MAXIMAL REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATION ON PERIODIC TRIEBEL-LIZORKIN SPACES

Shangquan Bu and Yi Fang

Abstract

We study maximal regularity on Triebel-Lizorkin spaces $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ for the integro-differential equation with infinite delay: $\left(P_{2}\right): u^{\prime}(t)=A u(t)+$ $\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t),(0 \leq t \leq 2 \pi)$ with the periodic condition $u(0)=u(2 \pi)$, where X is a Banach space, $a \in \mathrm{~L}^{1}\left(\mathbb{R}_{+}\right)$and f is an X valued function. Under a suitable assumption (H3) on the Laplace transform of a, we give a necessary and sufficient condition for $\left(P_{2}\right)$ to have the maximal regularity property on $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$.

1. Introduction

In a series of recent publications operator-valued Fourier multipliers on vectorvalued function spaces are studied (see e.g. [1-4, 6-12, 14] and [15]). They are useful in the study of the existence and uniqueness of solutions of differential equations on Banach spaces. In [2-4], the authors study the maximal regularity property of the classical abstract non-homogeneous boundary problem $\left(P_{1}\right)$ on L_{p} spaces, Besov spaces and Triebel-Lizorkin spaces.

$$
\left(P_{1}\right) \quad\left\{\begin{array}{l}
u^{\prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq 2 \pi \\
u(0)=u(2 \pi)
\end{array}\right.
$$

here X is a Banach space, A is a closed linear operator in X and f is an X valued function defined on $[0,2 \pi]$. The problem $\left(P_{1}\right)$ has the maximal regularity property on L_{p} spaces if and only if $i \mathbb{Z} \subset \rho(A)$ and the set $(i k R(i k, A))_{k \in \mathbb{Z}}$ is Rademacher bounded whenever X is a UMD space and $1<p<\infty$ [2], where

[^0]$R(i k, A)$ is the resolvent $(i k-A)^{-1}$ of A. In the Besov spaces and TriebelLizorkin spaces setting, maximal regularity is equivalent to the fact that $i \mathbb{Z} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\|k R(i k, A)\|<\infty($ see $[3,4])$.

In this paper, we are interested in a more general evolution equation, namely the integro-differential equation with infinite delay:

$$
\left(P_{2}\right) \quad\left\{\begin{array}{l}
u^{\prime}(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t), \quad 0 \leq t \leq 2 \pi \\
u(0)=u(2 \pi)
\end{array}\right.
$$

where $a \in \mathrm{~L}^{1}\left(\mathbb{R}_{+}\right)$is fixed. In [11], Keyantuo and Lizama have considered maximal regularity on periodic Besov spaces $\mathrm{B}_{p, q}^{s}(\mathbb{T}, X)$ for $\left(P_{2}\right)$. They have shown that if $c_{k}=\tilde{a}(i k)$ is the Laplace transform of a at $i k$ and if $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2 -regular and $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies a suitable assumption (H2), then the problem $\left(P_{2}\right)$ has maximal regularity property on $\mathrm{B}_{p, q}^{s}(\mathbb{T}, X)$ if and only if $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<$ ∞, where $b_{k}=\frac{i k}{1+c_{k}}$. In this paper, we are interested in the maximal regularity property on Triebel-Lizorkin spaces $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ for the same problem $\left(P_{2}\right)$. We show that if the sequence $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies a similar assumption (H3), then $\left(P_{2}\right)$ has the maximal regularity property on $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ if and only if $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<\infty$. This recovers the known result obtained in [4] when $a=0$. Here a similar assumption of 2 -regularity or 3-regularity on $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is not needed. The main tool in the study of maximal regularity on $\mathrm{B}_{p, q}^{s}(\mathbb{T}, X)$ for the problem $\left(P_{2}\right)$ is an operator-valued Fourier multiplier theorem on $\mathrm{B}_{p, q}^{s}(\mathbb{T}, X)$ obtained in [3]. The operator-valued Fourier multiplier theorem on $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ proved in [4] will be fundamental for us in this paper.

The sufficient condition obtained in [3] for a sequence $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X)$ to be a $\mathrm{B}_{p, q}^{s}$-multiplier is a Marcinkiewicz condition of order 2, while in the $\mathrm{F}_{p, q}^{s}$-multiplier case a stronger Marcinkiewicz condition of order 3 is needed [4]. This is the reason why our assumption (H3) is stronger than the assumption (H2) used in [11] in the Besov space case. It turns out that when $1<p<\infty, 1<q \leq \infty$ and $s \in \mathbb{R}$, then a Marcinkiewicz condition of order 2 is already sufficient for a sequence $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X)$ to be an $\mathrm{F}_{p, q}^{s}$-multiplier [4], in this case under the weaker assumption (H 2$)$ on $\left(c_{k}\right)_{k \in \mathbb{Z}}$, the problem $\left(P_{2}\right)$ has the maximal regularity property on $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ if and only if $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<\infty$.

This paper is organized as follows: Section 2 collects definitions and basic properties of vector-valued Triebel-Lizorkin spaces and Fourier multipliers. In section 3, we establish the periodic solution for the integro-differential equation $\left(P_{2}\right)$ on Triebel-Lizorkin spaces $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$.

2. Triebel-lizorkin Spaces and the Preliminaries

Let X be a Banach space and let $f \in \mathrm{~L}^{1}(\mathbb{T}, X)$, we denote by

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{-k}(t) f(t) d t
$$

the k-th Fourier coefficient of f, where $k \in \mathbb{Z}, \mathbb{T}=[0,2 \pi]$ (the points 0 and 2π are identified), and $e_{k}(t)=e^{i k t}$. For $k \in \mathbb{Z}$ and $x \in X$, we denote by $e_{k} \otimes x$ the X-valued function defined by $\left(e_{k} \otimes x\right)(t)=e_{k}(t) x$.

Firstly, we briefly recall the definition of periodic Triebel-Lizorkin spaces in the vector-valued case introduced in [4] (see the monograph [13] for the scalar-valued case). Let $\mathcal{S}(\mathbb{R})$ be the Schwarz space of all rapidly decreasing smooth functions on \mathbb{R}. Let $\mathcal{D}(\mathbb{T})$ be the space of all infinitely differentiable functions on \mathbb{T} equipped with the locally convex topology given by the seminorms $\|f\|_{\alpha}=\sup _{x \in \mathbb{T}}\left|f^{(\alpha)}(x)\right|$, where $\alpha \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Let $\mathcal{D}^{\prime}(\mathbb{T}, X):=\mathcal{L}(\mathcal{D}(\mathbb{T}), X)$ be the space of all bounded linear operators from $\mathcal{D}(\mathbb{T})$ to X. In order to define the periodic TriebelLizorkin spaces, we consider the dyadic-like subsets of \mathbb{R} :

$$
I_{0}=\{t \in \mathbb{R}:|t| \leq 2\}, I_{k}=\left\{t \in \mathbb{R}: 2^{k-1}<|t| \leq 2^{k+1}\right\}
$$

for $k \in \mathbb{N}$. Let $\phi(\mathbb{R})$ be the set of all systems $\phi=\left(\phi_{k}\right)_{k \in \mathbb{N}_{0}} \subset \mathcal{S}(\mathbb{R})$ satisfying $\operatorname{supp}\left(\phi_{k}\right) \subset \bar{I}_{k}$ for each $k \in \mathbb{N}_{0}$,

$$
\sum_{k \in \mathbb{N}_{0}} \phi_{k}(x)=1 \quad \text { for } x \in \mathbb{R},
$$

and for each $\alpha \in \mathbb{N}_{0}$

$$
\sup _{\substack{x \in \mathbb{R} \\ k \in \mathbb{N}_{0}}} 2^{k \alpha}\left|\phi_{k}^{(\alpha)}(x)\right|<\infty
$$

Let $\phi=\left(\phi_{k}\right)_{k \in \mathbb{N}_{0}} \in \phi(\mathbb{R})$ be fixed. For $1 \leq p<\infty, 1 \leq q \leq \infty, s \in \mathbb{R}$, the X-valued periodic Triebel-Lizorkin space is defined by

$$
\begin{align*}
& \mathrm{F}_{p, q}^{s}(\mathbb{T}, X):=\left\{f \in \mathcal{D}^{\prime}(\mathbb{T}, X):\|f\|_{\mathrm{F}_{p, q}^{s}}:\right. \\
& \left.=\left\|\left(\sum_{j \geq 0} 2^{s j q}\left\|\sum_{k \in \mathbb{Z}} e_{k} \otimes \phi_{j}(k) \hat{f}(k)\right\|^{q}\right)^{1 / q}\right\|_{L_{p}}<\infty\right\} \tag{2.1}
\end{align*}
$$

with the usual modification if $q=\infty$. The space $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ is independent from the choice of ϕ and different choices of ϕ lead to equivalent norms on $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$. $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$ equipped with the norm $\|\cdot\|_{\mathrm{F}_{p, q}^{s}}$ is a Banach space. See [4, Section 2] for more information about the spaces $\mathrm{F}_{p, q}^{s, q}(\mathbb{T}, X)$.

Next, we discuss the Fourier multipliers on Triebel-Lizorkin spaces. Let X and Y be Banach spaces, We denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. If $X=Y$, we will simply denote it by $\mathcal{L}(X)$. Let $1 \leq p<\infty$, $1 \leq q \leq \infty, s \in \mathbb{R}$, and let $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. We will say that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier, if for each $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, there exists $g \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, Y)$, such
that $\hat{g}(k)=M_{k} \hat{f}(k)$ for all $k \in \mathbb{Z}$. In this case it follows from the Closed Graph Theorem that there exists a constant $C>0$ such that for $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, we have $\left\|\sum_{k \in \mathbb{Z}} e_{k} \otimes M_{k} \hat{f}(k)\right\|_{\mathrm{F}_{p, q}^{s}} \leq C\|f\|_{\mathrm{F}_{p, q}^{s}}$.

The following $\mathrm{F}_{p, q}^{s}$-multiplier theorem is due to Bu and Kim [4, Theorem 3.2]:
Theorem 2.1. Let X and Y be Banach spaces and let $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$.
(i) Assume that $\left(M_{k}\right)_{k \in \mathbb{Z}}$ satisfies a Marcinkiewicz estimate of order 3:

$$
\begin{align*}
& \sup _{k \in \mathbb{Z}}\left\|M_{k}\right\|<\infty \\
& \sup _{k \in \mathbb{Z}}\left\|k\left(M_{k+1}-M_{k}\right)\right\|<\infty \\
& \sup _{k \in \mathbb{Z}}\left\|k^{2}\left(M_{k+1}-2 M_{k}+M_{k-1}\right)\right\|<\infty \tag{2.2}\\
& \sup _{k \in \mathbb{Z}}\left\|k^{3}\left(M_{k+1}-3 M_{k}+3 M_{k-1}-M_{k-2}\right)\right\|<\infty .
\end{align*}
$$

Then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier whenever $1 \leq p<\infty, 1 \leq q \leq \infty, s \in \mathbb{R}$.
(ii) If $\left(M_{k}\right)_{k \in \mathbb{Z}}$ satisfies the first three conditions of (2.2), then $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier whenever $1<p<\infty, 1<q \leq \infty$ and $s \in \mathbb{R}$.

Remark 2.2. We notice that even the underlying Banach spaces X, Y are UMD spaces and $1<p<\infty$, a stronger condition is needed to ensure a sequence $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ to be an L^{p}-multiplier: the sets $\left\{M_{k}: k \in \mathbb{Z}\right\}$ and $\left\{k\left(M_{k+1}-\right.\right.$ $\left.\left.M_{k}\right): k \in \mathbb{Z}\right\}$ are Rademacher bounded [2]. Here for Triebel-Lizorkin spaces, we impose conditions on the first three derivatives of $\left(M_{k}\right)_{k \in \mathbb{Z}}$, but the result is true without any conditions on the geometry of the underlying Banach spaces and no assumption of Rademacher boundedness is needed.

Next we give some preliminaries. Given $a \in \mathrm{~L}^{1}\left(\mathbb{R}_{+}\right)$and $u:[0,2 \pi] \rightarrow X$ (extended by periodicity to \mathbb{R}), we define

$$
\begin{equation*}
F(t)=(a \dot{*} u)(t):=\int_{-\infty}^{t} a(t-s) u(s) d s \tag{2.3}
\end{equation*}
$$

Let $\tilde{a}(\lambda)=\int_{0}^{+\infty} e^{-\lambda t} a(t) d t$ be the Laplace transform of a. An easy computation shows that:

$$
\begin{equation*}
\hat{F}(k)=\tilde{a}(i k) \hat{u}(k), \quad(k \in \mathbb{Z}) \tag{2.4}
\end{equation*}
$$

The notion of 1-regular and 2-regular scalar sequences were introduced in [11] to study the maximal regularity property on periodic Besov spaces for the problem $\left(P_{2}\right)$. We will need the notion of 3-regular scalar sequences in the Triebel-Lizorkin space case: A sequence $\left(a_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C} \backslash\{0\}$ is called 1-regular if the sequence $\left(k\left(a_{k+1}-a_{k}\right) / a_{k}\right)_{k \in \mathbb{Z}}$ is bounded; it is called 2-regular if it is 1-regular and the
sequence $\left(k^{2}\left(a_{k+1}-2 a_{k}+a_{k-1}\right) / a_{k}\right)_{k \in \mathbb{Z}}$ is bounded; it is called 3-regular if it is 2-regular and the sequence $\left(k^{3}\left(a_{k+1}-3 a_{k}+3 a_{k-1}-a_{k-2}\right) / a_{k}\right)_{k \in \mathbb{Z}}$ is bounded.

The following result is just a direct application of Theorem 2.1.

Theorem 2.3. Let A be a closed operator in a Banach space X. Let $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset$ $\mathbb{C} \backslash\{0\}$ be a 3-regular sequence such that $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$. Then the following assertions are equivalent:
(i) $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier for $1 \leq p<\infty, 1 \leq q \leq \infty$ and $s \in \mathbb{R}$.
(ii) $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is bounded.

Proof. Let $M_{k}=b_{k} R\left(b_{k}, A\right)$ for $k \in \mathbb{Z}$. Assume that (i) is valid, it follows from the Closed Graph Theorem that there exists $C>0$ such that for $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, we have $\left\|\sum_{k \in \mathbb{Z}} e_{k} \otimes M_{k} \hat{f}(k)\right\|_{\mathrm{F}_{p, q}^{s}} \leq C\|f\|_{\mathrm{F}_{p, q}^{s}}$. Let $x \in X$ and $n \in \mathbb{Z}$, we let $f=e_{n} \otimes x$. The above inequality implies that $\left\|e_{n}\right\|_{\mathrm{F}_{p, q}}\left\|M_{n} x\right\|=\left\|e_{n} M_{n} x\right\| \leq$ $C\left\|e_{n}\right\|_{\mathrm{F}_{p, q}}\|x\|$. Hence $\sup _{n \in \mathbb{Z}}\left\|M_{n}\right\| \leq C$. This proves the implication (i) \Rightarrow (ii). To prove the implication (ii) \Rightarrow (i), we assume that the sequence $\left(M_{k}\right)_{k \in \mathbb{Z}}$ is bounded. From the proof of [11, Proposition 3.4], we have

$$
\begin{aligned}
& \sup _{k \in \mathbb{Z}}\left\|k\left(M_{k+1}-M_{k}\right)\right\|<+\infty \\
& \sup _{k \in \mathbb{Z}}\left\|k^{2}\left(M_{k+1}-2 M_{k}+M_{k-1}\right)\right\|<+\infty
\end{aligned}
$$

as $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2-regular. In order to verify the fourth Marcinkiewicz condition of (2.2), we observe that for $\lambda, \mu, \nu, \xi \in \rho(A)$, we have the identity:

$$
\begin{aligned}
& 3 \lambda R(\lambda, A)-3 \mu R(\mu, A)+\nu R(\nu, A)-\xi R(\xi, A) \\
= & -(\nu-3 \mu+3 \lambda-\xi) A R(\mu, A) R(\lambda, A) \\
& +(\nu-\xi)(\nu-2 \mu+\lambda) A R(\mu, A) R(\lambda, A) R(\nu, A) \\
& +(\nu-\xi)(\mu-2 \lambda+\xi) A R(\mu, A) R(\nu, A) R(\xi, A) \\
& +2(\mu-\lambda)(\xi-\lambda)(\nu-\xi) A R(\mu, A) R(\lambda, A) R(\nu, A) R(\xi, A) .
\end{aligned}
$$

Substituting $\nu=b_{k+1}, \mu=b_{k}, \lambda=b_{k-1}, \xi=b_{k-2}$, we obtain:

$$
\begin{aligned}
& k^{3}\left(M_{k+1}-3 M_{k}+3 M_{k-1}-M_{k-2}\right) \\
= & -\frac{k^{3}\left(b_{k+1}-3 b_{k}+3 b_{k-1}-b_{k-2}\right)}{b_{k}} M_{k}\left(M_{k-1}-I\right) \\
& +\frac{k^{2}\left(b_{k+1}-2 b_{k}+b_{k-1}\right)}{b_{k}} \frac{k\left(b_{k+1}-b_{k-2}\right)}{b_{k+1}} M_{k} M_{k+1}\left(M_{k-1}-I\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{k^{2}\left(b_{k}-2 b_{k-1}+b_{k-2}\right)}{b_{k}} \frac{k\left(b_{k+1}-b_{k-2}\right)}{b_{k+1}} M_{k} M_{k+1}\left(M_{k-2}-I\right) \\
& +\frac{2 k\left(b_{k-2}-b_{k-1}\right)}{b_{k-1}} \frac{k\left(b_{k}-b_{k-1}\right)}{b_{k}} \frac{k\left(b_{k+1}-b_{k-2}\right)}{b_{k+1}} M_{k-1} M_{k} M_{k+1}\left(M_{k-2}-I\right) .
\end{aligned}
$$

Since $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 1-regular, $\left|k\left(b_{k+1}-b_{k}\right) / b_{k}\right| \leq D$ for some constant $D>0$ independent from k. From this, we deduce that $\left|b_{k+1} / b_{k}-1\right| \leq D /|k|$ and thus $b_{k+1} / b_{k} \rightarrow 1$ as $k \rightarrow \infty$. We have

$$
\begin{aligned}
\frac{k\left(b_{k-2}-b_{k-1}\right)}{b_{k-1}}= & \frac{-(k-2)\left(b_{k-1}-b_{k-2}\right)}{b_{k-2}} \frac{b_{k-2}}{b_{k-1}} \frac{k}{k-2} \\
\frac{k\left(b_{k}-b_{k-1}\right)}{b_{k}}= & \frac{k\left(b_{k}-b_{k-1}\right)}{b_{k-1}} \frac{b_{k-1}}{b_{k}} \\
\frac{k\left(b_{k+1}-b_{k-2}\right)}{b_{k+1}}= & \frac{k\left(b_{k+1}-b_{k}\right)}{b_{k}} \frac{b_{k}}{b_{k+1}}+\frac{k\left(b_{k}-b_{k-1}\right)}{b_{k-1}} \frac{b_{k-1}}{b_{k}} \frac{b_{k}}{b_{k+1}} \\
& +\frac{k\left(b_{k-1}-b_{k-2}\right)}{b_{k-2}} \frac{b_{k-2}}{b_{k-1}} \frac{b_{k-1}}{b_{k}} \frac{b_{k}}{b_{k+1}} .
\end{aligned}
$$

Then $k\left(b_{k-2}-b_{k-1}\right) / b_{k-1}, k\left(b_{k}-b_{k-1}\right) / b_{k}, k\left(b_{k+1}-b_{k-2}\right) / b_{k+1}$ are bounded. Since $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2-regular, $k^{2}\left(b_{k+1}-2 b_{k}+b_{k-1}\right) / b_{k}$ and $k^{2}\left(b_{k}-2 b_{k-1}+b_{k-2}\right) / b_{k}$ are bounded. Since $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 3 -regular, $k^{3}\left(b_{k+1}-3 b_{k}+3 b_{k-1}-b_{k-2}\right) / b_{k}$ is bounded. Hence, $\sup _{k \in \mathbb{Z}}\left\|k^{3}\left(M_{k+1}-3 M_{k}+3 M_{k-1}-M_{k-2}\right)\right\|<\infty$, and the result follows from Theorem 2.1.

3. Maximal Regularity on Triebel-lizorkin Space

We will consider the problem

$$
\left(P_{2}\right) \quad\left\{\begin{array}{l}
u^{\prime}(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t) \quad 0 \leq t \leq 2 \pi \\
u(0)=u(2 \pi)
\end{array}\right.
$$

where $a \in \mathrm{~L}^{1}\left(\mathbb{R}_{+}\right), A$ is a closed operator in X and f is an X-valued function defined on $[0,2 \pi]$.

Let $1 \leq p<\infty, 1 \leq q \leq \infty, s>0$, and let $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$. A function $u \in \mathrm{~F}_{p, q}^{s+1}(\mathbb{T}, X)$ is called a strong $\mathrm{F}_{p, q}^{s}$-solution of $\left(P_{2}\right)$, if $u(t) \in D(A),\left(P_{2}\right)$ holds true for a.e. $t \in[0,2 \pi]$ and $A u \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$.

We remark that by [4, Proposition 2.3], if $u \in \mathrm{~F}_{p, q}^{s+1}(\mathbb{T}, X)$, then u is differentiable a.e. and $u^{\prime} \in \mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$. This implies that if u is a strong $\mathrm{F}_{p, q}^{s}$-solution of $\left(P_{2}\right)$, then every term in $\left(P_{2}\right)$ is in $\mathrm{F}_{p, q}^{s}(\mathbb{T}, X)$.

For convenience, we introduce the following notations

$$
\begin{align*}
& c_{k}=\tilde{a}(i k) \\
& b_{k}=\frac{i k}{1+\tilde{a}(i k)} \text { for all } \quad k \in \mathbb{Z} \backslash\{0\}, b_{0}=0 \tag{3.1}
\end{align*}
$$

In order to give our result, the following hypotheses are fundamental.
$((\mathbf{H} 1))\left(c_{k}\right)_{k \in \mathbb{Z}},\left(k\left(c_{k+1}-c_{k}\right)\right)_{k \in \mathbb{Z}}$ and $\left(1 /\left(1+c_{k}\right)\right)_{k \in \mathbb{Z}}$ are bounded sequences.
((H2)) $\left(k c_{k}\right)_{k \in \mathbb{Z}},\left(k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)\right)_{k \in \mathbb{Z}}$ are bounded sequences.
$((\mathbf{H} 3))\left(k c_{k}\right)_{k \in \mathbb{Z}},\left(k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)\right)_{k \in \mathbb{Z}}$ and $\left(k^{3}\left(c_{k+1}-3 c_{k}+3 c_{k-1}-c_{k-2}\right)\right)_{k \in \mathbb{Z}}$ are bounded sequences.
Now we are ready to state the main result of this paper:
Theorem 3.1. Let $1 \leq p<\infty, 1 \leq q \leq \infty$ and $s>0$. Let A be a closed operator in a Banach space X. Let $a \in L^{1}\left(\mathbb{R}_{+}\right)$be such that the condition (H3) is satisfied. Then the following assertions are equivalent:
(i) $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<\infty$.
(ii) For every $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, there exists a unique strong $\mathrm{F}_{p, q}^{s}$-solution of $\left(P_{2}\right)$.

Before proving our main result, we first discuss the relations between the assumptions (H2), (H3) and the conditions of 2 -regularity and 3 -regularity of the sequence $\left(b_{k}\right)_{k \in \mathbb{Z}}$.

Lemma 3.2.

(i) If $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the condition (H2), then $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2 -regular.
(ii) If $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the condition (H3), then $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 3-regular.

Proof. First we assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the condition (H2). From the assumption $\left(k c_{k}\right)_{k \in \mathbb{Z}}$ is bounded, we deduce that $\lim _{k \rightarrow \infty} c_{k}=0$ and thus $\left(c_{k}\right)_{k \in \mathbb{Z}}$ is bounded. We have

$$
\begin{aligned}
\frac{k\left(b_{k+1}-b_{k}\right)}{b_{k}}= & \frac{1+c_{k}+k c_{k}-k c_{k+1}}{1+c_{k+1}} \\
\frac{k^{2}\left(b_{k+1}-2 b_{k}+b_{k-1}\right)}{b_{k}}= & \frac{k\left(c_{k-1}-c_{k+1}\right)}{\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)}-\frac{k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)}{\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)} \\
& +\frac{k(k+1) c_{k-1} c_{k}+k(k-1) c_{k} c_{k+1}-2 k^{2} c_{k-1} c_{k+1}}{\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)} .
\end{aligned}
$$

The two sequences are bounded as $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the assumption (H2). Hence $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2-regular. Next we assume that $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the condition (H3), then $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 2 -regular by (i). We have

$$
\begin{aligned}
& \frac{k^{3}\left(b_{k+1}-3 b_{k}+3 b_{k-1}-b_{k-2}\right)}{b_{k}}=-\frac{k^{3}\left(c_{k+1}-3 c_{k}+3 c_{k-1}-c_{k-2}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)} \\
& \quad-\frac{2 k c_{k-2} k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)}+\frac{2 k c_{k+1} k^{2}\left(c_{k}-2 c_{k-1}+c_{k-2}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)}-\frac{2 k^{2}\left(c_{k}-2 c_{k-1}+c_{k-2}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)} \\
& +\frac{k^{2}\left(c_{k-2} c_{k-1}-2 c_{k-2} c_{k}-3 c_{k-2} c_{k+1}+3 c_{k-1} c_{k}+2 c_{k-1} c_{k+1}-c_{k} c_{k+1}\right)}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)} \\
& +\frac{k^{2}(k+1) c_{k-2} c_{k-1} c_{k}-3 k^{3} c_{k-2} c_{k-1} c_{k+1}+(3 k-3) k^{2} c_{k} c_{k-2} c_{k+1}-(k-2) k^{2} c_{k-1} c_{k} c_{k+1}}{\left(1+c_{k-2}\right)\left(1+c_{k-1}\right)\left(1+c_{k+1}\right)}
\end{aligned}
$$

which is bounded by the assumption (H3). This finishes the proof.
We notice that the assumption (H2) and the notion of 2-regular sequences were introduced in [11] to study the maximal regularity property on Besov spaces $\mathrm{B}_{p, q}^{s}(\mathbb{T}, X)$ for the problem $\left(P_{2}\right)$. In the proof of our main result, we will use the following result.

Proposition 3.3. Let X be a Banach space. Under the assumption (H3), the sequences $\left(\left(1+c_{k}\right) I\right)_{k \in \mathbb{Z}},\left(\left(1+c_{k}\right) I /(i k)\right)_{k \in \mathbb{Z}}$ and $\left(I /\left(1+c_{k}\right)\right)_{k \in \mathbb{Z}}$ are $\mathrm{F}_{p, q^{-}}^{s}$ multipliers for $1 \leq p<\infty, 1 \leq q \leq \infty, s \in \mathbb{R}$.

Proof. Since $\left(k c_{k}\right)_{k \in \mathbb{Z}}$ is bounded, we have $\lim _{k \rightarrow \infty} c_{k}=0$ and thus $\left(c_{k}\right)_{k \in \mathbb{Z}}$ is bounded. To show that $\left(\left(1+c_{k}\right) I\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier, it will suffice to show that the sequence $\left(c_{k} I\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier, this follows directly from the assumption (H3) and Theorem 2.1. Since the product of two $\mathrm{F}_{p, q}^{s}$-multipliers is still an $\mathrm{F}_{p, q}^{s}$-multiplier, to show that $\left(\left(1+c_{k}\right) I / i k\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier, it will suffice to show that $(I / i k)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier. This is a direct consequence of Theorem 2.1.

Finally, we show that $u_{k}=I /\left(c_{k}+1\right)$ is an $\mathrm{F}_{p, q}^{s}$-multiplier. We have

$$
\begin{aligned}
k\left(u_{k+1}-u_{k}\right)= & \frac{k\left(c_{k}-c_{k+1}\right)}{\left(1+c_{k}\right)\left(1+c_{k+1}\right)} \\
k^{2}\left(u_{k+1}-2 u_{k}+u_{k-1}\right)= & \frac{-k^{2}\left(c_{k+1}-2 c_{k}+c_{k-1}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)} \\
& -\frac{k c_{k-1} k\left(c_{k+1}-c_{k}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)} \\
= & +\frac{k c_{k+1} k\left(c_{k}-c_{k-1}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)} \\
k^{3}\left(u_{k+1}-3 u_{k}+3 u_{k-1}-u_{k-2}\right)= & \frac{-k^{3}\left(c_{k+1}-3 c_{k}+3 c_{k-1}-c_{k-2}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)\left(1+c_{k-2}\right)} \\
= & +\frac{2 k c_{k+1} k^{2}\left(c_{k}-2 c_{k-1}+c_{k-2}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)\left(1+c_{k-2}\right)} \\
& -\frac{2 k c_{k-2} k^{2}\left(c_{k-1}-2 c_{k}+c_{k+1}\right)}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)\left(1+c_{k-2}\right)}
\end{aligned}
$$

$$
=+\frac{k^{3} c_{k} c_{k-1} c_{k-2}-3 k^{3} c_{k+1} c_{k-1} c_{k-2}+3 k^{3} c_{k} c_{k+1} c_{k-2}-k^{3} c_{k+1} c_{k} c_{k-1}}{\left(1+c_{k+1}\right)\left(1+c_{k}\right)\left(1+c_{k-1}\right)\left(1+c_{k-2}\right)}
$$

are bounded sequences. Hence $\left(u_{k}\right)_{k \in \mathbb{Z}}$ is also an $\mathrm{F}_{p, q}^{s}$-multiplier by Theorem 2.1.
Corollary 3.4. Let A be a closed operator in a Banach space X. Let $\left(c_{k}\right)_{k \in \mathbb{Z}} \subset$ $\mathbb{C} \backslash\{0\}$ be a sequence satisfying the assumption (H3), such that $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$. If $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is bounded, then $\left(R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier for $1 \leq p<$ $\infty, 1 \leq q \leq \infty$ and $s \in \mathbb{R}$.

This is a direct consequence of the following observations: when $\left(c_{k}\right)_{k \in \mathbb{Z}}$ satisfies the assumption (H3), $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 3-regular by Lemma 3.2. By the boundedness of $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ and Theorem 2.3, $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier for $1 \leq p<\infty, 1 \leq q \leq \infty$ and $s \in \mathbb{R}$. Then the result follows from Proposition 3.3 and the fact that the product of two $\mathrm{F}_{p, q}^{s}$-multipliers is still an $\mathrm{F}_{p, q}^{s}$-multiplier.

Now we are ready to give the proof of our main result.
Proof of Theorem 3.1. (ii) \Rightarrow (i): Let $y \in X$ and $k \in \mathbb{Z}$ be fixed. We let $f=e_{k} \otimes y$. Note that $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$. Hence there exists $u \in \mathrm{~F}_{p, q}^{s+1}(\mathbb{T}, X)$ such that $u(t) \in D(A), u^{\prime}(t)=A u(t)+a \dot{*} A u(t)+f(t)$ holds for a.e. $t \in[0,2 \pi]$ and $A u \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$ (see (2.3) for the definition of $\left.a \dot{*} A u\right)$. Taking Fourier series on both sides, we obtain $\hat{u}(k) \in D(A)$ by [2, Lemma 3.1] and

$$
i k \hat{u}(k)=A \hat{u}(k)+\tilde{a}(i k) A \hat{u}(k)+\hat{f}(k)=A \hat{u}(k)+\tilde{a}(i k) A \hat{u}(k)+y
$$

by (2.4). Thus $[i k-(1+\tilde{a}(i k)) A] \hat{u}(k)=y$. We have shown that $i k-(1+\tilde{a}(i k)) A$ is surjective. To show that the operator $i k-(1+\tilde{a}(i k)) A$ is also injective, we take $x \in D(A)$ be such that $[i k-(1+\tilde{a}(i k)) A] x=0$, then $A x=b_{k} x$. This implies that $u=e_{k} \otimes x$ defines a periodic solution of $u^{\prime}(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s$. Indeed,

$$
\begin{aligned}
& A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s=e^{i k t} A x+\int_{-\infty}^{t} a(t-s) e^{i k s} A x d s \\
= & e^{i k t} A x+e^{i k t} \tilde{a}(i k) A x=e^{i k t}(1+\tilde{a}(i k)) A x=i k e^{i k t} x=u^{\prime}(t)
\end{aligned}
$$

By the assumption of uniqueness, we must have $x=0$. We have shown that $i k-(1+\tilde{a}(i k)) A$ is bijective. Since A is closed, we conclude that $b_{k} \in \rho(A)$.

Next, we show that $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<\infty$. We consider $f=e_{k} \otimes x$ for some fixed $k \in \mathbb{Z}$ and $x \in X$, we let u be the unique solution in $\mathrm{F}_{p, q}^{1+s}(\mathbb{T}, X)$ of $\left(P_{2}\right)$. Taking Fourier series, we have $[i k-(1+\tilde{a}(i k)) A] \hat{u}(k)=x$. Hence

$$
\begin{aligned}
& i k \hat{u}(k)=b_{k} R\left(b_{k}, A\right) x \\
& \text { in } \hat{u}(n)=0, \quad(n \neq k) .
\end{aligned}
$$

This implies that the solution u satisfies $u^{\prime}=b_{k} R\left(b_{k}, A\right) e_{k} \otimes x$. By hypothesis and using the Closed Graph Theorem, we can find $C>0$ independent from k and x such that

$$
\left\|u^{\prime}\right\|_{\mathrm{F}_{p, q}^{s}}+\|A u\|_{\mathrm{F}_{p, q}^{s}}+\|a \dot{*} A u\|_{\mathrm{F}_{p, q}^{s}} \leq C\|f\|_{\mathrm{F}_{p, q}^{s}} .
$$

This implies that $\left\|b_{k} R\left(b_{k}, A\right) x\right\| \leq C\|x\|$ for all $k \in \mathbb{Z}$. Hence $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|$ $<\infty$. We have proved (i).
(i) \Rightarrow (ii): Let $f \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$. Since $\left(I /\left(1+c_{k}\right)\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}-$ multiplier by Proposition 3.3, there exists $g \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, such that $\hat{g}(k)=\hat{f}(k) /\left(1+c_{k}\right)$ for all $k \in \mathbb{Z}$. Since $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is bounded by assumption and $\left(b_{k}\right)_{k \in \mathbb{Z}}$ is 3 -regular as the condition (H3) is satisfied by Lemma 3.2, the sequence $\left(b_{k} R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ defines an $\mathrm{F}_{p, q}^{s}$-multiplier by Theorem 2.3. By Proposition 3.3, $\left(1+c_{k}\right)_{k \in \mathbb{Z}}$ is also an $\mathrm{F}_{p, q}^{s}$-multiplier. We deduce that $\left(i k R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ defines an $\mathrm{F}_{p, q}^{s}$-multiplier. There exists $v \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$, such that $\hat{v}(k)=i k R\left(b_{k}, A\right) \hat{g}(k)$ for $k \in \mathbb{Z}$. By Corollary 3.4, $\left(R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is also an $\mathrm{F}_{p, q}^{s}$-multiplier, there exists $u \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$ such that $\hat{u}(k)=R\left(b_{k}, A\right) \hat{g}(k)$. Hence we have $\hat{v}(k)=i k \hat{u}(k)$ for $k \in \mathbb{Z}$. By [2, Lemma 2.1], u is differentiable a.e. and $u^{\prime}=v, u(0)=u(2 \pi)$. By [4, Proposition 2.3], this implies that $u \in \mathrm{~F}_{p, q}^{s+1}(\mathbb{T}, X)$. By $\hat{u}(k)=R\left(b_{k}, A\right) \hat{g}(k)$ and [2, Lemma 3.1], $u(t) \in D(A)$ for a.e. $t \in[0,2 \pi]$. On the other hand $A \hat{u}(k)=A R\left(b_{k}, A\right) \hat{g}(k)$, we deduce that $A u \in \mathrm{~F}_{p, q}^{s}(\mathbb{T}, X)$ as $\left(A R\left(b_{k}, A\right)\right)_{k \in \mathbb{Z}}$ is an $\mathrm{F}_{p, q}^{s}$-multiplier by (i).

From $\left(b_{k} I-A\right) \hat{u}(k)=\hat{g}(k)$, we have

$$
i k \hat{u}(k)=(1+\tilde{a}(i k)) A \hat{u}(k)+(1+\tilde{a}(i k)) \hat{g}(k)=A \hat{u}(k)+\tilde{a}(i k) A \hat{u}(k)+\hat{f}(k)
$$

for all $k \in \mathbb{Z}$. From the uniqueness theorem of Fourier coefficient, we deduce that $\left(P_{2}\right)$ holds true for almost $t \in[0,2 \pi]$. This shows existence.

To show the uniqueness, let $u \in \mathrm{~F}_{p, q}^{s+1}(\mathbb{T}, X) \cap \mathrm{F}_{p, q}^{s}(\mathbb{T}, D(A))$ be such that $u^{\prime}(t)-A u(t)-\int_{-\infty}^{t} a(t-s) A u(s) d s=0$. Then $\hat{u}(k) \in D(A)$ by[2, Lemma 3.1] and $[i k I-(1+\tilde{a}(i k)) A] \hat{u}(k)=0$ by taking the Fourier series. Since $(i k /(1+$ $\tilde{a}(i k)) \subset \rho(A)$, this implies that $\hat{u}(k)=0$ for all $k \in \mathbb{Z}$. Thus $u=0$ and the proof is finished.

Remark 3.5.

(i) When $1<p<\infty, 1<q \leq \infty, s \in \mathbb{R}$, the first three conditions in (2.2) are already sufficient for a sequence $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X)$ to be an $\mathrm{F}_{p, q}^{s}$-multiplier [4, Theorem 3.2]. This fact together with the argument used in [11] shows that under the weaker assumption (H 2$)$ on $\left(c_{k}\right)_{k \in \mathbb{Z}}$, the problem $\left(P_{2}\right)$ has the $\mathrm{F}_{p, q^{-}}^{s}$ maximal regularity if and only if $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<$ ∞ whenever $1<p<\infty, 1<q \leq \infty$ and $s>0$.
(ii) When the underlying Banach space X has a non trivial Fourier type and $1 \leq p, q \leq \infty, s \in \mathbb{R}$, the first two conditions in (2.2) are already sufficient
for a sequence $\left(M_{k}\right)_{k \in \mathbb{Z}} \subset \mathcal{L}(X)$ to be a $\mathrm{B}_{p, q}^{s}$-multiplier [3, Theorem 4.5]. This fact together with the argument used in [11] shows that under the weaker assumption (H 1$)$ on $\left(c_{k}\right)_{k \in \mathbb{Z}}$, the problem $\left(P_{2}\right)$ has the $\mathrm{B}_{p, q}^{s}$-maximal regularity if and only if $\left(b_{k}\right)_{k \in \mathbb{Z}} \subset \rho(A)$ and $\sup _{k \in \mathbb{Z}}\left\|b_{k} R\left(b_{k}, A\right)\right\|<\infty$ whenever $1 \leq p, q \leq \infty$ and $s>0$.

Acknowledgment

The authors are grateful to the referee for useful comments.

References

1. H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.
2. W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240 (2002), 311-343.
3. W. Arendt and S. Bu, Operator-valued Fourier multipliers on peoriodic Besov spaces and applications, Proc. Edinburgh Math. Soc., 47 (2004), 15-33.
4. S. Bu and J. Kim, Operator-valued Fourier multipliers on peoriodic Triebel spaces, Acta Math. Sinica (English Series), 21(5) (2005), 1049-1056.
5. J. Bergh and J. Löfström, Interpolation Spaces: an introduction, Springer-verlag, 1976.
6. Ph. Clément, B. de Pagter, F. A. Sukochev and M. Witvliet, Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.
7. Ph. Clément and J. Prüss, An operator-valued transference principle and maximal regularity on vector-valued L_{p}-spaces. in: Evolution Equations and Their Applications in Physics and Life Sciences, Lumer, Weis eds., Marcel Dekker (2000), 67-87.
8. R. Denk, M. Hieber and J. Pruss, R-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc., 166 (2003) p. 114.
9. M. Girardi and L. Weis, Operator-valued Fourier multiplier theorems on $L_{p}(X)$ and geometry of Banach spaces, J. Funct. Analysis, 204 (2003), 320-354.
10. N. J. Kalton, G. Lancien, A solution of the L^{p}-maximal regularity, Math. Z., 235 (2000), 559-568.
11. V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, J. London Math. Soc., 69(2) (2004), 737-750.
12. V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math., 168(1) (2005), 25-50.
13. H. J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces, Chichester, Wiley, 1987.
14. L. Weis, Operator-valued Fourier multipliers and maximal L_{p}-regularity, Math. Ann., 319 (2001), 735-758.
15. L. Weis, A new approach to maximal L_{p}-regularity, in: Evolution Equations and Their Applications in Physics and Life Sciences, Lumer, Weis eds., Marcel Dekker (2000), 195-214.

Shangquan Bu and Yi Fang
Department of Mathematical Science,
University of Tsinghua,
Beijing 100084,
P. R. China

E-mail: sbu@math.tsinghua.edu.cn
sbusbusbu@tom.com
fangy04@mails.tsinghua.edu.cn

[^0]: Received August 22, 2005, accepted May 1, 2006.
 Communicated by Sen-Yen Shaw.
 2000 Mathematics Subject Classification: Primary 45N05; Secondary 45D05, 43A15, 47D99.
 Key words and phrases: Integro-differential equation, Maximal regularity, Triebel-Lizorkin spaces, Fourier multiplier.
 This work was supported by the NSF of China, Specialized Research Fund for the Doctoral Program of Higher Education and the Tsinghua Basic Research Foundation (JCpy2005056).

