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ON THE GAUSS MAP OF TRANSLATION
SURFACES IN MINKOWSKI 3-SPACE

Dae Won Yoon

Abstract. In this article, we study trandation surfaces in the 3-dimensional
Minkowski space whose Gaussmap G satisfies the condition AG = AG, A €
Mat(3,R), where A denotes the Laplacian of the surface with respect to the
induced metric and M& (3, R) the set of 3 x 3 red matrices, and adso obtain
the complete classification theorem for those.

1. INTRODUCTION

Asis wdl-known, the theory of Gauss map is dways one of interesting topics
in Euclidean space and pseudo-Eudidean space and it has been invedigated from
the various viewpoints by many differential geometers[1, 2, 4, 7, 8, 10, 11].

F. Dillen, J. Pes and L. Verstraelen [10] sudied surfaces of revolution in Euclid-
ean 3-space £ such that its Gauss map G satisfies the condition

(1.1) AG =AG, A= (ay) € Mat(3,R),

where A denotes the Laplacian of the surface with respect to the induced metric
and Mai(3, R) the sat of 3 x 3 real matrices. On the other hand, C. Bakousss
and D. E Blair [3] investigated the ruled surfaces in E? satisfying the condition
(1.1). C. Bakoussis and L. Verdraden [4, 5, 6] studied the hdicoidal surfaces,
the trandation surfaces and the spiral surfaces in E? saisfying the condition (1.1).
Also, for the Lorentz verdon, S. M. Chai [8, 9] completely classified the surfaces of
revolution and the ruled surfaces with non-null base curve satisying the condition
(1.2) in Minkowski 3-gpace E{’ Furthermore, L. J Alias, A. Ferrandez, P. Lucas
and M. A. Merofio [2] studied the ruled surfaces with null ruling saisfying the
condition (1.1) in Minkowski 3-space E3. On the other hand, condition (1.1) is a
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gecial caxe of a finite type Gauss magp introduced by B. Y. Chen [7]. Recently,
Y. H. Kim and the author [13] studied the ruled surfaces with pointwise 1-type
Gauss map in E3 and obtained a new characterization of minimal ruled surfaces
In [11], D.-S. Kim, Y. H. Kim and the author obtained the complete classification
theorem of ruled surfaces with 1-type Gauss map in Minkowski m-space ET* and
aso characterized the extended B-scroll with Gauss map.

In this aticle, we invesigae the Lorentz version of the translation surfaces
satisfying condition (1.1) and prove the following theorem:

Theorem. The only translation surfaces in Minkowski 3-space B3 whose Gauss
map satisfies (1.1) are the Euclidean plane R? | the Minkowski plane R? , the Lorentz
circular cylinder St x R, the hyperbolic cylinder H' x R and the circular cylinder
of index 1, R} x S.

To prove this theorem, we use the reasoning first developed by C. Ba kousss
and L. Vestradenin [5], inwhich they dassified trandation surfaces sdisfying the
condition (1.1) in E3.

For the study of the translation surfaces in Minkowski 3-space Ef, I. V. de
Woedtijne [15] studied minimd translation surfaces, and H. Liu [14] investigated
the translation surfaces with constant mean curvature or constant Gauss curveure.

Throughout this paper, we assume that all objects are snooth and al surfaces
are pseudo-Riemannian, unless otherwise specified.

2. PRELIMINARIES

An m-dimensiond vector gpace L = Li* with scalar product (,) of index 1
is cdled a Lorentz vector space. In paticula, if L = E™*, m > 2, it iscdled a
Minkowski m-space. A vector X of LT is said to be space-like if (X, X) > 0 or
X =0, time-like if (X, X) <0 and light-like or null if (X,X) =0and X #0. A
curve in Ly is cdled space-like (time-like or null, respectivey) if its tangent vector
is space-like (time-like or null, respectivey).

Let X = (X;) and Y = (Y;) be the vectorsin a 3-dimensond Lorentz vector
gace L3. Then the scalar product of X and Y is defined by

(2.1) <X, Y> =-X1Y1 + XoYo + X3Y3,

which is called a Lorentz product. Furthermore, a Lorentz cross product X x Y is
given by

(2.2 X xY = (—XoY3 + X3Y2, X3Y1 — X1Y3, X1Y2 — Xo)1).

Let M? be a pseudo-Riemannian surface in Minkowski 3-space E. The map
G : M? — Q?(e) C E3 which sends each point of M?2 to the unit norma vector
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to M? a the point is caled the Gauss map of surface M?, where e (= +1) denotes
the sign of the vector fidd G and Q?(¢) is a 2-dimensiond space form as follows:

P SH1) ={X e B}(X, X) =1} if e=1;
€) =
H2(—1) = {X € B}|(X,X) = —1} if e=—1.
S2(1) is cdled the de Sitter space, H2(—1) the hyperbolic space in E3. It is well-

known that in terms of locd coordinates {x;} of M?, the Laplacian can be written
s

z'a
2.3) = \/EZ&%"( gﬂ@>,

where G = det(g;;), (¢”) = (9i5) " and (g;;) are the components of the metric of
M? with respect to {x;}.

3. TRANSLATION SURFACES IN MINKOWSKI 3-SPACES

Let z: M? — E3 be atrandation surface in E3. Then M? is parametrized
by

(3.1) (u,v) = (u, v, f(u)+ §(v)),

f and § being smooth functions of the variables u and v, respectively, and we have
the naturd frame {x,, x,} given by

O Ox
.Tu:%:(lgoaf)) xU:%:(()’l’g)’

where f = df/du, g = dj/dv. Accordingly, theinduced pseudo-Riemannian metric
on M? is obtained by g11 = (2, zu) = f2 — 1, g12 = (T, 2) = fg and go =
(T, 2y) = 1+ g2. Since the surfaceis non-degenerate, det(g;;) = f2—g>—1 # 0.
For later use, we define smooth function w &s:

(3.2 w= ||z, X ZUUH2 =Xy X Ty, Ty X Top) :E(—f2 + ¢ +1),

where ¢ denotes the sign of the vector x,, x z, in E:{’ Then the Gauss map G of
the surface M? is given by

1

e X @y =—(f,—g,1).
AT ek S

3.3) G=(G1,Gy,G3) =
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If we make use of (2.3) together with such function w, the Laplacian A of M? can
be expressed as fol lows:

2 2 2
A :%{5(1 + g%%—f— €(f2 — 1)% — 2€f9838v
59 (f2-1g'+A+Af r,0 0
+ " (fou-750) |

By a straghtforward computation, the Laplacian AG of the Gauss mgp G with the
help of (3.3) turns out to be

AGy = —{(f* +2u)(def 2 +wf)
isf (9 — ew)[49°g"* — ew(g* + 94")]
+ef f'g*g'(ew +2f?) = ff gw(f? +ew)},
NGy = ~A{zg(£2 + ) —4f2F2 — w2 + f£")

(35 w?
+(9? —ew)? (—4egg™ + wg”)

+4ef2f'g9'(ew — 29%) — flggdw(g? —ew)},
AGs =—A=(f2 + ) 312 + g0 +ewff" + (ew+ 12) 7]
w?2

+e(g —ew)Bg” + f2f'd —ewgg” + (¢° — aw)g?]}-
Before going into the sudy of translation surfaces with condition (1.1), let usexam-

ine some examples of surfaces in E satisfying that condition. They will be parts
of our dassifications of translaion surfaces.

Example 3.1. Euclidean plane R2, or Minkowski plane R?.

In these cases the Gauss map is a constant normal time-like or gpace-like vector
G, 0 AG = 0. Thus, the Euclidean plane R? or the Minkowski plane R? sati<fies
(1.1) with A = 0.

Example 3.2. Lorentz dircular cylinder S x R.

Let —z3 + 23 = r%, r > 0, be the Lorentz circular cylinder. We consider
this surface parametrized by z(u,v) = (z; = u, 29 = v,23 = =12 +u2). The
Gauss map G isgiven by G = (£u/r, 0,+/r? + v?/r) and the Laplacian is AG =
(1/7?)G. Thus, the Lorentz circular cylinder S x R satisfies (1.1) with

7,1—2 a2 0
A= 0 a2 0 |.

1
0 ase Gz
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Example 3.3. Hyperbolic cylinder H x R.

Let —z2+2% = —r?, r > 0, bethe hyperbolic cylinder and consider this surface
parametrized by z(u,v) = (z1 = u, 2 = v, 3 = £/u? —r?). The Gauss map
G is G = (fu/r,0,/u? —r2/r), and the Lapleacian is AG = —(1/r?)G. Thus
the hyperbolic cylinder H' x R satisfies (1.1) with

_r_12 aio 0
A= 0 aoe O .
0 a3 _712

Example 3.4. Circular cylinder of index 1, R{ x S'.

Let 23 + 23 = r2, r > 0, be the circular cylinder of index 1 and consider this
aurface parametrized by x(u,v) = (21 = u, 2 = v, 3 = =12 — v2). The Gauss
mep G isG = (0,+v/r,/r?2 —v?/r), and the Laplecian AG of the Gauss map G
can be expressed as AG = (1/r?)G. Thus, the dircular cylinder of index 1, R} xS,
stidfies (1.1) with

a1 0 0
as1 T_12 0 ] .

A=

1
azt 0 -3

4. PROOF OF THE THEOREM

We now assume that the surface M? satisfies condition (1.1). Then, combining
(8.3) and (3.5), we have

(f* +ew)(@ef f? + wf) +ef(g® — ew){4g%9" — ew(g”® + g9")}

(4'1) 12 1 2 2 )/ 3
+eff'g°g'(ew +2f7) —w(f*+ew) ffg = w’(an f —ag + ai3),

(9° — ew)*(—degg”? +wg") — eg(f* +ew){Af* f? +ew(f? + ")}

4.2
2 +4e f2f'gq (ew — 29%) —w(g® —ew)f'g9" = WP (a1 f — ageg +as3),

e(f2+ew)(Bf2 + g% +ewff" + (ew + f2) [}
(43) +e(g? — ew){3¢° + f2f'd —ewgg” +(g* — ew)g?}
= w3(az1f — az2g + as3).
Furthermore, (4.3) can be rewritten in the form
W(fP e ff" = —e(f> +ew) {81 + f'¢°d + (ew + [?) %}
(4.4) —e(g® —ew){3¢° + f2f'g — ewgg” + (9° — ew)g”}
+w3(az1f — azg+ as3),
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which implies from (4.1) and (4.4)
(4.5) ALf?+B1f =Ty,
where we put

(4.6)

AL =(f? + ew)?Bef* —w),

Bi =g°d{4ef* —e( + D)(=3f* +4°+ 1)},

I =w’f(a11f — a12g + a13) — w3 (f + ew)(as1 f — as2g + ass)
H3ef2(f? + ew)? + e(g® — ew){(f* + ew)[3¢” — ewgg” + (97 — ew) g
+ew (9% + 99") — 41%9°9"}.

Also, it follows using (4.2) and (4.4) that

(4.7) Asf? + Baf' =Ty,

where we set

Ay =—3ef?g(f* + ew),
By =g¢ (w(3f* + w) — 6e f?¢*),

(4.8) Ty =w3(ag f — ang + ax) +wg(as f —asg+ as3)

+(g? — ew)*(3egg” — wyg") — 3 f2g(f* +ew)
—eg*(g* —ew)(3g — ewg”).

In case

(4.9 A1 By — AsBy =0,

from (4.6) and (4.8), we see that

(4.10) (f* +ew)?(Bef? —w)(3f*w + w? — 62f?9%) g9’

+32f29%g'(f* + ew){def* — e(g® + 1) (=3f*+ ¢° +1)} = 0.

Thus, thefunction f(u) satisfies a nontrivial polynomia whose coefficients depend
exclusively on the function g anditsderivative g’. Consequently, f must be constant.
We will congder this stuation further in the lag step of the proof.

In case

(4.11) A1 By — AyBy # 0,
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from (4.5) and (4.9) we have
4.12) (A;T9 — AoT1)? = (A1 By — A3By)(Bol'y — BiIy).

Substituting (4.6) and (4.8) in (4.12), again we obtain a nontrivid polynomid in f
whose coefficients now depend exdlusively on the functions g,¢’ and ¢”. Hence,
f must be congant. Now, we consider the studtion that f is constant. If f is
identically zero, then f is constant, say, c. Thus, M? is aruled surface in E? and
the position vector = can be written in the following form:

4.13 z(u,v) = (u,v,¢c+ g(v)) = a(v) + up,

where a(v) = (0, v, c+ g(v)) isa gace-like curve and 3 = (1,0,0) is atimelike
unit congtant vector along « orthogonal to it. Consequently, the surface M? is
locally the Minkowski plane R? (Example 3.1) or the circular cylinder of index 1,
R} x S (Example 3.4) according to Proposition 3.2 of [9]. Lastly, we assume that

f is anonzero congant. From (4.1) and (4.2) we obtan the following equations:
%14 ef(9* —ew){4g%9” — ew(g? + 99"} = W f(arf — ar2g + a13),
' (92 — ew)?(wg" — 4egg?) = w(aa f — azag + ass).

Conddering (4.14) as a system of equations in ¢”> and ¢”, we observe that since
f# 0, its unique solution is

w2

9% = Cf(? —ew)? {(¢* —ew)(an1 f — a12g +a13)
@15 Hatanf = angoa))
9"= _m {f(4g* —ew)(an f —ang + an)

+49(g? — ew)(a11 f — a12g + ai3) }.

Substituting (4.15) in (4.3) yidds a nontrivial polynomid in g with congant coef-
ficients. Hence, g must be congtant, which gives AG = 0. Consequently, M? isa
nondegenerate plane, i.e., a Eudidean plane R? or aMinkowski plane R? (Example
31).

Now, we come back to rdations (4.1), (4.2) and (4.3) and work as aboveto find
from these the function g. Thus, we can rewrite (4.3) in the form

w(g? —ew)gg" = e(f*+ ew) {312 + f'g% +ewff" + (ew + f) 7}
+e(g2 — ew){3¢% + F2f'q + (¢? — ew)g*} —w3(az1f — az2g + as3).
Then, we combine (4.16) and (4.1) to obtain

4.17) Asg” + Bsg =T,

(4.16)
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where

A — 2(,2
18 3= 3cfg°(9° —ew),

Bz = ff'{6ef?¢* + w(3g® — ew)},
and

I3 =w?(a11f — a129 + a13) —w3f(a31f — azag + az3)
(4.19) —(f2 +ew)?Beff + wf") +3ef g (g? — ew)
+ef2(f? +ew)(3f + ewf").
Also, it follows from (4.16) and (4.2) that

(4.20) Ayg?+ Byg' =Ty,
where we put

As= (g% — ew)?(—3cg® — w ,
@2 By= 5‘92 f(aw )— (292)(93692 +) w),
and
(4.22)

Ty =w3(ag1f — agag + az3) + w? (92 — ew)(as1f — as2g + ass)
—3eg’(g? —ew)? + e(f2 + ew){(g? — ew)[-3f2 — ewf " — (f* +ew) "]
tewd (f2 + f17) + 428
Now, by usng (4.17) and (4.20), when
A3By— A4Bs =0,
from (4.18) and (4.21) we have that
(9% — ew)?(3eg® + ew) (Bg°w — ew? + 6e f2g?)
+3ef3g%f(g% — ew)[—4eg* + e(f2 — 1)(-34* + f2 — 1) = 0.

Thus, the function ¢ satisfies a nontrivial polynomiad whose coefficients depend
exclusively on the function f and itsderivaive f’. Consequently, g must be constant.
When

AsBy — AyBs #0,

from (4.17) and (4.20) we have that
(4.23) (AsTy — AqT'3)? = (A3By — A4B3)(Bal's — B3Ty).
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Inserting (4.18), (4.19), (4.21) and (4.22) in (4.23), again we obtain a nontrivial
polynomial in g whose coefficients now depend exdusively on the functions £, f’
and f”. Hence, g must be congant.

If g is identicdly zero, then g is condant, say, c. Thus, in this case M? is a
ruled surface in E3 and the position vector fied x takes the form

z(u,v) = (u,v, f(u) + ) = alu) + v,

where a(u) = (u, 0, f(u) +c¢) is a space-like or time-likecurveand 8 = (0,1,0) is
aspace-like unit congant vector along o orthogonal to it. Consequently, the surface
M? is locally the Eudidean plane R?, the Minkowski plane R? (Example 3.1), the
hyperbolic cylinder H! x R (Example 3.3) or the Lorentz circular cylinder S} x R
(Example 3.2) according to Proposition 3.1 of [9].

Findly, if g is anonzero constant, we obtain again, as above, that f is condant,
and thus M? is a nondegenerate plane, i.e,, a Euclidean plane R? or a Minkowski
plane R? (Example 3.1). This completes the proof. (]
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