)|, and ∆1 = {t ∈
[0, T ], |x(t)| ≤ δ}, ∆2 = {t ∈ [0, T ], |x(t)|> δ}. Then we get

β

∫ T

0
|x(n−1)(s)|m+1ds

≤ (r0 + ε)
∫ T

0
|x(n−1)(s)|m+1ds+

n−1∑
k=1

(rk + ε)
∫ T

0
|x(k)(s))|m|x(n−1)(s)|ds

+
∫ T

0
|r(s)||x(n−1)(s)|ds + gδ,0

∫ T

0
|x(n−1)(s)|ds+

n−1∑
k=1

gδ,k

∫ T

0
|x(n−1)(s)|ds
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≤ (r0 + ε)
∫ T

0

|x(n−1)(s)|m+1ds

+
n∑

k=1

(rk + ε)

(∫ T

0

|x(k)(s))|m+1ds

)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+

(∫ T

0

|r(s)|ds
)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+
n−1∑
k=0

gδ,k

∫ T

0

|x(n−1)(s)|ds

= (r0 + ε)
∫ T

0

|x(n−1)(s)|m+1ds

+
n−1∑
k=1

(rk + ε)

(∫ T

0

|x(i)(u)|m+1du

)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+

(∫ T

0

|r(s)|ds
)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+Tm/(m+1)
n−1∑
k=0

gδ,k

(∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

≤ (r0 + ε)
∫ T

0

|x(n−1)(s)|m+1ds

+
n−1∑
k=1

(rk + ε)

(∫ T

0

|x(i)(u)|1+m|du
)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+

(∫ T

0

|r(s)|ds
)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+Tm/(m+1)
n−1∑
k=0

gδ,k

(∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

=

(
(r0 + ε) +

n−1∑
k=1

(rk + ε)
(

3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m
)∫ T

0

|x(n−1)(s)|m+1ds

+

(∫ T

0

|r(s)|
)m/(m+1) (∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)

+Tm/(m+1)M1/(m+1)
n−1∑
k=0

gδ,k.

It follows from (14) that there is a constantM > 0 so that
∫ T
0 |x(n−1)(s)|m+1ds ≤

M .
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Step 2. Prove that there is a constant M1 > 0 so that ||x(n−1)||∞ ≤M1.
It follows from Step 1 that there is ξ∈ [0, T ] so that |x(n−1)(ξ)|≤(M/T )1/(m+1).

Case 1. If t < ξ, integrating it from t to ξ, we get, using (A), that

(
x(n−1)(t)

)2
= (x(n−1)(ξ))2 − 1

2

∑
t≤tk<ξ

[(
x(n−1)(t+k )

)2 −
(
x(n−1)(t−k )

)2
]

−λ
∫ ξ

t
f(s, x(s), · · · , · · · , x(n−1)(s))x(n−1)(s)ds

≤ (M/T )2/(m+1) − λ

∫ ξ

t
f(s, x(s), · · · , · · · , x(n−1)(s))x(n−1)(s)ds

≤ (M/T )2/(m+1) − λ

(∫ ξ

t

h(s, x(s), · · · , x(n−1)(s))x(n−1)(s)ds

+
∫ ξ

t
g0(s, x(s))x(n−1)(s)ds

+
n−1∑
i=1

∫ ξ

t
gi(s, x(i)(s))x(n−1)(s)ds+

∫ ξ

t
r(s)x(n−1)(s)ds

)

≤ (M/T )2/(m+1) −
∫ ξ

t
g0(s, x(s))x(n−1)(s)ds

−
n−1∑
i=1

∫ ξ

t
gi(s, x(i)(s))x(n−1)(s)ds−

∫ ξ

t
r(s)x(n−1)(s)ds

≤ (M/T )2/(m+1) +
∫ T

0
|g0(s, x(s))||x(n−1)(s)|ds

+
n−1∑
i=1

∫ T

0

|gi(s, x(i)(s))||x(n−1)(s)|ds

+
∫ T

0

|r(s)||x(n−1)(s)|ds

≤ (M/T )2/(m+1) +

[(
(r0 + ε) +

n−1∑
k=1

(rk + ε)
(

3
2

)m(n−k−2)

n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m
)
×

∫ T

0

|x(n−1)(s)|m+1ds +
(∫ T

0

|r(s)|ds
)m/(m+1)(∫ T

0

|x(n−1)(s)|m+1ds

)1/(m+1)
]
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+
n−1∑
k=0

gδ,kT
m/(m+1)

(∫ T

0
|x(n−1)(s)|m+1ds

)1/(m+1)

≤ (M/T )2/(m+1) +

[(
(r0 + ε) +

n−1∑
k=1

(rk + ε)
(

3
2

)m(n−k−2)

n−2∏
i=k

(
1

1− 2
∑p

k=1 αi,k

)m
)
M

+
(∫ T

0
|r(s)|ds

)m/(m+1)

M1/(m+1)

]
+ Tm/(m+1)M1/(m+1)

n−1∑
k=0

gδ,k

= : M2.

Hence one sees that

[x(n−1)(t)]2 ≤M2, for t ∈ [0, ξ].

This implies [x(n−1)(0)]2 ≤ M3. So [x(n−1)(T )]2 = [x(n−1)(0)]2 ≤ M3. For
t ∈ [ξ, T ], we have(

x(n−1)(t)
)2

= (x(n−1)(T ))2 − 1
2

∑
ξ≤tk<t

[(
x(n−1)(t+k )

)2 −
(
x(n−1)(t−k )

)2
]

−λ
∫ T

t

f(s, x(s), · · · , x(n−1)(s))x(n−1)(s)ds.

Similar to above discussion, we get that there is M4 > 0 so that [x(n−1)(t)]2 ≤
M4 for t ∈ [ξ, T ]. All above discussion implies that there is M1 > 0 so that
|x(n−1)(t)| ≤M1. Thus ||x(n−1)||∞ ≤M1. So

|x(k)(t)| ≤
(

3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m ∫ T

0
|x(n−1)(s)|ds

≤
(

3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m

M1T.

Hence there is M0 > 0 so that

||x|| ≤ max{||x||∞, · · · , ||x(n−1)||∞} ≤M0.

It follows from Lemma 2.1 that equation Lx = Nx has at least one solution, which
is a solution of problem (9). The proof is complete.

We now set the following assumptions which will be used in Theorem 2.2.
(A′). In−1,k(x0, · · · , xn−1)(2xn−1 + In−1,k(x0, · · · , xn−1) ≤ 0 for all x ∈ R.
(C′). There are functions h : [0, T ]× Rn → R and gi : [0, T ]× R → R such

that
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(i) f(t, x0, · · · , xn−1) = h(t, x0, · · · , xn−1)+
∑n−1

i=0 gi(t, xi) holds for all (t, x0,

· · · , xn−1) ∈ [0, T ]×Rn+1.
(ii) gi(t, x) satisfies that gi(•, x) ∈ X for every x ∈ R and gi(t, •) is continuous

for every t ∈ [0, T ].
(iii) h satisfies that h(•, x0, · · · , xn−1) ∈ X for every (x0, · · · , xn−1) ∈ Rn and

h(t, •, · · · , •) is continuous for every t ∈ [0, T ].
(iv) There are constants m ≥ 0 and β > 0 such that

h(t, x0, · · · , xn−1)xn−1 ≤ −β|xn−1|m+1

holds for all (t, x0, · · · , xn−1) ∈ [0, T ]×Rn.
(v) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x|m = ri ∈ [0,+∞) for i = 0, · · · , n− 1.

Theorem 2.2. Suppose (B), (A′) and (C ′) hold. Then problem (9) has at
least one solution if

(15) r0 +
n∑

k=1

rk

(
3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m

< β.

Proof. The proof is similar to that of Theorem 2.1. We consider system (10),
from assumption (A′), it is easy to get∫ T

0
h(s, x(s), · · · , x(n−1)(s)))x(n−1)(s)ds+

∫ T

0
g0(s, x(s))x(n−1)(s)ds

+
n∑

i=1

∫ T

0
gi(s, x(i)(s))x(n−1)(s)ds+

∫ T

0
r(s)x(n−1)(s)ds ≥ 0.

The remainder of the proof is similar to that of Theorem 2.1 and is omitted.

3. EXAMPLES

In this section, we give two examples, which can not be solved by the results
in previous papers, to illustrate the main results.

Example 3.1. Consider the problem

(16)




x(n)(t) = a[x(n−1)(t)]2m+1 +
n−1∑
k=0

pk(t)[x(k)(t)]2m+1 + r(t),

t ∈ [0, T ], t �= tk, k = 1, · · · , p,
∆x(i)(tk) = αi,kx

(i)(tk), k = 1, · · · , p, i= 0, · · · , n− 1,

x(i)(0) = −x(i)(T ), i = 0, · · · , n− 1,
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then (16) has at least one solution if


a > 0,
p∑

k=1

αi,k <
1
2
, i = 0, · · · , n− 2,

αn−1,k(2 + αn−1,k) ≥ 0, k = 1, · · · , p

||p0||∞ +
n−1∑
k=1

(
3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m

||pk||∞ < a.

Example 3.2. Consider the problem

(17)




x(n)(t) = a[x(n−1)(t)]2m+1 +
n−1∑
k=0

pk(t)[x(k)(t)]2m+1 + r(t),

t ∈ [0, T ], t �= tk, k = 1, · · · , p,
∆x(i)(tk) = αi,kx

(i)(tk), k = 1, · · · , p, i= 0, · · · , n− 1,

x(i)(0) = −x(i)(T ), i = 0, · · · , n− 1.

Then (17) has at least one solution if


a < 0,
p∑

k=1

αi,k <
1
2
, i = 0, · · · , n− 2,

αn−1,k(2 + αn−1,k) ≤ 0, k = 1, · · · , p

||p0||∞ +
n−1∑
k=1

(
3
2

)m(n−k−2) n−2∏
i=k

(
1

1 − 2
∑p

k=1 αi,k

)m

||pk||∞ < −a.
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