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NULL BOUNDARY CONTROLLABILITY FOR A FOURTH ORDER
PARABOLIC EQUATION

Yung-Jen Lin Guo
Abstract. We study the null boundary controllability for a one-dimensional

fourth order parabalic equation. We show that if the initial data is continuous
then the fourth order parabalic equation is controllable.

1. INTRODUCTION

The am of thiswork isto sudy the null boundary controllability problem for an
one-dimensiond fourth order parabolic equation. We consider the following initial
boundary vaue problem for a fourth order equation

(1.1) Wt + Wyzzz = 0 0N (0,1) x (0,00)

1.2) w(0,t) = 0,w,(0,¢) =0 fort >0,

@.3) w(z,0) =wo(z) for xz € |0,1],

(14) w(l,t) = g(t), wa(1,t) = h(t) fort >0,

The problemof null boundary controllability for (1.1)—1.4) can be gated asfollows.
Given T' > 0, isit possble to find corresponding controllers ¢(¢) and h(t) so that
the solution of the resulting problem (1.1)-(1.4) saifies w(x, T) =0 for z € [0, 1]
for every initid data wo(x) in an appropriate pace?

The method we use here is based on the work of Y.-J. L. Guo and W. Littman
[6] in which the control problem is converted to two well-posed problems. For our
case, the method proceeds roughly as follows:
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(1) Extend the domain of the initial data wy to be [0, 2] 0 that the property of
wo ismaintained and wo(x) = 0 in a neighborhood of 2.

(2) With the new modified initid data wy(z), solve the initial-boundary value

problem:
(15) V¢ 4 Vagaz =0 0N (0,2) x (0,00),
(1.6) v(0,t) =0,v,(0,¢) =0 fort >0,
(1.7) v(2,t) =0,v,(2,£) =0 fort >0,
(1.8 v(x, 0) = wo(z) forz e (0,2),

(3) Let ¢ be acut-off function satisfying ¢ (t) =1 for¢ T'/2and v(t) = 0 for
t>T. Let

where v isthe solution in (2).

(4) Solve the Cauchy problem
(19) Uppapr = — Ut for ¢ > TO? x> O,

(L10) w(0,£) = 0, uz(0, ) = 0, g (0, £) = E(E), taaa (0, 8) = ((£) for ¢ > Tp,

in the z-direction to get a solution which vanishes for ¢ > T' and equdss the solution
vfort T/2 whereTy isapogtive congant.

(5 The boundary functions are obtained by setting g(t) = w(1,t) and h(t) =
u, (1, ).

The initid-boundary value problem (1.5)-(1.8) can be solved by the standard
method. To solve the cauchy problem (1.9)-(1.10), we use the nonlinear Cauchy-
Kowdevski Theorem. If the solution w(z,t) of (1.9)-(1.10) exids beyond x = 1,
we obtain controllers by reading the vaues of the derivatives of v(z,t) and u(x,t)
a r = 1 where v(x,t) and u(z,t) ae lutions of (1.5)-(1.8) and (1.9)-(1.10)
respectively. To estimete the length of the maximal z-interval of existence for the
olution u(zx, t), we shal check the constants in the proof of the nonlinear Cauchy-
Kowadevski Theorem. In [ 6], theauthors consider the control problem for semilinear
heat equations and the result of the null boundary controllability for semilinear heat
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equations is obtained for continuoudy differentiable and sufficiently small initial
data. The smdlness condition on initid datais imposed to ensure that the maximal
interval of exigence for the problem similar to problem (1.9)-(1.10) is greater than
1. In[5], the author congder linear heat equations with time dependent coefficients
and assume that the initial data are continuous without imposing the smallness
condition. The linearity of differentid equation and the Gevrey class 2 property
for the coefficients of the equation will give us clues to show that the x-interval
of exigence for the problem similar to problem (1.9)-(1.10) is greater than 1. In
this work, we consder a linear fourth order parabolic equation. The linearity and
the simplicity of the coefficents of the equaion will guarantee that the maximal
interval of existence of the solution of (1.9)-(1.10) is greater than 1. We will show
that the eguation is control lable if the initid data is continuous

A great deal of devdopments in the controllability theory of the linear heat
equation were initiated by Fattorini and Russdl. These results have been presented
innumerous artides (see, eg. [1], [2]). Most of the results obtained are for parabolic
equations. For the controllability of second order semilinear parabolic equation, the
readers may consult [5]. Here we consder the case for fourth order equation.

The paper is organized as follows. In Section 2, we use the nonlinear Cauchy-
Kowdevski Theorem to solve the Cauchy problem (1.9)-(1.10). Since we need
to edimate the interval of exigence, we state the nonlinear Cauchy-Kowalevski
Theorem in detail in this section. In Section 3, we obtain the result for the null
boundary controll ability.

2. SOLUTIONS OF THE CAUCHY PRrROBLEM IN THE z-DIRECTION

In this section, we shall apply the nonlinear Cauchy-Kowaevski Theorem to
olve the following Cauchy problem:

(21) Uggar = —uz fOr x> 0,t >Tp,
(22) u(07 t) = 07 uu’ﬂ(ovt) = OauIIE(Ovt) = g(t% umm(O,t) = C(t>7 fort 2 T07

where £(t) and ((t) are Gevrey dass 2 functionsin ¢ and T is a positive condant.
We shdl prove tha the solution of (2.1), (2.2) exigs and the x-intevd of existence
is greater than 1.

The nonlinear Cauchy-Kowd evski Theorem origindly due to Ovcyannikov is
exploited in a number of ways to obtain existence results for the nonlinear dostract
Cauchy problem

IFU,$), |1}|<7’], 77>07
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Here the solutions are in the form, as functions of thevariablez, in ascde of Banach
gace {X;}. The nonlinear Cauchy-Kowdevski Theorem is a generalization of the
well-known Cauchy-K owaevski Theorem and is reduced to the Cauchy-K owal evski
Theorem when dl data are red andytic.

We shall use the same method as used in [ 6] to solve problem (2.1)-(2.2). Since
we shdl estimete the parameters in the nonlinear Cauchy-Kowalevski Theorem to
obtain the interval of exigence, we shdl redate the theorem here. We begin by
congdering a 1-parameter family of Banach spaces { X} where the parameter s is
dlowed to vary in [0, 1].

Definition 2.1 {X;}o s 1 isascale of Banach gacesif for any s € [0, 1], X
isalinear subspace of Xy and if s’ s then X C X, and the naturd injection of
X into Xy has norm less than or equd to 1.

We denote by || - ||s the nom of X.
Foreaxchi,i=1,--- ,m, let{X:}o s 1 beascaleof Banach spaceswith norm
|- ||5- Consider the sysem of differentid eguations

dui

(23 T =Filun g, um, @), e <mon>0,i=1,m,
(2.4) ’U,Z(O) = u’L,O ’[;: 17- .. 77’,/1]7
where the u;, as functions of the variable z, aein X, i =1,--- ,m.

We need the following assumptions.
(HY) ;o € X! for every s € [0,1] and satiffies
uiolls  Rio
for some R;p < oo fori=1,---,m.
(H2) Thereare R; > R;p > 0,47 =1,---,m, n > 0, such that for every par

of numbers s,s’ with 0 d <s 1 the mapping Fj(uq, -« Uy, X),
1=1,---,m, iscontinuous from the st

{w € X5 | flurlls < Ra} - % {um € X5 | [Juml|s < R}

x{z | 2| < n}
intoX;,.
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(H3) There are congants Cj, i = 1,--- ,m, such tha for every pair of numbers
s, witho & <s 1, for dl |Juj|ls < Ry, ||vjlls < Rj, 7 =1,---,m,
and for all z, |z| < n, we have

||E(U1, Uy =+ * 5 Uy, $) - Fi(vla V2, 5 Uy m)”s’
Gi
(s —s’)o‘i[

Oillur = valls + -+ + T |[um — vm ],

i=1,-,m,

where the number ¥/ is set to be zero if F; is independent of u; and to be
one otherwise, for some parameters o; > 0,7 = 1,--- ,m, such that for any
collection of m? numbers ¢}, the degree of P()\, i) with respect to A, i is at
most m, where the expresson P(\, ) of two variables A, v is defined by

P\, p) = det(\T — [p*9lcl]),

with I the m x m identity matrix and the degree is defined to be the highest
degree among dl monomids in P(\, u).

(H4) E;(0,---,0,z) is acontinuous function of x, |z| < n, with vauesin X! for
evay s < 1 and saisfies
K;

|30, -+, 0, )]s m, 0 s<1,

for some constants K;, i =1, -- - ,m, with «; defined in (H3).

Then we have the following existence and uniqueness theorem for solutions of
(2.3)-(2.4).

Theorem 2.1 [6]. Under the preceding hypotheses (H1)—(H4), there is a
positive constant p such that the Cauchy problem (2.3)-(2.4) has a unique solu-
tion {u;(x),i = 1,--- ,m}, which are continuously differentiable functions of z,
|z| < p(1 — 8), with values in X, ||ui(z)||s < Ry, for every s <1/2.

In order to goply Theorem 2.1 to solve the Cauchy problem (2.1)-(2.2), we
choose the following scae of Banach spaces.

Definition 2.2. Let K be a compact interval and let 8y and 6; be two postive
constants such that 6y < 01 < co. Given s € [0, 1], we define the space B(K) to
be the set of dl C'*°(K) functions ¢ satisfying

_ to(s)"
1lls = SUD T Yo )

o™ (#)] < oo,
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where 1/0(s) = (1 — s)/00 + s/61, n = max(n, 1), and A is any positive congant
satisfying

A1

2+ 24 i(l /k)*
k=1

It is easy to check that {B,(K)}, , 1 isascale of Banach spaces.
The Gevrey class 2 functions which play an important role in this paper are
defined as follows.

Definition 2.3. Let 2 be a subsat of R™ and § > 0. A C'* function f in Q
is sad to be of Gevrey class § in Q (in short, f € 49(1)) if there exist positive
congants C' and H such that

IDgf(@)|  CH(8lal),

for dl multi-indices o and for all € Q wherea! =T'(a+1) and I is the usud
gamma function.

It is clear that any function which is of Gevrey dass § in €2 is bounded.
The following relationship between the spaces B,(K) and the Gevrey dass 2
functions can be found in [6, Proposition 4.4].

(@ The gpace B;s(K) is contained in 42 for dl s € [0, 1].

(b) Suppose ¢ : R — R isan infinitdy differentiable function defined in K and
there are positive constants C' and H such that

V()] CHI(2),

for dl ¢ and for al j = 1,2,---. If the constant #; in defining Bs(K)
saisfying 61 < 1/H, then ¢ € Bs(K) for dl s € [0, 1].

Furthermore, by [6, Proposition 4.2], the partid differentiation 9/0t defines a
bounded linear operator from Bs(K) into By(K) for 0 ¢ < s 1 with norm
less than or equa to C/(s — )2, where C is a positive congant which can be
taken as (4/€)200/(61 — 6y)?. We note that the constant C' can be made as smdl
as we wish by taking the constant 6, sufficiently smal while keeping the congant
6, fixed in the definition of B, (K).

Now, we are ready to prove the main result of this section as follows

Theorem 2.2. Suppose that £(t),((t) € Y*([Tv,00)) with support [Tp, T),
T > To. Then a classical solution u(x,t) of (2.1), (2.2) exists and the x-interval
of existence is greater than 1.
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Proof. In order to apply Theorem 2.1, we convert the problem (2.1)(2.2) to
afirst order system of differentid eguations by introducing the variables u; = u,
U = Ug, U3 = Ugy, Us = Ugze A us = ug. Then (2.1)—«2.2) can be rewritten as

O (2,) = wal, ),
B (2, ) = ws(a, ),
O ) = (e ),
B0, = —us(z.),
dus 0

%(:C, ) = EUQ(% ')7
with the Cauchy data

U1(07 ) =0, U?(Oa ) =0, U3(0’ ) = &(')7“4(07 ) = C(')aUE)(O; ) = 0.

Let K = [1p,T + €] and D = [0,2] x K where ¢ is any finite positive number.
Since £(t), ¢(t) € v4(D), there exist positive congtants M;, H;, i = 1,2 such that

0le(t)] MiH{(25),

8/Ct) MpH(2))Y,

for all t € K and any nonnegative integers j. Let 6y, 61 be two constants satisfing
0 <6y <61 <min(1/Hy,1/H2) and {Bs}o s 1 bethescde of Banach spaces
as defined in Definition 2.2 with congants 6y and 6;. Then it is easy to check that
&(t),¢(t) € Bs(K) for dl s € [0,1] and dl hypotheses (H1)-(H4) of Theorem 2.1
aesaidied with C; =1, for i = 1, 2, 3,4, and Cs = (4/6)290/(91 — 90)2 which
can be made as andl as we wish by taking the constant 6y sufficiently smal while
keeping the congant 6; fixed in the definition of Bs(K). By Theorem 2.1, there
exists aconstant p > 0 such that (2.1)-(2.2) has asolution u(z, -) € By for |z| < p.

According to the proof of the nonlinear Cauchy-Kowaevski Theorem in [6], the
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length of the z-interval of existence p is any constant satisfying

123(2p)?
1—r
2
%[33,0 + 16pRy4 ) < %7
8192(2p)°Cs
1—r
2048(2p)*Cs
1—r
2048(2p)2Cs
1— 167

R
[Rs0 + 16pRag] < 71

R3 — R3
2 )

Ry — Ry
2 )

[R3,0 + 16pR4,0] <
[R3,0 + 16pR4 0] <

[Rs o +16pR, o] < %7

where r = 4096(2p)%Cs and R; ¢ is the bound for the || - ||s-norm of the Cauchy
datafor every s € [0, 1] and R; is any constant greater than R; o fori =1,2,--- 5.

By choosng R; large enough for @« = 1,2,--- ,5 and taking the constant C’
gndl enough, the z-interva of existence p can be greater than 1. [ |

3. ExISTENCE OF BOUNDARY CONTROLLER

In this section, we shdl prove the existence of the boundary controllers g(¢) and
h(t) that steer a prescribed initial data wy to the zero for the problem (1.1)-(1.4).
The contrallers ¢g(t) and h(t) will be continuously differentiable on a finite time
duration0 ¢t T withT > 0.

The proof of the following theorem is amilar to that of Theorem 2.1 in the
paper of D. Kinderlehrer and L. Nirenberg[?] with some modifi cation. We omit the
proof. Also see[10] for more details for a second order parabolic equation.

Theorem 3.1. Let v(x,t) € C°([0,1] x [0, 1]) be a solution of the problem

V¢ + Vgpze =0 on 0<z <1,t>0,
v(0,t) =0,v,(0,t) =0 fort >0.

Then for each 0, 0 < o < %, v(x,t) is of Gevrey class 2 in x and t in
{(z,t):0 z<l—0,0<t<l},
that is, the derivatives of v satisfy

0k0lv|  CH¥2 (2K + 2j)),
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for some positive constants C, H and for all k = 0,1,2,--- ,and j =0,1,2,....
Now, we state the principal result of this section.
Theorem 3.2. Let the initial data wo(x) be a continuous function in [0, 1]
and vanish at 0. Then for any finite time T > 0, there exist controllers ¢(t),

h(t) € C°°((0, 00))NC([0,00)) such that the solution w(z, t) of (1.1)~1.4) satisfies
w(z, T) =0 for x €10,1].

Proof. \We organize the proof in the following steps

Step 1. Extend the domain of the initial deta wo () to be [0, 2] so that wo(x)
is continuous and wo(x) = 0 in a neghborhood of 2.

Step 2. We solve the initid-boundary value problem with the new modified
initid conditi on:

3.1) Wi + Wagezr = 0 0N (0,2) X (0,00),
(32) w(0,t) =0, w,(0,t) =0 fort >0,
(3.3) w(2,t) =0,w,(2,t) =0 fort>0,
(34) w(zx, 0) =we(z) forz e (0,2).

It is wel-known that the solution w(x,t) exists[3, 9]. Let T' > 0 be any given
finitetimeand e < 7" be any smdl pogtive number. Thenit is dear that the solution
w(x, t) isaC™® functionfor0 = 1lande ¢ T.

Step 3. We clam that w,;(0,t) and wy.,(0,t) beong to Gevrey class 2 in ¢
fore t T wherew(z,t) is the solution obtained in Step 2.

Let ug(x) = w(z,€), where e < T' is any small positive number asin the Step
2. Since w(z,t) isa C*([0, 1] x [, T]) solution of the problem

Wt + Wegze = 0 0N (0,1) X (¢, 77,
w(0,t) =0 fore t T,
w(z,e) =ug(x) forxe (0,1),
it follows from Theorem 3.1 that w(z,t) isof Gevrey dass2 intfor0 =z ¢

ande ¢t T. Thus wy(0,t) and wee,(0,t) bdong to the Gevrey class 2 in ¢
fore t T.
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Step 4. Next, we modify wg, (0, t) and w4 (0, t) to be functions wy, (0, t)1(t)
and wzz4(0,1)1)(t) with support in [0,7]. Here ¢ (t) € C*°[0, 00) satisfying
0 9@ 1,
Yit)=0 fort>T,
YiE)=1 for0 ¢ T/2.

With some cares we choose /() to be of Gevrey dass 2, cf. [7].

- 0,t)p(t) f T
we(0,T)Y(¢) Tore ¢ }
g(t):{ 0 fort>T,

| Wy (0,t)0(t) fore t T,
C(t)_{ 0 fort>T.

Since the Gevrey class of functions forms an algebra which is dosed under multi-
plication, £(t),¢(t) € 42 int for t > ¢ and vanish for t > T.

Step 5. In this step, we solve the Cauchy problem:
(35  uggee = —ur 0N (0,2) x (€, 00),
(3.6) u(0,t) =0, uz(0,t) = 0,uze(0,t) = &£(t), gz (0,2) = ((t) fOrt>e

It follows from Theorem 2.2 that there exist a congant p > 1 and a dlassicd
lution u(x,t) of (35)«3.6) for 0 < = < p, t > e. This solution vanishes for
t > T by Nirenberg's Theorem [11].

Step 6. By L. Nirenberg's Theorem [11], it is easy to derive that w(x,t) and
u(z,t) aeidenticd on [0, 1] x [¢,7//2]. Now, the required boundary controllers
g(t) and h(t) are defined as ¢g(t) = w(1,t), h(t) = we(1,¢) for 0 ¢ € and
9(t) =u(l,t), h(t) = uy(1,t) for t > e.

This proves the theorem. [ ]
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