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ON SELF-SIMILAR SOLUTIONS OF SEMILINEAR HEAT
EQUATIONS AND SEPARATION STRUCTURE

FOR RELATED ELLIPTIC EQUATIONS

Soohyun Bae

Abstract. We establish that if n ¸ 3 and p > 1 are large enough, then for
each ® > 0 the elliptic equation ¢u+ 1

2x ¢ru+ m
2 u+ jxjlup = 0 in Rn with

l > ¡2 and m = l+2
p¡1

possesses a positive radial solution u® with u®(0) = ®

such that (i) u¯ > u® for ¯ > ® > 0; (ii) for every ® > 0, rmu®(r) ! `
as r ! 1 for some 0 < ` = `(®) < L; (iii) `(®) is a one-to-one and onto
increasing map from (0;1) to (0; L), where L = [m(n ¡ 2 ¡m)]1=(p¡1) .

1. INTRODUCTION

In this paper, we study the elliptic equation

¢u+
1

2
x ¢ ru+

m

2
u+ jxjlup = 0;(1.1)

where n ¸ 3, ¢ =
Pn

i=1
@2

@x2i
is the Laplace operator, and l > ¡2, m = l+2

p¡1 ,
p > 1. This equation is derived from the semilinear heat equation

wt = ¢w+ jyjlwp in Rn £ (0;1):(1.2)

By the scaling
w¹(y; t) = ¹mw(¹y; ¹2t)

for ¹ > 0, a solution w of (1.2) generates a one-parameter family of solutions. Of
particular interest are self-similar solutions w of (1.2), that is, w¹(y; t) = w(y; t)
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for every ¹> 0. Then a solution w of (1.2) is self-similar if and only if w is of the
form

w(y; t) = t¡m=2u(y=
p
t)

with u(x) satisfying (1.1). Self-similar solutions are useful in describing the large
time behavior of global solutions of (1.2). For more information about (1.1), we
refer the interested readers to [8, 13-16] and the references therein. To explain our
motivations, we first consider positive steady states of (1.2) which satisfy

¢u+ jxjlup = 0 in Rn:(1.3)

More generally, the elliptic equation for radial solutions has the form

urr +
n¡ 1

r
ur +K(r)up = 0;(1.4)

where u(x) = u(jxj), r = jxj and K = K(r). It is known that equation (1.4) with
u(0) = ® > 0 has a unique positive solution u® 2 C2((0; ")) \C([0; ")) for small
" > 0 under the following condition:

(K)

8
>><
>>:

K(r) is continuous on (0;1);

K(r) ¸ 0 and K(r) 6´ 0 on (0;1);
R
0 rK(r)dr <1:

For p > n+2+2l
n¡2 with l > ¡2, if r¡lK(r) is non-increasing on (0;1), then (1.4)

has the structure of Type S: (1.4) has a slowly decaying solution u®(r) for every
® > 0 which means that u®(r) > 0 on [0;1) and rn¡2u®(r) ! 1 as r ! 1.
See [2]. In addition, if r¡lK(r) ! 1 as r!1, then every positive solution u of
(1.4) on (0;1) satisfies

lim
r!1

rmu(r) = L;

where m = l+2
p¡1 and

L = L(n; p; l) = [m(n¡ 2 ¡m)]
1

p¡1 :(1.5)

Recently, considerable attention has been given to separation of solutions of (1.4)
(see [1, 3, 5-7]). In some cases, separated positive solutions are “stable” in a certain
sense (see [4, 11, 12]). More precisely, the structure of Type S is divided into two
types by the following exponent:

pc = pc(n; l) =

8
<
:

(n¡2)2¡2(l+2)(n+l)+2(l+2)
p

(n+l)2¡(n¡2)2

(n¡2)(n¡10¡4l)
if n > 10 + 4l;

1 if n · 10 + 4l
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for some l > ¡2. The exponent pc(n;0) has appeared in the study of elliptic
equations in [9]. For p ¸ pc(n; l)(>

n+2+2l
n¡2 ), (1.4) has the structure of Type SS:

(1.4) possesses a slowly decaying solution u® for each ® > 0 and any two of them
do not intersect, as follows ([5; Theorem 1.2]):

Theorem A. Let p ¸ pc(n; l) with l > ¡2. Assume that K satisfies (K),
r¡lK(r) is non-increasing in r 2 (0;1). Then the structure is of Type SS, and
there is a singular solution U(r) such that every positive solution u® of (1:4)
satisfies

u®(r)< U(r) · L(n;p; l)

[r2K(r)]
1

p¡1

(1.6)

with the convention of L=0 = 1. Moreover, rmu®(r) is strictly increasing as r
increases.

Our aim is to show the structure of Type SS for (1.1) when p ¸ pc: In other
words, (1.1) as a lower order perturbation of (1.3) demonstrates separation structure
similarly. Under (K), the initial value problem for positive radial solutions

urr + (
n¡ 1

r
+
r

2
)ur +

m

2
u+K(r)up = 0; u(0) = ® > 0;(1.7)

has a unique solution u 2 C2((0; ")) \ C([0; ")) for " > 0 small. We denote the
unique solution by u®(r) also. The main result of this paper is the following

Theorem 1.1. Let p ¸ pc(n; l) with l > ¡2. Assume that K satisfies (K),
r¡lK(r) is non-increasing in r 2 (0;1). Then, (1.7) has the structure of Type SS,
and there is a singular solution U(r) such that every positive solution u® satisfies
(1.6) with the convention of L=0 = 1. Moreover, (i) rmu®(r) is strictly increasing
as r increases; (ii) for ¯ > ® > 0, rm(u¯(r)¡u®(r)) does not converge to 0 at 1.

As a result of Theorem 1.1, we show uniqueness of solutions for the Cauchy
problem (1.2) with singular initial data

w(y; 0) = cjyj¡m in Rnnf0g(1.8)

for 0 < c < L(n;p; l): In [10], Galaktionov and Vazquez considered the quasi-linear
heat equation

wt = ¢wq +wp in Rn £ (0;1)(1.9)

with singular initial data w(y;0) = cjyj¡2=(p¡q) for some 0 < c < cs, where

cs =

·
2q

p¡ q

µ
n¡ 2¡ 2q

p¡ q

¶¸ 1
p¡q

:
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They raised several questions on the Cauchy problem (1.9). For q = 1, their
conjecture is as follows [10; p. 41]:

(i) if p ¸ pc(n; 0), then there exists a unique solution in the class fw ·
L(n; p; 0)jyj¡2=(p¡1)g;

(ii) if n+2
n¡2 < p < pc(n;0), then for c = L(n;p; 0) there exist infinitely many

solutions, and for L(n;p;0)¡c > 0 small there exist an arbitrarily large finite
number of solutions, while for c > 0 small the solution is unique;

(iii) if n
n¡2 < p· n+2

n¡2 , then there exist exactly two solutions.

In fact, they mentioned that (i) can be proved by Hardy’s inequality as done in
[17]. However, to apply Hardy’s inequality to the question (i), one need to analyze
the asymptotic behavior at 1 of the difference of two solutions of the Cauchy
problem. Our approach is to study directly separation structure for (1.1) rather
than to employ the Hardy inequality. Then, the structure implies immediately the
uniqueness.

Theorem 1.2. Let p¸ pc(n; l) with l > ¡2. The Cauchy problem (1.2) and
(1.8) for 0 < c < L(n;p; l) has a unique solution in the class fw · Ljyj¡mg.

2. PRELIMINARIES

In this section, we consider basic properties on solutions of (1.7) under the
assumption (K). In order to show the local existence of a mild solution which is
defined by

u(r) = ®¡
Z r

0
(tn¡1et

2=4)¡1

Z t

0
[
m

2
u+Kup]sn¡1es

2=4dsdt;(2.1)

one may define a continuous and compact operator on C([0; ")) with respect to the
uniform convergence,

T(u)(r) = ®¡
Z r

0
(tn¡1et

2=4)¡1

Z t

0
[
m

2
u+Kup]sn¡1es

2=4dsdt:

By the contraction mapping principle, T has a fixed point for small " > 0 which is
a mild solution. On the other hand, any positive solution u 2C2((0; "))\C([0; "))
of (1.7) for small " > 0 satisfies (2.1) with u(0) = ®. Moreover,

¡rn¡1er
2=4ur(r) =

Z r

0
[
m

2
u+Kup]sn¡1es

2=4ds(2.2)

and thus,
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jrn¡1er
2=4ur(r)j · rn¡2er

2=4[
m

2
®r2 + ®p

Z r

0
sK(s)ds] <1:(2.3)

Therefore, for each ® > 0, (1.7) has a local unique positive solution and the local
solution is decreasing and extended locally as long as it remains positive. Then, it
is natural to ask the maximal range on which the local solution is positive.

Proposition 2.1. Let p > n+l
n¡2 with l > ¡2. Assume that K satisfies (K) and

lim
r!0

r2K(r) = 0:(2.4)

Then, every solution u® of (1.7) with u®(0) = ® > 0 remains positive as long as
the relation

r2K(r)up¡1
® (r)< Lp¡1(2.5)

holds from r = 0, where L = L(n; p; l) is given by (1.5).

Proof. Let V (t) := rmu®(r); t = log r. Then, V satisfies

Vtt +(a+
1

2
e2t)Vt ¡Lp¡1V + k(t)V p = 0;(2.6)

where a= n¡ 2 ¡ 2m and k(t) := e¡ltK(et). It follows from (2.4) that

lim
t!¡1

k(t)V (t)p¡1 = lim
r!0

r2K(r)up¡1
® (r) = 0

and thus, kV p¡1 < Lp¡1 near ¡1. Suppose that there exists T such that V is
positive and kV p¡1 < Lp¡1 on (¡1;T ), but V (T ) = 0. Then, by (2.6), we have

Vtt + (a+
1

2
e2t)Vt = (Lp¡1¡ k(t)V p¡1)V > 0 on (¡1;T ):(2.7)

Multiplying (2.7) by ef(t), where

f(t) :=

Z t

0
(a+

1

2
e2s)ds = at +

1

4
e2t ¡ 1

4
;(2.8)

and integrating from t to T , we obtain

ef (T )Vt(T ) > ef (t)Vt(t)

= e(r
2¡1)=4ra+m[mu®(r) + ru0®(r)]

(2.9)
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which goes to 0 as r! 0 since from (2.3) ru0®(r) ! 0 as r! 0. Hence, we have
eaTVt(T )> 0, a contradiction.

From the proof of Proposition 2.1, we see the following

Corollary 2.2. On the maximal interval in which (2.5) holds, rmu®(r) is
increasing as r increases while u®(r) is decreasing.

Another consequence of Proposition 2.1 is that separation happens for ® > 0
sufficiently small.

Proposition 2.3. Let p > n+l
n¡2 with l >¡2. Assume that K satisfies (K) and

(2.4). If u¯ is a positive entire solution of (1.7) satisfying

r2K(r)up¡1
¯ (r) · 1

p
Lp¡1;(2.10)

then for each 0 < ® < ¯, u® is a positive entire solution of (1:7) and rm(u¯(r)¡
u®(r)) is increasing in r 2 (0;1). Moreover, if r¡lK(r) ! 1 as r!1, then for
0 < ® < ¯, rmu®(r) ! ` as r!1 for some 0 < `(®) < `(¯) · L

p1=(p¡1) .

Proof. For ® > 0, let V®(t) := rmu®(r), t = log r. SetW (t) := V¯(t)¡V®(t)
for given ¯ > ® > 0. By (2.6),

Wtt + (a+
1

2
e2t)Wt ¡ Lp¡1W + k(t)(V p

¯ ¡ V p
® ) = 0:(2.11)

Suppose that W > 0 on (¡1;T ) for some T and W(T ) = 0. Then, from (2.10)
and (2.11), we have

Wtt +(a+
1

2
e2t)Wt ¸ (Lp¡1 ¡ k(t)pV p¡1

¯ )W ¸ 0:(2.12)

Multiplying (2.12) by ef(t) and integrating from¡1 to T , we obtain ef (T)Wt(T) >
0, a contradiction. Therefore, W > 0 and thus the inequality r2Kup¡1

® · 1
pL

p¡1

holds on any region. Then, by Corollary 2.2, u® is an entire solution and rmu® is
increasing. Moreover,W isalsoincreasing. Ifr¡lK(r)! 1 as r!1, then it follows
from (2.5) and Corollary 2.2 that rmu®(r) ! ` as r!1 and `(®) < `(¯).

3. STRUCTURE OF TYPE SS

If (2.5) is true on [0;1), then u® is a positive entire solution of (1.7) and
rmu®(r) is increasing as r increases. The two conditions that r¡lK(r) is non-
increasing and p ¸ pc(n; l); guarantee that this relation is satisfied in the entire
space and (1.7) has the structure of Type SS.
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Theorem 3.1. Let p ¸ pc(n; l) with l > ¡2. Suppose that K(r) satisfies
(K) and r¡lK(r) is non-increasing. Then, for each 0 < ® <1, (1.7) possesses a
slowly decaying solutionu® withu®(0) = ® such that rmu®(r) is strictly increasing
and (2.5) holds on [0;1), where L = L(n; p; l).

Proof. Condition (2.4) follows immediately from (K) and
Z r

0
sK(s)ds ¸

Z r

r=2
s¡lK(s)s1+l ds ¸ 1

2 + l

·
1 ¡ 1

22+l

¸
r2K(r):

Let ® > 0 and V (t) := rmu®(r); t = log r. Then, V satisfies (2.6). Setting

T = supf¿ jkV p¡1 < Lp¡1 on (¡1; ¿)g;

we see by Proposition 2.1 that V is positive on (¡1; T). Suppose that T < +1
and k(T)V (T )p¡1 = Lp¡1. From Corollary 2.2, eatVt is strictly increasing on
(¡1; T) and Vt(t) > 0 for t · T . Let q(V ) = Vt(t): Then, q(V ) > 0 on
(0; [ 1

k(T)
]1=(p¡1)L], q(V ) ! 0 as V ! 0+, and

dq

dV
< ¡a+

Lp¡1V ¡ k(t)V p

q
:

Therefore, for every ¹ > 0, the line q = ¹([ 1
k(T) ]

1=(p¡1)L¡V ) intersects the graph
of q(V ) in the q¡ V plane. Let (V¹; q(V¹)) be the intersection with the smallest
V -coordinate for each ¹> 0. Then, we have dq

dV ¸ ¡¹ at V¹ and

dq

dV
(V¹) <¡a+

Lp¡1V¹¡ k(t)V p¹
¹([ 1

k(T) ]
1=(p¡1)L¡ V¹)

:

Since k(t) is non-increasing, e.g., k(t) ¸ k(T) for t · T , we have

¡¹ <¡a+
k(T)V¹(

1
k(T )L

p¡1¡ V p¡1
¹ )

¹([
1

k(T)
]1=(p¡1)L¡V¹)

=¡a+
(p¡ 1)k(T )V¹ ¹V p¡2

¹

¹
for some ¹V¹ 2 (V¹;

L

[k(T)]1=(p¡1)
)

<¡a+
(p¡ 1)Lp¡1

¹
;

i.e., for all ¹> 0,

¹2¡ a¹+ (p¡ 1)Lp¡1 > 0:(3.1)
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It follows from (3.1) and p ¸ pc >
n+2+2l
n¡2 that a > 0 and the discriminant

a2 ¡ 4(p ¡ 1)Lp¡1 of the quadratic form in (3.1) is negative, which contradicts
p¸ pc. This shows that kV p¡1 < Lp¡1 on (¡1;+1) and (2.5) holds for r > 0.
Consequently, eatVt(t)> 0 for all t 2R. Therefore, rmu®(r) is strictly increasing
and u® is a slowly decaying solution.

We are now ready to prove Theorem 1.1 and verify the structure of Type SS.
Here, we make use of the argument of Lemma 4.1 in [7].

Proof of Theorem 1.1. It follows from Theorem 3.1 that for each ® > 0, u® is
a slowly decaying solution. For ® > 0, let V®(t) := rmu®(r), t = log r. Setting
W (t) := V¯(t)¡ V®(t) for ¯ > ® > 0 given, we see that W is positive near ¡1
and satisfies

Wtt +©(t)Wt + (p¡ 1)Lp¡1W +G(t) = 0;(3.2)

where ©(t) := a+ 1
2 e

2t and

G(t) := ¡pLp¡1W (t) + e¡ltK(et)(V p
¯ ¡ V p® ):

Suppose that there exists ¹t 2 R such that W (t) > 0 on (¡1; ¹t) and W (¹t ) = 0. It
follows from (2.5) that for t < ¹t,

G(t) <¡pLp¡1W(t) + e¡ltK(et)W(t)pV
p¡1
¯

=¡pW (t)(Lp¡1 ¡ e¡ltK(et)[rmu¯(r)]
p¡1)

· 0:

For t · ¹t; we have

(Wt +
1

2
©W)t +

1

2
©(Wt +

1

2
©W ) ¸ 0(3.3)

since a2¡4(p¡ 1)Lp¡1 ¸ 0 from p ¸ pc. We may choose ¡1< T < ¹t satisfying
Wt(T) = 0. Multiplying (3.3) by e

1
2

R t
T © and integrating from T to t we obtain

e
1
2

R t
T ©(Wt(t)+

1

2
©(t)W (t)) ¸ 1

2
©(T )W(T )> 0:

Therefore, from Wt(¹t )· 0 we deduce that for t = ¹t,

1

2
©(¹t)W (¹t ) ¸ Wt(¹t) +

1

2
©(¹t)W (¹t )

¸ 1

2
©(T )W (T)e¡

1
2

R ¹t
T © > 0;
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which implies W (¹t) > 0, a contradiction. Therefore, we conclude that V¯ > V®.
Then, u¯ > u® > 0 in Rn for ¯ > ® > 0, and (1.7) has the structure of Type SS.

Setting w(r) :=W (t), we see that w satisfies

wrr + (
d

r
+
r

2
)wr = µ

w

r2
;(3.4)

where d= n¡ 1 ¡ 2m and

µ = Lp¡1¡ r¡lK(r)
V p¯ ¡V

p
®

V¯¡V®
= Lp¡1¡ r¡lK(r)p~vp¡1

for some V® < ~v < V¯. From (2.5), ¡(p¡ 1)Lp¡1 < µ < Lp¡1. Suppose that
w(r) ! 0 as r!1. We see that from (3.4),

¡w(r) =

Z 1

r
(tdet

2=4)¡1

Z t

0
sd¡2es

2=4µwdsdt

=

Z 1

r
(tdet

2=4)¡1

Z t

1
sd¡2es

2=4o(1)dsdt + o(e¡r
2=4) at r = 1:

(3.5)

By L’Hôpital’s rule, we have

lim
r!1

r2
Z 1

r

t¡de¡t
2=4
Z t

1

sd¡2es
2=4dsdt

= lim
r!1

¡r¡de¡r2=4
Z r

1

sd¡2es
2=4ds

¡2r¡3

= lim
r!1

rd¡2er
2=4

2(d¡ 3)rd¡4er2=4 + rd¡2er2=4

= 1:

Hence, we have w(r) = o(1=r2) at r = 1 and by repeating the above argument
with this finer estimate, w(r) = o(1=r4). Iterating the process, we derive that
w(r) = o(1=r¿ ) at r =1 for any ¿ > 0. Since by (3.5),

wr(r) = r¡de¡r
2=4

Z r

0
sd¡2es

2=4µwds;

we have also wr(r) = o(1=r¿ ) at r = 1 for any ¿ > 0. To apply a comparison
argument, consider the function ª(r) := rb¡(n¡2)=2e¡r

2=4 satisfying

¢ª+
1

2
x ¢ rª +(

¸

jxj2 +
n+ 2 + 2b

4
)ª = 0;
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where ¸ = mp(n ¡ 2 ¡ m) and b =
p

(n¡ 2)2=4¡ :̧ Because p ¸ pc and
a2 ¡ 4(p¡ 1)Lp¡1 ¸ 0, we have (n ¡ 2)2=4¡ ¸ ¸ 0. Setting q(t) := rmª(r) =
rb¡

a
2 e¡r

2=4, we see that q is a positive solution of the equation

qtt + (a+
1

2
e2t)qt +(p¡ 1)Lp¡1q = (

m

2
¡ n+2 +2b

4
)e2tq < 0:(3.6)

Observe that qt = (b¡ a
2 )q¡ 1

2e
2tq: Multiplying (3.2) by q, (3.6) by W, and taking

the difference, we have

(Wtq¡Wqt)t + (a+
1

2
e2t)(Wtq ¡Wqt) + qG(t) > 0:(3.7)

From (2.9), W (t); Wt(t) =O(emt) at t =¡1. Obviously,

ef(t)q(t); ef (t)qt(t) = O(e(b+
a
2 )t) at t =¡1

and

ef (t)q(t) =O(e(b+
a
2 )t); ef(t)qt(t) = O(e(b+

a
2+2)t) at t = +1;

where f(t) is defined in (2.8). Multiplying (3.7) by ef(t) and integrating over (T; t),
we obtain

ef (Wtq¡Wqt)
¯̄
¯
t

T
>¡

Z t

T

ef (s)q(s)G(s)ds:

Letting T !¡1 and then t! +1, we have from the above decay estimates that

0 >¡
Z +1

¡1
ef (s)q(s)G(s) ds > 0

which is impossible. Therefore, W(t) does not converge to 0 at t = +1.
Since any solution u® has uniform bounds by (2.5) on any compact set in

(0;1), the existence of a singular solution of (1.6) is verified by a standard method.
Combining (2.2), (2.5) and the fact that r¡lK is non-increasing, we have

¡rn¡1er
2=4ur(r) =

Z r

0
[
m

2
u+Kup]sn¡1es

2=4ds

·
Z r

0
[
mL

2
s¡

2
p¡1 +Lps¡

2p
p¡1 ]sn¡1es

2=4K(s)
¡1
p¡1 ds

·r
l

p¡1K(r)
¡1
p¡1 [

mL

2

Z r

0
sn¡1¡mes

2=4ds

+Lp
Z r

0
sn¡1¡2p+l

p¡1 es
2=4 ds]:

Note first that K is positive near 0, and if K(R) = 0 for some R > 0, then
K(r) = 0 on [R;1), and second that u®(r) is decreasing in r. Hence, u0® is
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uniformly bounded on any compact subset of (0;1) in ® and consequently, fu®g
is equicontinuous on any compact subset. Since u® is monotonically increasing, the
Arzelà-Ascoli Theorem implies that U (r) := lim®!1 u®(r) is well-defined and
continuous on (0;1) and for each ® > 0,

u®(r)< U(r) · L(n;p; l)

[r2K(r)]
1

p¡1

:(3.8)

By (1.7), u00® is uniformly bounded on any compact subset of (0;1) in ® and fu0®g
is equicontinuous on any compact subset. It follows again from the Arzelà-Ascoli
Theorem that for a subsequence f®jg going to 1, u0®j converges uniformly on any
compact subset and thus U is differentiable on (0;1), u0®j ! U 0 uniformly on any
compact subset. Since by (1.7) u00®j converges also uniformly, U 0 is differentiable
on (0;1) and u00®j ! U 00 uniformly on any compact subset of (0;1). Then, U
satisfies

U 00 +(
n¡ 1

r
+
r

2
)U0 +

m

2
U +K(r)Up = 0 on (0;1)

and U is a singular solutionof (1.7). Now, the proof of Theorem 1.1is complete.

In case r¡lK(r) ! 1 as r!1 for some l >¡2, we analyze further separation
phenomena.

Theorem 3.2. Assume the hypotheses of Theorem 1.1 and r¡lK(r) ! 1 as
r!1. Then, there exists 0 < `¤ · L(n; p; l) such that rmU(r) ! `¤ as r !1
and for every ® > 0, rmu®(r) ! ` for some 0 < ` = `(®) < `¤ . Moreover,
`(¯) > `(®) for ¯ > ® > 0.

Proof. By (2.5), we see that rmu®(r)! ` · L since rmu®(r) is increasing in
r. This fact combined with (3.8) implies that rmU(r) is increasing and converges
to `¤for some 0<`¤ · L. For ®>0, let V®(t) := rmu®(r), t = log r. Set W(t) :
= V¯(t)¡V®(t) for given ¯ > ® > 0. From Theorem 1.1, W is strictly increasing
and thus `(¯) > `(®). Therefore, 0 < `(®) < `(¯) < `¤ for 0 < ® < ¯.

In caseK(x) = jxjl, uniqueness for the Cauchy problem (1.2) and (1.8) follows
directly from Theorem 3.2. The Cauchy problem has a minimal solution w1 and a
maximal solution w2 in the class fw · Ljyj¡mg (see [10, 15]). Moreover, `(®)
is a one-to-one and onto increasing map from (0;1) to (0;L). We observe that
w1; w2 are self-similar and

wi(y; t) = t¡m=2ui(y=
p
t); i = 1; 2;
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where ui are positive entire radially symmetric solutions of (1.1). Since rmui(r) !
c as r ! 1; it follows from Theorem 3.2 (the uniqueness of solutions with the
asymptotic behavior) that u2 = u1 and thus w2 = w1 .
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