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ON THE RECURSIVE SEQUENCE xn+1 = xn¡ 1=g(xn)

Stevo Stević

Abstract. In [5] the following problem was posed. Is there a solution of the
following difference equation

xn+1 =
¯xn¡ 1

¯ + xn
; x¡ 1; x0 > 0; ¯ > 0; n = 0; 1;2; :::

such that xn ! 0 as n ! 1:
We prove a result which, as a special case, solves the above problem.

1. INTRODUCTION

Recently there has been a lot of interest in studying the global attractivity, the
boundedness character and the periodic nature of nonlinear difference equations.
For some recent results concerning, among other problems, the periodic nature of
scalar nonlinear difference equations see, for example, [1-6] and [8]. In [3] and
[7] two closely related global convergence results were established which can be
applied to nonlinear difference equations in proving that every solution of these
difference equations converges to a period-two solution (which is not the same for
all solutions).

The following question is posed in [5].

Open problem. Is there a solution of the following difference equation

xn+1 =
¯xn¡ 1

¯ +xn
; x¡ 1;x0 > 0; ¯ > 0; n= 0;1;2; : : :(1)

such that xn ! 0 as n!1:
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Note that we can assume that ¯ = 1; i.e. we can consider the equation

xn+1 =
xn¡ 1

1 + xn
; x¡ 1; x0 > 0; n = 0;1; 2; : : : :(2)

We independently arrived at a problem which was similar to a problem studied
by the authors in [4]. They examined the behaviour of the following sequence:

xn+1 = xn¡ 1e
¡ xn ; x¡ 1; x0 > 0; n = 0; 1;2; : : : :

This similarity motivated us to consider a class of sequences which generalize their
sequence and the sequence of Eq. (1).

In this paper we give an affirmative ansver to the Open problem. Moreover, we
generalize this result to the equation of the following form:

xn+1 =
xn¡ 1

g(xn)
; x¡ 1; x0 > 0; n = 0; 1; 2; : : : :(3)

2. ON THE RECURSIVE SEQUENCE xn+1 = xn¡ 1=(1 +xn)

In this section we consider Eq. (2).

Theorem 1. Consider the difference equation (2): Then the following statements
are true.

(a) The sequences (x2n) and (x2n+1) are decreasing and there exist p;q ¸ 0
such that

lim
n!1

x2n = p and lim
n!1

x2n+1 = q:

(b) (q;p; q; p; :::) is a solution of Eq. (2) of period two.

(c) pq = 0:

(d) If there exists n0 2 N such that xn ¸ xn+1 for all n ¸ n0; then limn!1xn =
0:

(e) The following formulae

x2n = x0

0
@1 ¡ x1

nX

j=1

2j¡ 1Y

i=1

1

1 + xi

1
A

x2n+1 = x¡ 1

0
@1 ¡ x0

1 +x0

nX

j=0

2jY

i=1

1

1 + xi

1
A

hold.
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(f) If x0 + x2
0 · x¡ 1 then x2n ! p 6= 0 and x2n+1 ! 0 as n!1:

(g) If a solution of Eq. (2) converges to zero it must be decreasing.

Proof. (a)-(c) Since xn+1 < xn¡ 1; n 2 N; we obtain that there exist limn!1
x2n = p and limn!1x2n+1 = q: Hence p = p=(1 + q) or q = q=(1 + p); and
consequently pq = 0; as desired.

(d) If there exists n0 2 N such that xn ¸ xn+1 for all n ¸ n0; then 0 · p ·
q · p: Since pq = 0 we obtain the result.

(e) Subtracting xn¡ 1 from the left and right-hand sides in Eq. (2) we obtain

xn+1 ¡ xn¡ 1 = ¡ xn¡ 1xn
1 +xn

:

Since
xn +xn¡ 1xn = xn¡ 2

we get

xn+1 ¡ xn¡ 1 =
1

1 + xn
(xn ¡ xn¡ 2):

From that we have that the signum of xn ¡ xn¡ 2 remains the same for all n ¸ 2:
Also the following formula

xn+1 ¡ xn¡ 1 = (x1 ¡ x¡ 1)
nY

i=1

1

1 +xi
(4)

holds.
Replacing n by 2j in (4) and summing from j = 0 to j = n we obtain

x2n+1 ¡ x¡ 1 = (x1 ¡ x¡ 1)
nX

j=0

2jY

i=1

1

1 + xi
:

From that the second formula in (e) follows. Proof of the first formula is similar
and will be omitted.

(f) Suppose that p = q = 0: By (e) we have

1

x1
=

1X

j=1

2j¡ 1Y

i=1

1

1 + xi
and

1 + x0

x0
=

1X

j=0

2jY

i=1

1

1 +xi
:(5)

Since

1 +x0

x¡ 1
=

1

x1
=

1X

j=1

2j¡ 1Y

i=1

1

1 + xi
>

1X

j=1

2jY

i=1

1

1 + xi
=

1 +x0

x0
¡ 1 =

1

x0
;
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we arrive at a contradiction.

(g) By shifting we obtain that if xn0+1 + x2
n0+1 · xn0 for some n0 2 N then

p = 0 and q 6= 0; or q = 0 and p 6= 0: Therefore xn < xn+1 + x2
n+1 for each

n 2N which is equivalent to

xn+2 =
xn

1 +xn+1
< xn+1; for all n 2 N:

Remark 1. By Theorem 1 we see that showing whether or not a solution of
Eq. (2) converges to zero is equivalent to showing that (5) holds.

It is clear that we have to consider the following functional sequence (xn(u; v)),
u; v 2 (0;1), where xn(u;v) denotes the n-th term of the solution of Eq. (2) with
initial conditions x¡ 1 = u and x0 = v: For our purpose we can consider xn(u; v)
as a function of the argument v, i.e., we will take u > 0 to be fixed, and use simply
the notation xn(v).

According to Theorem 1 (e) and (f), the following sets play a fundamental role
in solving the open problem (see also [4]).

Gn =

8
<
:

xk(v) < xk+1(v)(1 +xk+1(v)) for k = ¡ 1;0;1; :::;n ¡ 1
v 2 (0;+1) : and

xn(v) ¸ xn+1(v)(1 + xn+1(v))

and

H = fv 2 (0;+1) : xk(v)< xk+1(v)(1 + xk+1(v)) for all k = ¡ 1; 0;1; : : : g:

3. ON THE RECURSIVE SEQUENCE xn+1 = xn¡ 1=g(xn)

In this section we consider Eq. (3) where the function g(x) satisfies the following
conditions

(a) g 2C1(R+);

(b) g(0) = 1;

(c) g0(x) > 0; for x 2 R+:

Hence, g(x) > 1 for x 2R+ n f0g and consequently the equation x = x=g(x)
has only solution x = 0: Therefore x = 0 is the only non-negative equilibrium
solution of Eq. (3).

Note that for the case of Eq. (2), g(x) = 1 + x:
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It is clear that if x¡ 1 = x0 = 0; then xn = 0 for all n 2 N: On the other
hand, if x¡ 1 = 0 and x0 6= 0; or x¡ 1 6= 0 and x0 = 0; we obtain that (xn) is a
two-periodic solution

(x¡ 1; x0; x¡ 1; x0; x¡ 1;x0; :::):

Finally if x¡ 1;x0 > 0; then xn > 0 for all n 2 N:

Let (xn(v)); with v 2 (0;1); denote the solution of Eq. (3) with initial condi-
tions x¡ 1 = u and x0 = v:

Motivated by the previous section we introduce the following sets.

Gn =

8
<
:

xk(v) < xk+1(v)g(xk+1(v)) for k = ¡ 1; 0;1; :::; n ¡ 1
v 2 (0;+1) : and

xn(v) ¸ xn+1(v)g(xn+1(v))

and

H= fv 2 (0;+1) : xk(v) < xk+1(v)g(xk+1(v)) for all k = ¡ 1; 0; 1; :::g:

It is clear that the following statements are true.

1. Gi \ Gj = ; for all i; j 2 f¡ 1; 0; :::g with i 6= j:

2. Gi \H = ; for all i 2 f¡ 1;0; :::g:

3. ([1n=0G2n) [ ([1n=0G2n¡ 1) [H = (0;1):

Let
U = [1n=0G2n¡ 1 and V = [1n=0G2n:

One can easily prove the following theorem.

Theorem 2. Suppose that (xn) is a solution of Eq. (3) with x¡ 1;x0 > 0: Then
the following statements are true.

(a) The sequences (x2n) and (x2n+1) are decreasing and there exist p;q ¸ 0
suchthat

lim
n!1

x2n = p and lim
n!1

x2n+1 = q:

(b) (q;p; q;p; :::) is a solution of Eq. (3) of period two.

(c) pq = 0:

(d) If there exists n0 2 N such that xn ¸ xn+1 for all n ¸ n0; then limn!1 xn =
0:
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Theorem 3. Suppose that (xn) is a solution of Eq. (3) with x¡ 1;x0 > 0:
Assume that there exists n0 2 N such that

xn0¡ 1 ¸ xn0g(xn0):(6)

Then for all n ¸ 0;
xn0+2n < xn0+2n+1g(xn0+2n+1)

and
xn0+2n+1 > xn0+2n+2g(xn0+2n+2):

Proof. It suffices to show that

xn0 < xn0+1g(xn0+1)

and
xn0+1 > xn0+2g(xn0+2):

From (3), (6) and the fact that g(x) is increasing, we obtain

xn0+1g(xn0+1) =
xn0¡ 1

g(xn0)
g(xn0+1)

¸ xn0g(xn0+1)

> xn0g(0) = xn0;

and consequently

xn0+1 > xn0+2:(7)

Applying (7), (3) and (6), consecutively, we obtain

xn0+2g(xn0+2)< xn0+2g(xn0+1) = xn0 ·
xn0¡ 1

g(xn0)
= xn0+1;

as desired.

Theorem 4. Let n 2 f0;1; :::g: Then the following statements are true.

(a) Suppose v 2 G2n¡ 1: Then limn!1 x2n(v) = 0:

(b) Suppose v 2 G2n: Then limn!1x2n+1(v) = 0:

(c) Suppose v 2 H: Then x¡ 1 = u; x0 g(x0) > u;x0 > x1 > x2 > ::: and
limn!1xn(v) = 0:

(d) U 6= ;:
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(e) V 6= ;:

(f) U and V are open subset of (0;1):

Proof. (a) Suppose v 2 G2n¡ 1: We know that x2n¡ 1(v) ¸ x2n(v)g(x2n(v)):
By Theorem 3 it follows that

x2k+1(v) ¸ x2k+2(v)g(x2k+2(v))> x2k+2(v) for all k ¸ n ¡ 1:

By Theorem 2 (c) the result follows.

(b) Suppose v 2 G2n: We know that x2n(v) ¸ x2n+1(v)g(x2n+1(v)): By The-
orem 3 it follows that

x2k(v) ¸ x2k+1(v)g(x2k+1(v)) > x2k+1(v) for all k ¸ n:

By Theorem 2 (c) the result follows.

(c) Suppose v 2 H: We know that xn(v) < xn+1(v)g(xn+1(v)) for all n =
¡ 1; 0;1; : : : and therefore

xn+2(v) < xn+1(v) for all n= ¡ 1; 0; 1; : : :

By Theorem 2 (d) the result follows.

(d) We need to find c 2 (0;1) such that u = cg(c): For a fixed u 2 (0;1);

since the function w(x) = xg(x) is continuous and increasing and w(0) = 0 and
w(1) = 1; we obtain that there is a unique solution x = c of the equation
u = w(x): Let x¡ 1 = u and x0 = c: Since x¡ 1 = u = cg(c) = x0g(x0); we have
c 2 G0:

(e) We need to find d 2 (0;1) such that dg(d) = ug(u=g(d)): For a fixed
u 2 (0;1); consider the function

w1(x) = xg(x) ¡ ug(u=g(x)):

This function is continuous and increasing and w1(0) = ¡ ug(u) < 0 and w(1) =
1: Hence we obtain that there is a unique solutionx = d of the equation w1(x) = 0:
Let x¡ 1 = u and x0 = d: Then

x0g(x0) = dg(d) = ug(u=g(d)) > u = x¡ 1:

On the other hand

x1g(x1) =
u

g(d)
g

µ
u

g(d)

¶
= d = x0:
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Hence d 2 G1:

(f) Let us prove that U is open. The proof that V is open is similar and will be
omitted.

Choose v 2 U: It suffices to show that there exists " > 0 such that if ! 2 (0;1)
and j! ¡ vj < "; then ! 2 U:

There exists n0 ¸ 0 such that v 2 G2n0¡ 1; and so

xk(v)< xk+1(v)g(xk+1(v)) for k = ¡ 1; 0;1; : : : ;2n0 ¡ 2

and

x2n0¡ 1(v) ¸ x2n0(v)g(x2n0(v)):(8)

It follows by Theorem 3 that for n ¸ 0;

x2n0+2n(v)< x2n0+2n+1(v)g(x2n0+2n+1(v)):

and
x2n0+2n+1(v) > x2n0+2n+2(v)g(x2n0+2n+2(v)):

For n = ¡ 1;0; : : : ; let fn : (0;1)! (0;1) be defined as follows:

f¡ 1(!) = u for ! 2 (0;1)

f0(!) = ! for ! 2 (0;1)

and for n ¸ 1

fn(!) =
fn¡ 2(!)

g(fn¡ 1(!))
for ! 2 (0;1):

Then for each n ¸ 1; fn(!) 2 C1(R+); and

xn(!) = fn(!); for n = ¡ 1;0; : : : :

Note that for ! 2 (0;1)

f¡ 1(!) = u and f0¡ 1(!) = 0 · 0

f0(!) = ! and f 00(!) = 1 > 0

and for n ¸ 1;

f02n¡ 1(!) =
f 02n¡ 3(!)g(f2n¡ 2(!)) ¡ g0(f2n¡ 2(!))f 02n¡ 2(!)f2n¡ 3(!)

g2(f2n¡ 2(!)
< 0
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and

f 02n(!) =
f02n¡ 2(!)g(f2n¡ 1(!)) ¡ g0(f2n¡ 1(!))f 02n¡ 1(!)f2n¡ 2(!)

g2(f2n¡ 1(!)
> 0:

For n = ¡ 1; 0; : : : ; let hn : (0;1) ! (0;1) be a C1 function given by

hn(!) = fn(!) ¡ fn+1(!)g(fn+1(!)) for ! 2 (0;1):

That is
hn(!) = xn(!)¡ xn+1(!)g(xn+1(!)):

By (8), we have the following two cases to consider.

Case 1. Suppose that x2n0¡ 1(v)> x2n0 (v)g(x2n0 (v)):
Then it follows by the continuity of h¡ 1; h0; : : : ;h2n0¡ 1 that there exists " > 0

such that if ! 2 (0;1) and j! ¡ vj < "; then

hi(!) < 0 for i = ¡ 1;0; : : : ;2n0 ¡ 2

while
h2n0¡ 1(!) > 0;

and so if ! 2 (0;1) and j! ¡ vj < "; we see that ! 2 G2n0¡ 1 ½ U :

Case 2. Suppose that x2n0¡ 1(v) = x2n0 (v)g(x2n0 (v)):
Note that for ! 2 (0;1);

h02n0¡ 1(!) = f 02n0¡ 1(!) ¡ g(f2n0(!))f 02n0
(!) ¡ g0(f2n0 (!))f 02n0

(!)f2n0 (!) < 0;

and so it follows, by the continuity of h¡ 1; h0; :::; h2n0¡ 2; the differentiability of
h2n0¡ 1; and continuity of h2n0 and h2n0+1; that there exists " > 0 such that if
! 2 (0;1) and j! ¡ vj < "; then

hi(!)< 0 for i = ¡ 1;0; :::;2n0 ¡ 2;

h2n0¡ 1(!) > 0 if v ¡ " < ! < v and h2n0¡ 1(!)< 0 if v < ! < v + ";

h2n0 (!)< 0 and h2n0+1(!)> 0:

It follows that ! 2 G2n0¡ 1 ½ U if v ¡ " < ! < v and ! 2 G2n0+1 ½ U if
v < ! < v + ":

We are now in a position to formulate and prove the main result.

Theorem 5. Let u 2 (0;1): Then there exists a solution (xn) of Eq. (3) with
x¡ 1 = u and x0g(x0)> u such that x0 > x1 > x2 > ::: and limn!1xn = 0:
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Proof. Since

([1n=0G2n) [ ([1n=0G2n¡ 1) [H= (0;1);

U and V are open subsets of (0;1); and (0;1) is connected, we must have H 6= ;:
The following corollary solves the open problem.

Corollary 1. Let u 2 (0;1): Then there exists a solution (xn) of Eq. (2) with
x0(1 +x0)> x¡ 1; such that x0 > x1 > x2 > : : : and limn!1 xn = 0:

In particular, we have the following.

Corollary 2. Let u 2 (0;1): Then there exists a solution (xn) of Eq. (2) such
that (5) holds.
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