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A NOTE ON THE CONTINUITY OF OPERATORS INTERTWINING
WITH CONVOLUTION OPERATORS

J. Alaminos, J. Extremera and A. R. Villena

Abstract. Let G be a MAP group, let µ be a bounded complex-valued Borel
measure on G, and let Tµ be the corresponding convolution operator on L1(G).
Let X be a Banach space and let S be a continuous linear operator on X.
We show that every linear operator Φ : X → L1(G) such that ΦS = TµΦ is
continuous if, and only if, the pair (S, Tµ) has no critical eigenvalue.

1. INTRODUCTION

LetX and Y be Banach spaces and let S and T be continuous linear operators on
X and Y , respectively. An operator Φ : X → Y is said to intertwine the pair (S, T )
if SΦ = ΦT . Typical results on automatic continuity theory deals with conditions
on S and/or T which imply the continuity of Φ. A classical reference in this context
is [5]. As a matter of fact, it is well known [5, Lemma 3.2] that the existence of
a critical eigenvalue implies the existence of a discontinuous intertwining operator.
Let us recall that λ ∈ C is a critical eigenvalue of the pair (S, T ) if λ is an eigenvalue
of T and (λI− S)(X) has infinite codimension.

K. B. Laursen and M. M. Neumann asked in [1, Open Problem 6.3.3] the fol-
lowing question: suppose that µ and ν are bounded complex-valued Borel measures
on a locally compact abelian group G such that the corresponding pair (Tν, Tµ) has
no critical eigenvalue. Is it true that every linear operator Φ : L1(G) → L1(G)
such that TνΦ = ΦTµ is continuous? It should be pointed out that the special case
ν = µ dates back to B. E. Johnson [3].

Recently, C. Aparicio and the third-named author [1, Theorem 2.1] solved pos-
itively the above mentioned question. The aim of this short note is to extend this
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result to a well known class of locally compact groups that includes abelian groups
and compact groups as well: the class of MAP groups.

Theorem. Let G be a MAP group, let µ be a bounded complex-valued Borel
measure on G, and let Tµ be the corresponding convolution operator f �→ µ ∗ f

on L1(G). Let X be a Banach space and let S be a continuous linear operator
on X . Suppose that (S, Tµ) has no critical eigenvalue. Then every linear operator
Φ : X → L1(G) such that ΦS = TµΦ is continuous.

Let us recall that a locally compact group G is said to be a MAP group if the
set of finite-dimensional irreducible unitary representations, ĜFIN , separates the
elements of G. Every unitary representation π of G on a Hilbert space H lifts to a
∗-homomorphism from the Banach algebra M(G) of all bounded complex-valued
regular Borel measures on G into B(H), which is defined by

π(µ) =
∫

G

π(t)dµ(t)

for each µ ∈ M(G). It is important to note here that ĜFIN also separates the
elements of L1(G) (see [2, Theorem 3.2]).

Proof. On account of the closed graph theorem, we are reduced to show that
the separating space of Φ,

S(Φ) = {f ∈ L1(G) : there exists (xn) → 0 in X with (Φ(xn)) → f},

is {0}.
We claim that there exists a non-zero polynomial p such that p(Tµ)(S(Φ)) =

{0}. To obtain a contradiction, suppose that p(Tµ)(S(Φ)) �= {0} for each non-
zero polynomial p. This entails that S(Φ) �= {0} and, therefore, that there exists
π1 ∈ ĜFIN such that π1(S(Φ)) �= {0}. Let p1 be the characteristic polynomial of
π1(µ). We can choose inductively πn ∈ ĜFIN with the property that

πn+1((p1 . . . pn)(Tµ)(S(Φ))) �= {0}

for each n ∈ N, where pk stands for the characteristic polynomial of πk(µ) for
k = 1, . . . , n.

Since pn(S)Φ = Φpn(Tµ), for each n ∈ N, the stability lemma (see [5, Lemma
1.6]) gives N ∈ N such that

(p1 . . . pN )(Tµ)(S(Φ)) = (p1 . . . pN+1)(Tµ)(S(Φ)).
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Observe that if f ∈ (p1 . . . pN )(Tµ)(S(Φ)), then πN+1 vanishes on f . Indeed, f

can be written f = (p1 . . . pN+1)((Tµ)(g)) for some g ∈ S(Φ) and

πN+1(f)= πN+1((p1 . . . pN)(Tµ)(g))
= p1(πN+1(µ)) . . .pN+1(πN+1(µ))πN+1(g) = 0

since pN+1(πN+1(µ)) = 0. Therefore,

πN+1((p1 . . . pN)(Tµ)(S(Φ))) = {0}
which contradicts the choice of πN+1.

Since our claim holds, there exist α1, . . . , αk ∈ C such that

(α1I − Tµ) . . . (αkI − Tµ)S(Φ) = {0}.
The last step of the proof follows by the same method as in [1, Theorem 2.1]. We
can assume that α1, . . .αk are eigenvalues of Tµ and, since (S, Tµ) does not have
critical eigenvalues, it follows that codim(αiI − S) < ∞ for i = 1, . . . , k. Let us
consider the finite-codimensional subspace M = (α1I − S) . . .(αkI − S)(X) of
X . M is the range of the continuous linear operator R = (α1I − S) . . .(αkI − S)
and, by [5, Lemma 3.3], it is closed. Let us denote by Ψ the restriction of Φ to M .
Now, [5, Lemma 1.3] shows that ΨR is continuous since

S
(
ΨR

)
= (α1I − Tµ) . . . (αkI − Tµ)(S(Φ)) = {0}.

Let us check thatΨ is continuous. Let (yn) be a sequence inM with limyn = 0.
Since R is open by the open mapping theorem, there exists a sequence (xn) in X

such that limxn = 0 andR(xn) = yn for each n ∈ N. Using that ΨR is continuous,
it follows that limΨ(yn) = limΨR(xn), and therefore Ψ is continuous. Finally,
note that Φ is continuous on a complemented finite-codimensional subspace and
this implies that Φ is continuous.
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