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MAXIMAL REGULARITY FOR INTEGRO-DIFFERENTIAL
EQUATION ON PERIODIC TRIEBEL-LIZORKIN SPACES

Shangquan Bu and Yi Fang

Abstract. We study maximal regularity on Triebel-Lizorkin spaces Fs
p,q(T, X)

for the integro-differential equation with infinite delay: (P2): u′(t) = Au(t)+∫ t

−∞ a(t − s)Au(s)ds + f(t), (0 ≤ t ≤ 2π) with the periodic condition
u(0) = u(2π), where X is a Banach space, a ∈ L1(R+) and f is an X-
valued function. Under a suitable assumption (H3) on the Laplace transform
of a, we give a necessary and sufficient condition for (P2) to have the maximal
regularity property on Fs

p,q(T, X).

1. INTRODUCTION

In a series of recent publications operator-valued Fourier multipliers on vector-
valued function spaces are studied (see e.g. [1-4, 6-12, 14] and [15]). They are
useful in the study of the existence and uniqueness of solutions of differential equa-
tions on Banach spaces. In [2-4], the authors study the maximal regularity property
of the classical abstract non-homogeneous boundary problem (P1) on Lp spaces,
Besov spaces and Triebel-Lizorkin spaces.

(P1)

{
u′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π)

here X is a Banach space, A is a closed linear operator in X and f is an X-
valued function defined on [0, 2π]. The problem (P1) has the maximal regularity
property on Lp spaces if and only if iZ ⊂ ρ(A) and the set (ikR(ik, A))k∈Z is
Rademacher bounded whenever X is a UMD space and 1 < p < ∞ [2], where
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R(ik, A) is the resolvent (ik − A)−1 of A. In the Besov spaces and Triebel-
Lizorkin spaces setting, maximal regularity is equivalent to the fact that iZ ⊂ ρ(A)
and supk∈Z ‖kR(ik, A)‖ < ∞ (see [3,4]).

In this paper, we are interested in a more general evolution equation, namely the
integro-differential equation with infinite delay:

(P2)

{
u′(t) = Au(t) +

∫ t
−∞ a(t − s)Au(s)ds + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π)

where a ∈ L1(R+) is fixed. In [11], Keyantuo and Lizama have considered maximal
regularity on periodic Besov spaces Bs

p,q(T, X) for (P2). They have shown that if
ck = ã(ik) is the Laplace transform of a at ik and if (bk)k∈Z is 2-regular and (ck)k∈Z

satisfies a suitable assumption (H2), then the problem (P2) has maximal regularity
property on Bs

p,q(T, X) if and only if (bk)k∈Z ⊂ ρ(A) and supk∈Z ‖bkR(bk, A)‖ <

∞, where bk = ik
1+ck

. In this paper, we are interested in the maximal regularity
property on Triebel-Lizorkin spaces Fs

p,q(T, X) for the same problem (P2). We
show that if the sequence (ck)k∈Z satisfies a similar assumption (H3), then (P2)
has the maximal regularity property on Fs

p,q(T, X) if and only if (bk)k∈Z ⊂ ρ(A)
and supk∈Z ‖bkR(bk, A)‖ < ∞. This recovers the known result obtained in [4]
when a = 0. Here a similar assumption of 2-regularity or 3-regularity on (bk)k∈Z

is not needed. The main tool in the study of maximal regularity on Bs
p,q(T, X) for

the problem (P2) is an operator-valued Fourier multiplier theorem on Bs
p,q(T, X)

obtained in [3]. The operator-valued Fourier multiplier theorem on Fs
p,q(T, X)

proved in [4] will be fundamental for us in this paper.
The sufficient condition obtained in [3] for a sequence (Mk)k∈Z ⊂ L(X) to be a

Bs
p,q-multiplier is a Marcinkiewicz condition of order 2, while in the Fs

p,q-multiplier
case a stronger Marcinkiewicz condition of order 3 is needed [4]. This is the reason
why our assumption (H3) is stronger than the assumption (H2) used in [11] in the
Besov space case. It turns out that when 1 < p < ∞, 1 < q ≤ ∞ and s ∈ R,
then a Marcinkiewicz condition of order 2 is already sufficient for a sequence
(Mk)k∈Z ⊂ L(X) to be an Fs

p,q-multiplier [4], in this case under the weaker
assumption (H2) on (ck)k∈Z, the problem (P2) has the maximal regularity property
on Fs

p,q(T, X) if and only if (bk)k∈Z ⊂ ρ(A) and supk∈Z ‖bkR(bk, A)‖ < ∞.
This paper is organized as follows: Section 2 collects definitions and basic prop-

erties of vector-valued Triebel-Lizorkin spaces and Fourier multipliers. In section
3, we establish the periodic solution for the integro-differential equation (P2) on
Triebel-Lizorkin spaces Fs

p,q(T, X).

2. TRIEBEL-LIZORKIN SPACES AND THE PRELIMINARIES

Let X be a Banach space and let f ∈ L1(T, X), we denote by
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f̂(k) =
1
2π

∫ 2π

0
e−k(t)f(t)dt

the k-th Fourier coefficient of f , where k ∈ Z, T = [0, 2π] (the points 0 and 2π
are identified), and ek(t) = eikt. For k ∈ Z and x ∈ X , we denote by ek⊗x the
X-valued function defined by (ek⊗x)(t) = ek(t)x.

Firstly, we briefly recall the definition of periodic Triebel-Lizorkin spaces in the
vector-valued case introduced in [4] (see the monograph [13] for the scalar-valued
case). Let S(R) be the Schwarz space of all rapidly decreasing smooth functions
on R. Let D(T) be the space of all infinitely differentiable functions on T equipped
with the locally convex topology given by the seminorms ‖f‖α = supx∈T |f (α)(x)|,
where α ∈ N0 := N ∪ {0}. Let D′(T, X) := L(D(T), X) be the space of all
bounded linear operators from D(T) to X . In order to define the periodic Triebel-
Lizorkin spaces, we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| ≤ 2}, Ik = {t ∈ R : 2k−1 < |t| ≤ 2k+1}

for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Īk for each k ∈ N0,∑

k∈N0

φk(x) = 1 for x ∈ R,

and for each α ∈ N0

sup
x∈R
k∈N0

2kα|φ(α)
k (x)| < ∞.

Let φ = (φk)k∈N0 ∈ φ(R) be fixed. For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R, the
X-valued periodic Triebel-Lizorkin space is defined by

(2.1)

Fs
p,q(T, X) := {f ∈ D′(T, X) : ‖f‖Fs

p,q
:

= ‖(
∑
j≥0

2sjq‖
∑
k∈Z

ek ⊗ φj(k)f̂(k)‖q)1/q‖Lp < ∞}

with the usual modification if q = ∞. The space Fs
p,q(T, X) is independent from

the choice of φ and different choices of φ lead to equivalent norms on Fs
p,q(T, X).

Fs
p,q(T, X) equipped with the norm ‖ · ‖Fs

p,q
is a Banach space. See [4, Section 2]

for more information about the spaces Fs
p,q(T, X).

Next, we discuss the Fourier multipliers on Triebel-Lizorkin spaces. Let X and
Y be Banach spaces, We denote by L(X, Y ) the space of all bounded linear operators
from X to Y . If X = Y , we will simply denote it by L(X). Let 1 ≤ p < ∞,
1 ≤ q ≤ ∞, s ∈ R, and let (Mk)k∈Z ⊂ L(X, Y ). We will say that (Mk)k∈Z is
an Fs

p,q-multiplier, if for each f ∈ Fs
p,q(T, X), there exists g ∈ Fs

p,q(T, Y ), such
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that ĝ(k) = Mkf̂ (k) for all k ∈ Z. In this case it follows from the Closed Graph
Theorem that there exists a constant C > 0 such that for f ∈ Fs

p,q(T, X), we have
‖∑

k∈Z
ek ⊗ Mkf̂ (k)‖Fs

p,q
≤ C‖f‖Fs

p,q
.

The following Fs
p,q-multiplier theorem is due to Bu and Kim [4, Theorem 3.2]:

Theorem 2.1. Let X and Y be Banach spaces and let (Mk)k∈Z ⊂ L(X, Y ).

(i) Assume that (Mk)k∈Z satisfies a Marcinkiewicz estimate of order 3:

(2.2)

supk∈Z ‖Mk‖ < ∞
supk∈Z ‖k(Mk+1 − Mk)‖ < ∞
supk∈Z ‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞
supk∈Z ‖k3(Mk+1 − 3Mk + 3Mk−1 − Mk−2)‖ < ∞.

Then (Mk)k∈Z is an Fs
p,q-multiplier whenever 1≤p <∞, 1≤q≤∞, s∈R.

(ii) If (Mk)k∈Z satisfies the first three conditions of (2.2), then (M k)k∈Z is an
Fs

p,q-multiplier whenever 1 < p < ∞, 1 < q ≤ ∞ and s ∈ R.

Remark 2.2. We notice that even the underlying Banach spaces X, Y are
UMD spaces and 1 < p < ∞, a stronger condition is needed to ensure a sequence
(Mk)k∈Z ⊂ L(X, Y ) to be an Lp-multiplier: the sets {Mk : k ∈ Z} and {k(Mk+1−
Mk) : k ∈ Z} are Rademacher bounded [2]. Here for Triebel-Lizorkin spaces, we
impose conditions on the first three derivatives of (Mk)k∈Z, but the result is true
without any conditions on the geometry of the underlying Banach spaces and no
assumption of Rademacher boundedness is needed.

Next we give some preliminaries. Given a ∈ L1(R+) and u : [0, 2π] → X
(extended by periodicity to R), we define

(2.3) F (t) = (a∗̇u)(t) :=
∫ t

−∞
a(t − s)u(s)ds.

Let ã(λ) =
∫ +∞
0 e−λta(t)dt be the Laplace transform of a. An easy computation

shows that:

(2.4) F̂ (k) = ã(ik)û(k), (k ∈ Z).

The notion of 1-regular and 2-regular scalar sequences were introduced in [11]
to study the maximal regularity property on periodic Besov spaces for the problem
(P2). We will need the notion of 3-regular scalar sequences in the Triebel-Lizorkin
space case: A sequence (ak)k∈Z ⊂ C\{0} is called 1-regular if the sequence
(k(ak+1 − ak)/ak)k∈Z is bounded; it is called 2-regular if it is 1-regular and the
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sequence (k2(ak+1 − 2ak + ak−1)/ak)k∈Z is bounded; it is called 3-regular if it is
2-regular and the sequence (k3(ak+1 − 3ak + 3ak−1 − ak−2)/ak)k∈Z is bounded.

The following result is just a direct application of Theorem 2.1.

Theorem 2.3. Let A be a closed operator in a Banach spaceX . Let (bk)k∈Z ⊂
C\{0} be a 3-regular sequence such that (bk)k∈Z ⊂ ρ(A). Then the following
assertions are equivalent:

(i) (bkR(bk, A))k∈Z is an Fs
p,q-multiplier for 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and

s ∈ R.
(ii) (bkR(bk, A))k∈Z is bounded.

Proof. LetMk = bkR(bk, A) for k ∈ Z. Assume that (i) is valid, it follows from
the Closed Graph Theorem that there exists C > 0 such that for f ∈ Fs

p,q(T, X),
we have ‖∑

k∈Z
ek ⊗ Mkf̂(k)‖Fs

p,q
≤ C‖f‖Fs

p,q
. Let x ∈ X and n ∈ Z, we let

f = en⊗x. The above inequality implies that ‖en‖Fs
p,q
‖Mnx‖ = ‖enMnx‖ ≤

C‖en‖Fs
p,q
‖x‖. Hence supn∈Z ‖Mn‖ ≤ C. This proves the implication (i) ⇒

(ii). To prove the implication (ii) ⇒ (i), we assume that the sequence (Mk)k∈Z is
bounded. From the proof of [11, Proposition 3.4], we have

supk∈Z ‖k(Mk+1 − Mk)‖ < +∞
supk∈Z ‖k2(Mk+1 − 2Mk + Mk−1)‖ < +∞

as (bk)k∈Z is 2-regular. In order to verify the fourth Marcinkiewicz condition of
(2.2), we observe that for λ, µ, ν, ξ ∈ ρ(A), we have the identity:

3λR(λ, A)− 3µR(µ, A) + νR(ν, A) − ξR(ξ, A)

= −(ν − 3µ + 3λ − ξ)AR(µ, A)R(λ, A)

+(ν − ξ)(ν − 2µ + λ)AR(µ, A)R(λ,A)R(ν, A)

+(ν − ξ)(µ − 2λ + ξ)AR(µ, A)R(ν, A)R(ξ, A)

+2(µ − λ)(ξ − λ)(ν − ξ)AR(µ, A)R(λ, A)R(ν, A)R(ξ,A).

Substituting ν = bk+1, µ = bk, λ = bk−1, ξ = bk−2, we obtain:

k3(Mk+1 − 3Mk + 3Mk−1 − Mk−2)

= −k3(bk+1 − 3bk + 3bk−1 − bk−2)
bk

Mk(Mk−1 − I)

+
k2(bk+1 − 2bk + bk−1)

bk

k(bk+1 − bk−2)
bk+1

MkMk+1(Mk−1 − I)
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+
k2(bk − 2bk−1 + bk−2)

bk

k(bk+1 − bk−2)
bk+1

MkMk+1(Mk−2 − I)

+
2k(bk−2 − bk−1)

bk−1

k(bk − bk−1)
bk

k(bk+1 − bk−2)
bk+1

Mk−1MkMk+1(Mk−2 − I).

Since (bk)k∈Z is 1-regular, |k(bk+1 − bk)/bk| ≤ D for some constant D > 0
independent from k. From this, we deduce that |bk+1/bk − 1| ≤ D/|k| and thus
bk+1/bk → 1 as k → ∞. We have

k(bk−2 − bk−1)
bk−1

=
−(k − 2)(bk−1 − bk−2)

bk−2

bk−2

bk−1

k

k − 2
k(bk − bk−1)

bk
=

k(bk − bk−1)
bk−1

bk−1

bk

k(bk+1 − bk−2)
bk+1

=
k(bk+1 − bk)

bk

bk

bk+1
+

k(bk − bk−1)
bk−1

bk−1

bk

bk

bk+1

+
k(bk−1 − bk−2)

bk−2

bk−2

bk−1

bk−1

bk

bk

bk+1
.

Then k(bk−2 − bk−1)/bk−1, k(bk − bk−1)/bk, k(bk+1 − bk−2)/bk+1 are bounded.
Since (bk)k∈Z is 2-regular, k2(bk+1−2bk +bk−1)/bk and k2(bk−2bk−1 +bk−2)/bk

are bounded. Since (bk)k∈Z is 3-regular, k3(bk+1 − 3bk + 3bk−1 − bk−2)/bk is
bounded. Hence, supk∈Z ‖k3(Mk+1 − 3Mk + 3Mk−1 − Mk−2)‖ < ∞, and the
result follows from Theorem 2.1.

3. MAXIMAL REGULARITY ON TRIEBEL-LIZORKIN SPACE

We will consider the problem

(P2)
{

u′(t) = Au(t) +
∫ t
−∞ a(t − s)Au(s)ds + f(t) 0 ≤ t ≤ 2π

u(0) = u(2π)

where a ∈ L1(R+), A is a closed operator in X and f is an X-valued function
defined on [0, 2π].

Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0, and let f ∈ Fs
p,q(T, X). A function

u ∈ Fs+1
p,q (T, X) is called a strong Fs

p,q-solution of (P2), if u(t) ∈ D(A), (P2) holds
true for a.e. t ∈ [0, 2π] and Au ∈ Fs

p,q(T, X).
We remark that by [4, Proposition 2.3], if u ∈ Fs+1

p,q (T, X), then u is differen-
tiable a.e. and u′ ∈ Fs

p,q(T, X). This implies that if u is a strong Fs
p,q-solution of

(P2), then every term in (P2) is in Fs
p,q(T, X).

For convenience, we introduce the following notations

(3.1)
ck = ã(ik)

bk =
ik

1 + ã(ik)
for all k ∈ Z\{0}, b0 = 0
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In order to give our result, the following hypotheses are fundamental.
((H1)) (ck)k∈Z, (k(ck+1 − ck))k∈Z and (1/(1 + ck))k∈Z are bounded sequences.
((H2)) (kck)k∈Z, (k2(ck+1 − 2ck + ck−1))k∈Z are bounded sequences.
((H3)) (kck)k∈Z, (k2(ck+1−2ck+ck−1))k∈Z and (k3(ck+1−3ck+3ck−1−ck−2))k∈Z

are bounded sequences.

Now we are ready to state the main result of this paper:

Theorem 3.1. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0. Let A be a closed
operator in a Banach space X . Let a ∈ L1(R+) be such that the condition (H3)
is satisfied. Then the following assertions are equivalent:

(i) (bk)k∈Z ⊂ ρ(A) and supk∈Z ‖bkR(bk, A)‖ < ∞.
(ii) For every f ∈ Fs

p,q(T, X), there exists a unique strong F s
p,q-solution of (P2).

Before proving our main result, we first discuss the relations between the as-
sumptions (H2), (H3) and the conditions of 2-regularity and 3-regularity of the
sequence (bk)k∈Z.

Lemma 3.2.

(i) If (ck)k∈Z satisfies the condition (H2), then (bk)k∈Z is 2-regular.

(ii) If (ck)k∈Z satisfies the condition (H3), then (bk)k∈Z is 3-regular.

Proof. First we assume that (ck)k∈Z satisfies the condition (H2). From the
assumption (kck)k∈Z is bounded, we deduce that limk→∞ ck = 0 and thus (ck)k∈Z

is bounded. We have
k(bk+1 − bk)

bk
=

1 + ck + kck − kck+1

1 + ck+1

k2(bk+1 − 2bk + bk−1)
bk

=
k(ck−1 − ck+1)

(1 + ck−1)(1 + ck+1)
− k2(ck+1 − 2ck + ck−1)

(1 + ck−1)(1 + ck+1)

+
k(k + 1)ck−1ck + k(k − 1)ckck+1 − 2k2ck−1ck+1

(1 + ck−1)(1 + ck+1)
.

The two sequences are bounded as (ck)k∈Z satisfies the assumption (H2). Hence
(bk)k∈Z is 2-regular. Next we assume that (ck)k∈Z satisfies the condition (H3), then
(bk)k∈Z is 2-regular by (i) . We have

k3(bk+1 − 3bk + 3bk−1 − bk−2)
bk

= − k3(ck+1 − 3ck + 3ck−1 − ck−2)
(1 + ck−2)(1 + ck−1)(1 + ck+1)

− 2kck−2k
2(ck+1 − 2ck + ck−1)

(1 + ck−2)(1 + ck−1)(1 + ck+1)
+

2kck+1k
2(ck − 2ck−1 + ck−2)

(1 + ck−2)(1 + ck−1)(1 + ck+1)
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− k2(ck+1 − 2ck + ck−1)
(1 + ck−2)(1 + ck−1)(1 + ck+1)

− 2k2(ck − 2ck−1 + ck−2)
(1 + ck−2)(1 + ck−1)(1 + ck+1)

+
k2(ck−2ck−1 − 2ck−2ck − 3ck−2ck+1 + 3ck−1ck + 2ck−1ck+1 − ckck+1)

(1 + ck−2)(1 + ck−1)(1 + ck+1)

+
k2(k+1)ck−2ck−1ck−3k3ck−2ck−1ck+1+(3k − 3)k2ckck−2ck+1−(k−2)k2ck−1ckck+1

(1+ck−2)(1+ck−1)(1+ck+1)

which is bounded by the assumption (H3). This finishes the proof.

We notice that the assumption (H2) and the notion of 2-regular sequences
were introduced in [11] to study the maximal regularity property on Besov spaces
Bs

p,q(T, X) for the problem (P2). In the proof of our main result, we will use the
following result.

Proposition 3.3. Let X be a Banach space. Under the assumption (H3),
the sequences ((1 + ck)I)k∈Z, ((1 + ck)I/(ik))k∈Z and (I/(1 + ck))k∈Z are Fs

p,q-
multipliers for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R.

Proof. Since (kck)k∈Z is bounded, we have limk→∞ ck = 0 and thus (ck)k∈Z

is bounded. To show that ((1 + ck)I)k∈Z is an Fs
p,q-multiplier, it will suffice to

show that the sequence (ckI)k∈Z is an Fs
p,q-multiplier, this follows directly from

the assumption (H3) and Theorem 2.1. Since the product of two Fs
p,q-multipliers is

still an Fs
p,q-multiplier, to show that ((1+ ck)I/ik)k∈Z is an Fs

p,q-multiplier, it will
suffice to show that (I/ik)k∈Z is an Fs

p,q-multiplier. This is a direct consequence
of Theorem 2.1.

Finally, we show that uk = I/(ck + 1) is an Fs
p,q-multiplier. We have

k(uk+1 − uk) =
k(ck − ck+1)

(1 + ck)(1 + ck+1)

k2(uk+1 − 2uk + uk−1) =
−k2(ck+1 − 2ck + ck−1)

(1 + ck+1)(1 + ck)(1 + ck−1)

− kck−1k(ck+1−ck)
(1+ck+1)(1+ck)(1+ck−1)

= +
kck+1k(ck − ck−1)

(1 + ck+1)(1 + ck)(1 + ck−1)

k3(uk+1 − 3uk + 3uk−1 − uk−2) =
−k3(ck+1 − 3ck + 3ck−1 − ck−2)

(1 + ck+1)(1 + ck)(1 + ck−1)(1 + ck−2)

= +
2kck+1k

2(ck − 2ck−1 + ck−2)
(1 + ck+1)(1 + ck)(1 + ck−1)(1 + ck−2)

− 2kck−2k
2(ck−1 − 2ck + ck+1)

(1 + ck+1)(1 + ck)(1 + ck−1)(1 + ck−2)
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= +
k3ckck−1ck−2 − 3k3ck+1ck−1ck−2 + 3k3ckck+1ck−2 − k3ck+1ckck−1

(1 + ck+1)(1 + ck)(1 + ck−1)(1 + ck−2)

are bounded sequences. Hence (uk)k∈Z is also an Fs
p,q-multiplier byTheorem2.1.

Corollary 3.4. LetA be a closed operator in a Banach spaceX . Let (c k)k∈Z ⊂
C\{0} be a sequence satisfying the assumption (H3), such that (b k)k∈Z ⊂ ρ(A). If
(bkR(bk, A))k∈Z is bounded, then (R(bk, A))k∈Z is an Fs

p,q-multiplier for 1 ≤ p <

∞, 1 ≤ q ≤ ∞ and s ∈ R.

This is a direct consequence of the following observations: when (ck)k∈Z satis-
fies the assumption (H3), (bk)k∈Z is 3-regular by Lemma 3.2. By the boundedness
of (bkR(bk, A))k∈Z and Theorem 2.3, (bkR(bk, A))k∈Z is an Fs

p,q-multiplier for
1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s ∈ R. Then the result follows from Proposition 3.3
and the fact that the product of two Fs

p,q-multipliers is still an Fs
p,q-multiplier.

Now we are ready to give the proof of our main result.

Proof of Theorem 3.1. (ii)⇒(i): Let y ∈ X and k ∈ Z be fixed. We let
f = ek⊗ y. Note that f ∈ Fs

p,q(T, X). Hence there exists u ∈ Fs+1
p,q (T, X) such

that u(t) ∈ D(A), u′(t) = Au(t) + a∗̇Au(t) + f(t) holds for a.e. t ∈ [0, 2π] and
Au ∈ Fs

p,q(T, X) (see (2.3) for the definition of a∗̇Au). Taking Fourier series on
both sides, we obtain û(k) ∈ D(A) by [2, Lemma 3.1] and

ikû(k) = Aû(k) + ã(ik)Aû(k) + f̂(k) = Aû(k) + ã(ik)Aû(k) + y

by (2.4). Thus [ik−(1+ ã(ik))A]û(k) = y. We have shown that ik−(1+ ã(ik))A
is surjective. To show that the operator ik− (1+ ã(ik))A is also injective, we take
x ∈ D(A) be such that [ik−(1+ ã(ik))A]x = 0, then Ax = bkx. This implies that
u = ek ⊗ x defines a periodic solution of u′(t) = Au(t) +

∫ t
−∞ a(t − s)Au(s)ds.

Indeed,

Au(t) +
∫ t
−∞ a(t − s)Au(s)ds = eiktAx +

∫ t
−∞ a(t − s)eiksAxds

= eiktAx + eiktã(ik)Ax = eikt(1 + ã(ik))Ax = ikeiktx = u′(t)

By the assumption of uniqueness, we must have x = 0. We have shown that
ik − (1 + ã(ik))A is bijective. Since A is closed, we conclude that bk ∈ ρ(A).

Next, we show that supk∈Z ‖bkR(bk, A)‖ < ∞. We consider f = ek⊗x for
some fixed k ∈ Z and x ∈ X , we let u be the unique solution in F1+s

p,q (T, X) of
(P2). Taking Fourier series, we have [ik − (1 + ã(ik))A]û(k) = x. Hence

ik û(k) = bkR(bk, A)x

in û(n) = 0, (n �= k).
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This implies that the solution u satisfies u ′ = bkR(bk, A)ek⊗x. By hypothesis and
using the Closed Graph Theorem, we can find C > 0 independent from k and x
such that

‖u′‖Fs
p,q

+ ‖Au‖Fs
p,q

+ ‖a∗̇Au‖Fs
p,q

≤ C‖f‖Fs
p,q

.

This implies that ‖bkR(bk, A)x‖ ≤ C‖x‖ for all k ∈ Z. Hence supk∈Z ‖bkR(bk, A)‖
< ∞. We have proved (i).

(i)⇒(ii): Let f ∈ Fs
p,q(T, X). Since (I/(1 + ck))k∈Z is an Fs

p,q-multiplier by
Proposition 3.3, there exists g ∈ Fs

p,q(T, X), such that ĝ(k) = f̂ (k)/(1+ ck) for all
k ∈ Z. Since (bkR(bk, A))k∈Z is bounded by assumption and (bk)k∈Z is 3-regular
as the condition (H3) is satisfied by Lemma 3.2, the sequence (bkR(bk, A))k∈Z

defines an Fs
p,q-multiplier by Theorem 2.3. By Proposition 3.3, (1 + ck)k∈Z is

also an Fs
p,q-multiplier. We deduce that (ikR(bk, A))k∈Z defines an Fs

p,q-multiplier.
There exists v ∈ Fs

p,q(T, X), such that v̂(k) = ikR(bk, A)ĝ(k) for k ∈ Z. By
Corollary 3.4, (R(bk, A))k∈Z is also an Fs

p,q-multiplier, there exists u ∈ Fs
p,q(T, X)

such that û(k) = R(bk, A)ĝ(k). Hence we have v̂(k) = ikû(k) for k ∈ Z. By [2,
Lemma 2.1], u is differentiable a.e. and u′ = v, u(0) = u(2π). By [4, Proposition
2.3], this implies that u ∈ Fs+1

p,q (T, X). By û(k) = R(bk, A)ĝ(k) and [2, Lemma
3.1], u(t) ∈ D(A) for a.e. t ∈ [0, 2π]. On the other hand Aû(k) = AR(bk, A)ĝ(k),
we deduce that Au ∈ Fs

p,q(T, X) as (AR(bk, A))k∈Z is an Fs
p,q-multiplier by (i).

From (bkI − A)û(k) = ĝ(k), we have

ik û(k) = (1 + ã(ik))Aû(k) + (1 + ã(ik))ĝ(k) = Aû(k) + ã(ik)Aû(k) + f̂(k)

for all k ∈ Z. From the uniqueness theorem of Fourier coefficient, we deduce that
(P2) holds true for almost t ∈ [0, 2π]. This shows existence.

To show the uniqueness, let u ∈ Fs+1
p,q (T, X) ∩ Fs

p,q(T, D(A)) be such that
u′(t)−Au(t)− ∫ t

−∞ a(t− s)Au(s)ds = 0. Then û(k) ∈ D(A) by[2, Lemma 3.1]
and [ikI − (1 + ã(ik))A]û(k) = 0 by taking the Fourier series. Since (ik/(1 +
ã(ik)) ⊂ ρ(A), this implies that û(k) = 0 for all k ∈ Z. Thus u = 0 and the proof
is finished.

Remark 3.5.

(i) When 1 < p < ∞, 1 < q ≤∞, s∈R, the first three conditions in (2.2) are
already sufficient for a sequence (Mk)k∈Z ⊂ L(X) to be an Fs

p,q-multiplier
[4, Theorem 3.2]. This fact together with the argument used in [11] shows that
under the weaker assumption (H2) on (ck)k∈Z, the problem (P2) has the Fs

p,q-
maximal regularity if and only if (bk)k∈Z ⊂ ρ(A) and supk∈Z ‖bkR(bk, A)‖ <
∞ whenever 1 < p < ∞, 1 < q ≤ ∞ and s > 0.

(ii) When the underlying Banach space X has a non trivial Fourier type and
1 ≤ p, q ≤ ∞, s ∈ R, the first two conditions in (2.2) are already sufficient
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for a sequence (Mk)k∈Z ⊂ L(X) to be a Bs
p,q-multiplier [3, Theorem 4.5].

This fact together with the argument used in [11] shows that under the weaker
assumption (H1) on (ck)k∈Z, the problem (P2) has theBs

p,q-maximal regularity
if and only if (bk)k∈Z ⊂ ρ(A) and supk∈Z ‖bkR(bk, A)‖ < ∞ whenever
1 ≤ p, q ≤ ∞ and s > 0.
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