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ON SOME NONLINEAR DISSIPATIVE EQUATIONS WITH
SUB-CRITICAL NONLINEARITIES

Nakao Hayashi, Naoko Ito, Elena I. Kaikina and Pavel 1. Naumkin

Abstract. We study the Cauchy problem for the nonlinear dissipative equa-

tions

O { Byu+a (=A) 2w+ Blul” ut ylu*u=0, z € R",t >0,
u(0,z) = up(x), z € R",

where a,8,7v€ C,Re a > 0, p > 0, » > 0 > 0. We are interested in the

critical case, ¢ = £ and sub critical cases 0 < ¢ < 2. We assume that the

initial data ug are sufficiently small in a suiatble norm, | [ ug (z)dz| > 0 and
Refd(a, p,o) > 0, where

0(a, p,0) = /‘G(:L‘)rr G(x)dx

and G (z) = F~te~l¢” In the sub critical case we assume that o is close to
f. Then we prove global existence in time of solutions to the Cauchy problem
(1) satisfying the time decay estimate

C(1+t) 7 (log(2+t)77 ifo=2

[[w ()]l oo N !
C(1+1t) 7 ifoe (0,2).

1. INTRODUCTION

We study the Cauchy problem for the nonlinear dissipative equations with frac-
tional power of the negative Laplacian and complex coefficients

2 { 5tu+a(—A)§u+ﬁ|u|au+’y|u|’{u:0, x e R™t >0,

u(0,2) =ug (z), € R,
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where o, 3,7 € C, Re a > 0, p > 0, » > o > 0. Furthermore we assume that
Re 36(a, p,0) > 0 and initial data are sufficiently small in L N L} where L,
1 p oo, is the usual Lebesgue space, the weighted Lebesgue space L1? is
defined by

LM = {6 € LY gl o = || (@) 9|

<oo}, b>0
Ll

and
5, p, o) = / G @) G (2)de, G (a) = F (")

We restrict our attention to the critical and subcritical cases 0 < o 2 and prove
global existence in time for small solutions to the Cauchy problem (2). In the super
critical case o > ﬁ the problem is easier, and it was studied in [15] under the
restrictions o > p > %, n = 1. Equation (2) with p = 2, 0 = % is known as the
complex Landau-Ginzburg equation. Local existence in time for the solutions to the
Cauchy problem (2) with p = 2 was studied by many authors (see, e.g. [7],[8]) and
references cited therein). In the case p # 2, local existence in time can be easily
shown by the contraction mapping principle in L? framework. Nonlinear dissipative
equations with a fractional power of the negative Laplacian in the principal part
were studied extensively (see, e.g., [1],[2],[20],[23] and references cited therein).
Blow-up in finite time of positive solutions to the Cauchy problem

(3) du—+(—A)2u —ut7 =0, u(0,z) =y (z) >0
was proved in [5],[24] for the case 0 < o < %, p = 2, 1in [10],[18] for the case
o= %, p = 2, and in paper [22] forthe case 0 < p 2,0 <o ;’;’. Their

proofs of blow-up results are based on the positivity of linear evolution operator
.7-"*1645'?, associated with equation (3), for 0 < p 2 (see book [25]), and do not
work for the case p > 2, since Fle~l¢l” is not necessarily positive. Large time
behavior of positive solutions was studied extensively for a particular case of (2)
written as

O — Au+utt? =0,

with any o > 0 (see [16]) for the super critical case o > %, [6] for the critical case
o = 2 and [3],[4],[9],[17] for the sub critical case o € (0,2)). Global existence
in time for small solutions to (3) in the super critical case o > %, p = 2 was shown
in [5]. Large time asymptotic behavior of small solutions to (2) with p =2,7=0
was investigated in details in [12],[13],[14] under the condition that

—n
2

Rep ((2+0)|af? +00?) = [3][(2+0) af + o

in (2
X COS (argﬁ — I arctan sin (2arg ) ) > 0.

2 1+%+cos(2arga)
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The critical case o = %, n = 1 was studied in [ 12], when the initial data are small

in HY9 N H%!, where H™* is the weighted Sobolev space
H™ = {¢ € L2 6]l = |(iV)™ (2)° Bllpa < 00} ,

m,s > 0, (x) = v/1+ 22. In [13] the critical case o = 2, was studied for any
space dimensions n > 1, when the initial data are small in L>* N LY a € (0,1),
In [14] it was considered the sub critical case 1 < o < %, when 2 — no is small,
n > 1, the initial data are small in L N LY, a € (0,1).

As far as we know the global existence in time for solutions to the Cauchy
problem (2) with p # 2 in critical and sub critical cases is not known. Our global
result stated below is applicable, in particular, to the problem

“) A+ (—A)2 u+ Mt = pu, w(0,x) = ug (x) > 0,

with 0 < o <3 2 X\ pu > 0. As we mentioned above when A = 0, p > 0,
0 < p 2 the solutions of (4) blow up in finite time, and when A > 0, u = 0,
0 < p < oo the solution exists globally in time. Our results stated below show that
the dissipation term u!'*” in equation (4) is stronger than the blow-up term !,
Note that the problem of asymptotic behavior of solutions to (4) is still open for the
sub critical case 0 < x <o 2 evenifp=2.

Let F¢ or ¢ be the Fourier transform of ¢ defined by ¢ (&= (2#)_% [ e
(z) dz and F~1¢(z) = (2m) 2 [ € ¢ (x) dz is the inverse Fourier transform of
¢. By C (I; B) we denote the space of continuous functions from a time interval I
to the Banach space B.

Now we state the results of this paper. Denote g (t) = 1+ |0|" nlog (1 +1t),

n= pReBd (a,p,0),
Xo (t)= g(t) ifo =2, and

Xo (t) = 1+ ™00 if o € (0, 2).

Theorem 1.1.  Assume that Rea: > 0,0 <o < £ and
up € L*NLY, a € (0, min(1, p)).
Furthermore we suppose that

ReBé(a, p,0) > 0, |Go(0)] = 0(27)" 2 > 0.

Then there exists a positive € such that if ||uol/e + [|uo|lpre €, [@0(0)| > Ce
and the value o is close to £, 5o that & — o Ce?. then the Cauchy problem (2)
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has a unique global solution u(t,z) € C ([0,00); L™ N LY%) satisfying the time
decay estimate

() X (1) et
1 Lee

and 1 (t) satisfies

‘w () —arg g (0) + 107 [ xo ™ (1) (1 +7) 5" dr

)

).

L 1
CEHU/ X;P" (1)log xo (1) (1 +T)_1dT if o =
0

S 3o

1+20 ! % —on ; P o
Ce Xo° (T)(14+7)" " dTlfO'E(E—Oé‘,
0

n = ImpBs (Oé,p,O') :

For the convenience of the reader, we state the global existence result for the
super-critical case > > o > £. In this case we do not need the positivity of
Refo(c, p,0).

Theorem 1.2. Assume that Reae > 0, x > o > ‘7’% and ugp € LN LL. Then
there exists a positive € such that if |[uo||p,ec +||uolly,1 €, then the Cauchy problem
(2) has a unique global solution u(t, z) € C ([0, 00); L N L) satisfying the time
decay estimate

lu @) Ce(1+1) .

Remark 1.1. Our proof of the Theorem 1.1 depends on the positivity of the value
Re(3d (e, p, o), which we need to derive better time decay properties of solutions
(see Lemma 2.3 below). If p = 2 then we can calculate explicitly the value of
d (e, p, o) (see also [13,][14])

50,2, 0) = L [ =2y,
(4mt)27 2 |27 a2
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We do not need the positivity of the kernel G (xz) = F~1 (efo‘mp of the Green
operator which was essentially used previously in proving the blow-up results. The
condition that the value o should be close to ‘T’f, so that f; —o  Ce7 is rather
technical and is caused by the application of the contraction mapping principle for
proving global existence of solutions.

Remark 1.2. We consider only the case of the linear operator of the form

oz(—A)!21 in equation (2) for simplicity. Our method is also applicable to a more
general case of pseudodifferential operators.

We organize the rest of our paper as follows. We prove preliminary lemmas in
Section 2. In Lemma 2.1 we obtain estimates of the Green operator in the Lebesgue
spacesLP, 1 p ooand L% Then in Lemma 2.2 we estimate the Green operator
in our basic norm

I = sup (17 16 Olle + 16 Ol + (0467 0D

where a € (0,1) . Large time behavior of the mean value of the nonlinearity 3 |u|” u
in equation (2) is evaluated in Lemma 2.3. Section 3 is devoted to the proof of
Theorem 1.1. Theorem 1.2 is proved in Section 4.

2. PRELIMINARIES

We write the solution of the linear Cauchy problem
du+a(-A)2u=f(tz), s €R",t>0,
u(0,x) =up(x), x € R",
with Rea > 0, p > 0, by virtue of the Duhamel formula

¢
w(O=GWu+ [ G—7 @)
0
where the Green operator G (t) is given by
©  GWe=F e G =t [ @—n) sy
with a kernel G (z) = F~1 (aa\é V’) .

We first collect some preliminary estimates of the Green operator G (t) in the
norms || ¢, and [|¢f|pra , where [[@llpia = [[()* @llpa, a € (0,1),1 p oo
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Lemma 2.1.  Suppose that the function ¢ € L N LY, where a € (0,1).
Then the estimates

16 @) Sl CllgllL

and
[ (g@o—vFa (o)), G 1ol

are valid for all t > 0, where

1 p o0, 0 w a,ﬁz/qﬁ(x)dx.

Proof. Note that the kernel G (z) = F~1 (e—a\g\P> in representation (5) is a
smooth function G (z) € C* (R"™) and decays at infinity so that

(6) sup (z)"THF
zeR™

a’;jG(a:)‘ c,

forall1 5 mn,k=0,1, where 0 < p < min (1,p) (since p > 0 is a fractional
number). Indeed we have

C||gheele? C.

ok G (@) = |7 (bl

Ll

ot 2} 40k, G ()| = |70 (0 1" 97 (gFeme) )
C H 10, | 3Z+k <§]l_ce—a|§|p)

1
L

for k = 0, 1, where the fractional derivative |8§j }” for u € (0, 1) is defined by

g o) =77 (lat (@) = € [ (6 () —0(©)) o™ ay

where £ = (&1,...,6), £(y) = (&1, & — Y, -, &) (see [21]). We have with
6(6) = o+ (ghele)

5" 0(6) = C [ (6 (€)= (@) b dy =1 +12

where

=y 0Ew)-o@) b,
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pef o (o(Ew) —s@) Wl a

6(©)] = |og+* (ehe ol

forall ¢ e R* 1 4,1 n, k=01, we estimate the first summand I; by the
Young’s inequality

1Ll CF 58 Sy 2 (0 (E)|+ 10 ()) e

= P _olé(y)|” - _
Cf ot g o ([EG] " e RO 4 jgpe 05"’) e
C fly LW~y +C [y W™ "y C

Since
Clglfme e

since 4 < p. In the case |y J% we have with & = (&1, ..,6— ANy, &n) s
Ae (0,1)

(W) —e©] Cllivase)
Clyl e e el Clyllg " e Okl

forall € € R, |y| 1, since |€*] €[ +|y| 2] and |€*] > |¢] — |y > L]¢].
Whence we get

1
L&

p—1 —p
€l flylj‘ﬁlw| dyHLgo ¢

Mol C||fy el e O fy~* dy

C jgp-rre-ce

Lg
Therefore estimate (6) is true. By virtue of (6) we find

G (t‘% (.)))

hence by Young’s inequality we obtain the first estimate of the lemma

L2l Cligl

o

= NGO Cll@™ G

I9@®¢l, Ol 5t 0)|

forall £ >0, wherel p oc.
We write



142 Nakao Hayashi, Naoko Ito, Elena 1. Kaikina and Pavel I Naumkin

for any w € [0,a], a € (0,1) .We have
Gz—y)-G@)| [G@-y|+I[G() C((z—y) """+ )"

for all x,y € R™, and applying the Lagrange finite differences Theorem, in view
of (6) we obtain

G@—y)-G(@)] [y[V.G (@) Clyl @)™ Cly[(z) "
for all z,y € R"™, |y| %[, therefore
2 1G(z—y) =G (2)|  Claf"[yl* (@) """ Cly[* (=)™ "
for all z,y € R", |y| %L And if |y| > J%[ we get
z[*|G(z—y) -G @) Cly* (G —y)+I|G (2)])

Clyl* ({w—y) " "+ () ")

Thus we obtain

for all x, y € R™ Whence
|t (g®e—oie (2 0))],
F({Fe-n) "+ () s

(o)

forall t >0, wherel p oo, w€]0,a],a€ (0,1). Thus the second estimate
of the lemma is true. Lemma 2.1 is proved. ]

A

w—a

e G e TR

Lp

_ﬂ_"_w—ﬂ.

Ct o' »

Remark 2.1. The first estimate of Lemma 2.1 was shown in [19] or [23]. Here
we give a simpler proof.
In the next lemma we estimate the Green operator in our basic norm

¢l = sup (107 16 Ollue + 16 Ol + (14075 9O )

where a € (0,1). Define the function g (¢)

g(t)=1+ log(1+1)
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with some > 0.

Lemma 2.2. Let the function f (t,x) have a zero mean value [ f(t,z)dx = 0.
Then the following inequality

t
9" (t)A g r(nget—n)f (dr|  ClA+1)f(to)llx
X
is valid for k = 0,1, provided that the right-hand side is finite.

Proof. View of the estimate g~! (1) C and Lemma 2.1 we get
t
[ ot mee-ns [ o @ot-nsmar
0 Llea
Cs/ (1 +T) YWodr  Ceg " (1)
0

forall0 ¢ 4. We now consider ¢ > 4. Via the condition of the lemma for the
function g (t) we have the estimate (1 4¢) 2 Cg ' (t) and

sup, ciig9 (1) C(1+ log(1+vE)
C(1+5log(1+1)™" Cgt(b),

hence by virtue of Lemma 2.1 we obtain
H t g R (MGt —1)f(1)dr

A deupT>o<1+T>—%||<1+T>f<T>HL1,a

Lr

t —a a
2

sCg @) [0 B s (1 7 F (1 1) £ ()l

5]

w0g k) fi 7o G drsup, oy (14 1) G 14 £ (il
c ( H6) 5 gk tf@*)) [0 +8) (42l

cg 0t G (110 £ (1 2)x
forl p oo, and

H t —k( t—T)f(T)dT‘

Ll a
C’f\/_ deupT>0 L+7)"% 1 (Dllgia

+Cg™* (t) [Lrmr T dr supag (L +7) 77 ||f (7)|p1e
Ce (t_ Lgk (t)t%) I(1+1¢) f (t,2)]x
Cgk (8t |(L+1) f (t,2)|x
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for all ¢ > 4. Hence the result of the lemma follows. Lemma 2.2 is proved. ]
Next lemma will be used in the proof of the theorem to evaluate large time
behavior of the mean value of the nonlinearity in equation (2). We use the notation

n = p ReBs (o, p,0) >0,
(o, p,0 /!G )G (z

_ : _B _ n0|9|a 1— n 1Y
Xo (t) = g (1) 1fo—nandxg(t)—1+—p_na 1f(7€<0 n)

and

where g (t) = 1+ 16|" nlog (1+1¢).

Lamma 2.3. Assume that vo € L®NLYY, the norm ||vo||p e+ [|[vo|p1.. = € s
sufficiently small and fvo x)dr =0 = Uuo dx‘ . Let function v (t,x) satisfy
the estimates

_ 1
|vlle  Ce(l41t) o, |v|r Ce and

lv(®) =G @ wollL:  Cet*7g™*(2),

where k = 1 in the critical case o = % and k = 0 in the sub critical case
0<o <2,
Then the inequality

‘1+%[dTRe/ﬁ|v (T,x)dx—xg(t)‘
(7) Ce* log xo (t) if 0 = %
Ce2y, (t) ifo € (0 %)
is valid for all t > 0.

Proof. In view of the condition |||« + [[v]|f1  Ce we get

Ce°t,

t
(8) '%/0 dTRﬂ/ﬂ]UVU(T,m)d:E

whence estimate (7) follows for all 0 <t < 1.
We now consider the case ¢ > 1. By the second estimate of Lemma 2.1 we get

HQ (t)vo — ot »G (:Ut_%> HLl Cgt_%,
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where 6 = [ vg (z) dz. Hence we find

1j:an

va— 07 6t

G (mt*i) e (xt*i)

¢ (o ®) =G O wlly: + |9 e —067G (2177

Ll

o)

< ([l + IGvol +16" % Gl1E)

CeM2ot=0 g7k (t) + et

forallt>1, where k=1if 0 =2 and k =0if 0 <o < £. Since
_n _1\ |9 _1
t p/‘G(act P)‘ G(mt ﬂ)dmz/|G(x)|aG(x)dazz5(a,p,o),

and Ref0 (a, p,0) = % > 0 we get

’Re/ﬁ|v["v(t,m)dm—|0\"9t%"g

7 G (a:t_%>

C H|v|% gl e ]G (m‘%)

"

__no _onta
C€1+2at o gfk (t) +C€1+at P

for all t > 1, where 0 <o  p. Therefore
o [t
'5/ dTRe/ﬁ]v\”v(T,x)dx—\OIUnlogt’
1

t CEQUdT t a
- —I—C’a"/ T odr
[ 7 (1 +10|" nlog(1 + 7)) 1

Ce? log (14 16| nlog (1 +t)) + Ce®

for all £ > 1. Thus in view of (8) we obtain (7) in the case o = £. In the same
manner we have the inequality

¢
‘2/ dTRe/,B lv|7v(T,z)dz — |0]° BTN y1=gn
0 Jo p—no

Ce2tt =2 4 0ot

__aon+ta
P

for all ¢ > 0, which in view of (8) implies (7) in the case 0 < o < ﬁ. Lemma 2.3
is proved. [ |
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3. PROOF OF THEOREM 1.1

We make a change of the dependent variable u (t,2) = v (t, ) e~ ¥ +#(1) a5
n [11]. Then for the new function v (¢,z) we get the following equation

v+ (—A)‘g'v + Be 7% " v +ye 7 o] v — (¢ — i )v =

We assume that
/ (Be 7 ||” v +ve o[ v — (¢' — i)' )v) dz =0

then the mean value of new function v (¢, x) satisfies a conservation law: % Jot z)de =
0, hence v (¢,0) = Up (0) for all ¢ > 0. We can choose ¢(0) = 0 and 7 (0) such

that 9 (0) = |dig (0)| = @ (2r)~2 > 0. Thus we consider the Cauchy problem for

the new dependent variables (v (¢,z) ,¢ (1))

B +a(—A)2v=—Be % (v — % [ |0 vdz) v
—ye= (jo* — § [ |v[* vdz) v,
A (t) =5e7°% (ReB [ |[v|” vdx + e"=#¥Rey [ |v]* vdz),
\ v(0,2) = vy (), p(0) =0.
We denote h (t) = e??(!) and write (9) as
v+ a(=A)2v="F(vh), v(0,z)=1(z),
(19 { ah=5 (Reﬁ [ |v]” vdz + B2~ Rey f|v!”vda:), h(0) =1,

)

where

F(v,h) = —Bh- (y o - /\U| vdx)v—'yh - (yv| /yv| vdx)

We note that the mean value of the nonlinearity F(v h) (t,0) = 0 for all ¢ > 0.
It is expected that the second summand yh~ |v|* v of the nonlinearity F (v, h)
decays in time more rapidly than the first one 34~ |v|” v. We now prove the exis-
tence of the solution (v (¢, ), h(t)) for the Cauchy problem (10) by the successive
approximations (vn, (t,2),hm (t)), m =1,2,..., defined as follows

r Oyvm + o (—A)% v = F (v, hnt) ,

(11) { Orhy, = % <Reﬂ/|vm_1|0 Um—1dx + h;;flRe'y/|vm_1|”vm_1d:E) ,
L v (0,2) =g (), hm(0) =1,
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for all m > 2, where v1 = G (t) vo, h1 = X0 (%),

: 01°n, 1<, .
Xo (t) =g (t) 1fc7:£andxg(t)zl+mt1 Mifo e (O,B),
n p—no n

where g (t) = 1 + (0| nlog(1 +t). We now prove by induction the following
estimates

lomllx  Ce, llvm (£) =G (Hwolls  CetFg7" (2),
Ce?logx, (t) if o = 2,
Ce?x, (t) if o€ (&2 —Ce, )

(12
: |hm(t)_Xc7 (t)| {

for all m > 1, where k = 1 in the critical case o = £ and k = 0 in the sub critical
case 0 < o < 2, the norm ||-||x is defined as above by

[9llx = sup (L +6)% 6 Dllgae + 19 Bllgs + (1 +67% 16 (1))
where a € (0,min (1,p)). By virtue of Lemma 2.1 we have

IG () vollp= Ce(L+8) 77, G vl Ce,

(I (9w —et*%G(f%(.)m Ce

Ll
and

_n _1 a
Ht ANde (t ; (')>HL1 Ctr.
Therefore estimates (12) are valid for m = 1. We assume that estimates (12) are
true with m replaced by m— 1. The integral equation associated with (11) is written

as
/ t

vm () = G () v0+ A Gt — 7)F (s (7) s Bt (7))
o (£) = 1+ %Atm (Reﬂ/]vm_ﬂavm_ldx

—I—h}n_flRe'y / |vm_1|%vm_1dm> )

\

Note that in the critical case o = % we have
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1E (=1 (8) s o1 ()| oo

_ - 1
Ot (0 hones O (14§ s Ol
Cet7 (1) g7 (1),

(13)
[1F" (0m—1 (£) , hm—1 (£))|| 11
Ot (0 foncs O (s O+ g s @1 )
Ce o (1+4) g7t (1)

and

|1F (Um-1 (t) , hm—1 ()] p1.0

_ ” 1
Chyt 1 () [[vm—1 (8)]|Tee lvm—1 (&)|| 10 (1 + 5 lom— (t)IIL1>
Celt (14+14) o g (1)

for all ¢ > 0, provided that (vy,—1 (t) , hm—1(t)) satisfies (12). Similarly in the sub
critical case o € (0, ;’f) we obtain

|F (et () ot (6) e
Ol y () [omt O IEE (43 lom—1 (O)g)
Celto (144 5™ <1 + pﬂ_ﬁ%tl’%n> B
(14) Ce(2—0)(1+1)" 7,
|F (et () ot ()
Chiky @) [omr @7 (lom-1 Olls + § lom-1 Ol1E)
Ce(L—o)(1+t)7"
and
I (vt (8) it () e
gty (0) ot @5 [t Ol (14 os O )
Ce (% - a) L+
for all £ > 0. This yields the estimate

H(l +1)g* (&) F (vm_1 (t) , hon1 (t))Hx Celto
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if we suppose that p — no Ce?. Since F (vpm—1 (7),hm—1(7)) have the zero
mean value we get via Lemma 2.2

g" (t) A g E ()Gt —7)F 0ot (1), hint (7)) dr Celto

X
whence it follows that
lomllx ~ Ce, om () = G @) wollys  CeM*7g7*(1).
By virtue of Lemma 2.3 we find that
Ce® logx, (t) if o = 2,
Ce¥xo (t) ifo e (£ —Ce?, £)

|hm (t) — Xo (2)] {

for all ¢ > 0. Thus by induction we see that estimates (12) are valid for all m > 1.
In the same way by induction we can prove that

1
lvm — vm—1llx 1 [vm—1— vm—2[x,
_ 1
sup X5 L (t) [Bn () — hun—1 ()] = lvm-1 — vm-2|lx
t>0 4

1
15 (8) - () — P (9)
>0
for all m > 2. Therefore taking limits

lim vy, (¢t,z) =v(t,x) and lm hy, (t) =h(t)

m—o0 m— o0

we obtain a unique solution v (t,2) € X, h(t) = e¥® € C(0,00) satisfying
equations

v(t) =G (t)vo +fg’ Gt —7)F (v(1),h(7))dr,

(15) ’
B(t) =1+ Jo dr (ReB [ [v]” vdo+ h~%Rey [ ol vdz)
and estimates
lo(t) =G () volls  Ce™*7g7" (¢)
and
Ce?logxo (t) if o = £,

Ce®xy (t) if o € (2 —Ce”,2).

(16) |7 (t) = Xo (B)] {



150 Nakao Hayashi, Naoko Ito, Elena 1. Kaikina and Pavel I Naumkin

We also have by applying (13) and (14) to (15)

Ce*o(1+4) 7 gL (1) ifo =2

a7 v () =G () vollLe n "
Celto(1+1t) » ifoe (2 —Ce?,2),

and by the definition of ¢ we see that

_ t
Y (t) = argup (0) — %/ e ¥ (Imﬂ/ |v|? vdz + elo )“"Imfy/|v| vda:) .
0

By the time decay property of the solution v we have

—_ t fod ——a.
‘1{) (t) —argug (0) + |9\”ﬁ/ o (r)(L+7)"s"dr| Cet 7",
0

where 7 = Imf34 (o, p, o) . Hence by (16)

‘¢ (t) — arngr !9|"77f0tx;% () (1+7) "o dr
ClOP T [ixs 7 () = X0 ()] (147) 5" dr
{ cJt x;l*i (7) (log xo <T>><1+T>—1 drifo =2,

C’foxg (1+7) ¢ dr if o € (2—Ce,2)

(18)

for larget > 0. Then via formulasu (¢, z) = e $O+¥W)y (¢, z) = h ™7 (t) ey (¢, z)
we find the estimates

[ORY el (a ()) ew(t)ﬂ‘wa)HLw
Hu(t G (t )UO)e—</>(7f)+z'¢(t)HLoo +
(19) [(g@w—6:75G (5 ())) evrn)

Lo
Cet (14t) =g (t) ifo =2,
{ Ce™to (1+1)77 ifo e (2 —Ce,2),
where we have used the estimate
[(gw—obc (v ()))errvo| o gl
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and (17). We also have by (16)

_1

Het%c: (7 () b e — 056G (¢77 () xa 7 (5O

Loe
o —1-1
Cetrxo 7 (t) [R(t) = Xo (D)
whence via (19) it follows that
w(t) =0 FG (£ () o (5 e
(20) { Celto (1 4+t) 5 g7 (t) ifo =2,

Celt (14+4)77 ifoc (£ —Ce, 2).

n

Loe

This completes the proof of Theorem 1.1.

4. PROOF OF THEOREM 1.2
We consider the function space X with norm
9l =sm (140716 Ol + 119 0) )

and define the mapping u = Mu as follows
t

@ u(®) =G Ow+ [ Gt-nF W)
0

where F (v (7)) = B|v|° v+ v |v[*v, v € X and ||v
in (21) we obtain

lu@llpe 1 @) vollpe + fo Gt = 7)F (v (7))l|p d7

_n
P

|g  Ce. Using Lemma 2.1

C (luollgee +lluolly) (1 +1)
@2) HC g =) 77 (o (D + o ()llgee) [0 ()l

+C J5 (o (Dlifee + o (7)) [0 (7) e dr

C (|luollgee + lfuolls) (1 +) 77 + Celt (14)

n
P

and
lu@®lln 1@ vl + fy IG¢ —7)F @ ()l dr
23) C ol +C Jy (lo OIEe + o (7)llgeo) o (7)1 dr
C [luollpr +Ce'*,
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where we have used the fact that o, > ;‘;’. Hence we have by (22) and (23)
(24) lullg  C (luollpee + [fuollps) + Cet*e

which implies that if the initial function is sufficiently small, then the mapping M
defined by u = Muw is a mapping from X to itself. In the same way as in the proof
of (23) we find that M is a contraction mapping. Hence we have a unique solution
u € X satisfying the integral equation

@) w=g0u+ [ "Gt —7) (BJul” w(r) + ylulu (7)) dr.

Applying the same arguments as in the proof of (22), it follows that

n
P

(26) Ju(t) =G (t)uol Ce™t (1 +1)”

The result of the theorem follows from (26) and the second estimate of the Lemma
2.1 with w=0,a > 0 and p = oo.
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