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REMARKS ON IMPLICIT VECTOR VARIATIONAL INEQUALITIES1

Sangho Kum2 and Gue Myung Lee

Abstract. In this paper, as a continuation of the authors’work, the existence
of solutions of IVVI for noncompact valued multifunctions is provided under
generalized pseudomonotonicity assumption. This generalizes Konnov and
Yao’s results [6, Theorems 3.1 and 4.1]. Also another IVVI without the
generalized pseudomonotonicity assumption is proposed and the existence of
solutions of the IVVI is proved by using a selection theorem. This IVVI can
be regarded as an extension of the VVI studied in Lee et al. [10].

1. INTRODUCTION

Since Giannessi [4] first introduced a vector variational inequality (shortly, VVI)
in a finite dimensional Euclidean space, many authors have intensively studied VVI
and its various extensions [1, 3, 8-13, 16, 18] (see also the references therein) in
abstract spaces. Systematic treaments on generalized VVI can be found in Kon-
nov and Yao [6], and Lin et al. [14]. Besides, several authors have investigated
relationships between VVI and vector optimization problems under some convexity
or generalized convexity assumptions. Lee et al. [11] showed that VVI can be an
efficient tool for studying vector optimization problems.

On the other hand, recently, Lee and Kum [13] proposed implicit vector vari-
ational inequalities (IVVI) to develope a general scheme dealing with seemingly
diverse VVIs. They derived sufficient conditions for an IVVI of compact valued
multifunctions to have solutions under generalized weak pseudomonotonicity as-
sumptions and the Hausdorff topological vector space setting. In relation to IVVI,
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Ansari and Yao [2] gave some interesting existence results for the strong solutions
of IVVI which seems to be a proper generalization of solutions of generalized VVI.

In this paper, as a continuation of the authors’ work [13], the existence of
solutions of IVVI for noncompact valued multifunctions is provided under gener-
alized pseudomonotonicity assumption. This generalizes Konnov and Yao’s results
[6, Theorems 3.1 and 4.1]. For this purpose, we slightly modify the definition of
generalized hemicontinuity of a multifunction T with respect to a general function
Ã . Also another IVVI without the generalized pseudomonotonicity assumption is
suggested and the existence of solutions of the IVVI is proved by using a selection
theorem. This IVVI can be regarded as an extension of the VVI studied in Lee et
al. [10].

We use a fixed point theorem due to Park [15] as a basic tool to establish our
results.

2. PRELIMINARIES

LetE be a real Hausdorff topological vector space, X a nonempty convex subset
of E, F another real Hausdorff topological vector space. A nonempty subset P of
E is called a convex cone if

¸P ½ P; for all ¸ ¸ 0 and P + P = P:

Let C : X ! 2F be a multifunction such that for each x 2 X; Cx is a convex
cone in F with intCx 6= ; and Cx 6= F . We denote

P : =
\

x2X
Cx:

Let L(E;F ) be the space of all continuous linear mappings from E to F , Ã :
L(E;F ) £ X £ X ! F a function, T : X ! 2L(E;F ) a multifunction and G :
X ! 2X a multifuntion. In this paper, our discussion is restricted to the following
(IVVI) and (IVVI)0:

(IVVI) Find ¹x 2 X such that for each y 2 X, there exists s 2 T¹x satisfying

Ã (s; ¹x; y) =2 ¡ intC ¹x:

(IVVI)0 Find ¹x 2X such that for each y 2 X, there exists s 2 T ¹x such that

Ã (s;z;y) =2 ¡ intC¹x for all z 2 G¹x:

For various special cases of (IVVI), readers can refer to [13]. As far as (IVVI)0 is
concerned, (IVVI)0 becomes the VVI studied by Lee et al. [10] provided Ã (s;x; y) =
hs; y ¡ xi where hs; y ¡ xi denotes the evaluation of s at y ¡ x.
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In fact (IVVI)0 can be viewed as an extension of (IVVI) because the former
reduces to the latter by putting Gx = fxg for all x 2 X . Now we give the gener-
alized pseudomonotonicity and the generalized hemicontinuity on the multifunction
T . T is said to be
( i ) generalized C-pseudomonotone w.r.t. Ã if for any x; y 2 X, 9s 2 Tx such

that

Ã (s;x;y) =2 ¡ intCx implies 8t 2 Ty;¡ Ã (t; y;x) =2 ¡ intCx;

( ii ) generalized weakly C-pseudomonotone w.r.t. Ã if for any x; y 2X, 9s 2 Tx
such that

Ã (s;x; y) 62 ¡ intCx implies 9t 2 Ty;¡ Ã (t; y;x) =2 ¡ intCx; and

(iii) generalized hemicontinuous w.r.t. Ã if for any x;y 2 X and ® 2 [0; 1], the
multifunction

® 7! Ã (T(x+ ®(y ¡ x)); x;y)

is upper semicontinuous at 0+, where Ã (T (x+®(y¡ x)); x;y) = fÃ (t; x;y) j
t 2 T(x + ® (y ¡ x))g.

Also T is said to be
( i )0 generalized C-pseudomonotone if for any x; y 2X; 9s 2 Tx such that

hs;y ¡ xi =2 ¡ intCx implies 8t 2 Ty; ht; y ¡ xi 62 ¡ intCx; and

( ii )0 generalized weakly C-pseudomonotone if for any x; y 2 X, 9s 2 Tx such
that

hs;y ¡ xi =2 ¡ intCx implies 9t 2 Ty; ht; y ¡ xi =2 ¡ intCx; and

(iii)0 generalized hemicontinuous if for any x; y 2 X and ® 2 [0; 1], the multi-
function

® 7! hT(x+ ®(y ¡ x)); y ¡ xi
is upper semicontinuous at 0+, where hT (x+® (y¡ x)); y¡ xi= fhs; y¡ xi j
s 2 T (x+ ®(y ¡ x))g.

The following lemma is immediate from the above definitions.

Lemma 2.1. Let E; X; F; C; P; Ã ; and T be the same as in the above
definitions. Then we have

( i ) T is generalized C-pseudomonotone w.r.t. Ã ) T is generalized weakly
C-pseudomonotone w.r.t. Ã ; and
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(ii) T is generalized hemicontinuous ) T is generalized hemicontinuous w.r.t.
Ã (s;x; y) = hs; y ¡ xi.

Example 2.1. Let E = X = F = R, Cx = [0;1) for all x 2 R and
Ã (s; x; y) = s(y ¡ x) for any s;x; y 2 R. Define a multifunction T : R! 2R by
for any x 2 R, Tx = [x;1). Then T is generalized weakly C-pseudomonotone
(w.r.t. Ã ), but T is not generalized C-pseudomonotone (w.r.t. Ã ). Moreover, T is
generalized hemicontinuous (w.r.t. Ã ).

The following particular form of Park [15, Theorem 5] is a basic machinary to
derive main results.

Theorem 2.1. Let X be a nonempty convex subset of a real Hausdorff topo-
logical vector space E; K a nonempty compact subset of X. Let A; B : X ! 2X

be two multifunctions. Suppose that
( i ) for each x 2X; Ax ½ Bx;
( ii ) for each x 2X; Bx is convex;
(iii) for each x 2K; Ax is nonempty;
(iv) for each y 2 X; A¡ 1y is open in X; and
( v) for each finite subset N of X; there exists a nonempty compact convex subset

LN of X containing N such that for each x 2 LN nK; Ax\LN 6= ;. Then
B has a fixed point x0; that is; x0 2 Bx0.

3. IVVI UNDER GENERALIZED PSEUDOMONOTONICITY

We provide the first main result concerned with the existence of solutions of
(IVVI) under the generalized pseudomonotonicity condition.

Theorem 3.1. Let E be a real Hausdorff topological vector space on which
the topological dual space E¤ of E separates points; X a nonempty convex subset
of E; F another real Hausdorff topological vector space on which the topological
dual space F ¤ of F separates points; and C : X ! 2F a multifunction such that
for each x 2 X; Cx is a convex cone in F with ¡ intCx 6= ; and Cx 6= F . Let
P :=

T
x2X Cx; Ã : L(E;F )£ X £ X ! F be a function; and T : X ! 2L(E;F ) a

multifunction. LetK be a nonempty weakly compact subset of X and W : X ! 2F ;
Wx = F n(¡ intCx); such that the graph Gr(W ) of W is weakly closed in X £ F .
Assume that the following conditions are satisfied ;
( i ) T is generalized C-pseudomonotone w.r.t. Ã ;
( ii ) T is generalized hemicontinuous w.r.t. Ã ;
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(iii) for each s 2 L(E;F ) and x 2 X; Ã (s; x; ¢) is P -convex; that is; for any
y;z 2 X and ® 2 [0; 1];

Ã (s; x; ®y +(1 ¡ ®)z) 2 ®Ã (s;x;y) + (1 ¡ ®)Ã (s; x; z) ¡ P ;

(iv) for each t 2 L(E; F) and x 2 X;Ã (t; x; ¢) is continuous where both X and
F are endowed with the weak topologies;

( v ) for any x 2 X and s 2 Tx; Ã (s; x;x) 2 P ;

(vi) for any s 2 L(E; F); x; y 2 X and ® 2 [0;1]; Ã (s;x + ®(y ¡ x); y) =
(1 ¡ ®)Ã (s; x;y); and

(vii) for each finite subset N of X, there exists a nonempty weakly compact convex
subset LN of X containing N such that for each x 2 LN nK; there exists
y 2LN satisfying ¡ Ã (t; y;x) 2 ¡ intCx for some t 2 Ty.

Then there exists ¹x 2 K such that ¹x is a solution of (IVVI).

Proof. Let X be equipped with the weak topology from E. Define two multi-
functions A; B : X ! 2X to be

Ax : = fy 2 X j 9t 2 Ty such that ¡ Ã (t; y;x) 2 ¡ intCxg;
Bx := fy 2 X j 8s 2 Tx; Ã (s; x;y) 2 ¡ intCxg:

The proof is organized in the following parts.

(a) SinceT is generalizedC-pseudomonotone w.r.t. Ã , for anyx 2 X, Ax ½ Bx.

(b) For each x 2 X, Bx is convex. Indeed, when y; z 2 Bx and ® 2 [0;1], we
have for any s 2 Tx,

Ã (s;x;®y + (1 ¡ ®)z)2 ® Ã (s; x;y) + (1 ¡ ® )Ã (s;x; z) ¡ P

½ ®(¡ intCx) + (1 ¡ ®)(¡ intCx)¡ P

½ ¡ intCx ¡ Cx = ¡ intCx:

Hence ®y +(1 ¡ ®)z 2 Bx, as desired.

(c) For each y 2 X; A¡ 1y is open in X. In fact, let fx¸ g be a net in
(A¡ 1y)c weakly convergent to x 2 X . Then y =2 Ax¸ and hence for any
t 2 Ty; ¡ Ã (t; y;x¸) 62 ¡ intCx¸ . Thus for any t 2 Ty;¡ Ã (t; y; x¸) 2Wx¸ .
Since (x¸ ;¡ Ã (t; y;x¸ )) 2 Gr(W ), by virtue of assumption (iv) and the weak
closedness of Gr(W), ¡ Ã (t; y; x) 2 Wx for any t 2 Ty, that is, for any
t 2 Ty;¡ Ã (t; y;x) =2 ¡ intCx, and hence y =2 Ax, namely, x 2 (A¡ 1y)c.
Therefore (A¡ 1y)c is closed in X, whence A¡ 1y is open in X.
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(d) By hypothesis (vii), for each finite subset N of X, there exists a nonempty
weakly compact convex subset LN of X containing N such that for each
x 2 LN nK , there exists y 2 LN satisfying ¡ Ã (t; y; x) 2 ¡ intCx for some
t 2 Ty. Thus for each x 2 LN nK, there exists y 2 LN such that y 2 Ax,
hence LN \Ax 6= ;.

(e) B has no fixed point. If not, there exists x 2 X such that for any s 2 Tx,
Ã (s;x; x) 2 ¡ intCx. By assumption (v), for any s 2 Tx; Ã (s;x;x) 2
¡ intCx \Cx = ;, which is a contradiction.

(f) From (a)-(e), we see, by Theorem 2.1, that there must be ¹x 2 K such that
A¹x = ;, namely, for any y 2 X, y =2 A¹x, that is, for any y 2 X and t 2 Ty,

¡ Ã (t; y; ¹x) =2 ¡ intC ¹x:(1)

We claim that ¹x is a solution of (IVVI). Suppose to the contrary that ¹x is not a
solution of (IVVI). Then there eixsts ¹y 2 X such that for any s 2 T ¹x,

Ã (s; ¹x; ¹y) 2 ¡ intC ¹x:(2)

Let x® := ¹x + ® (¹y ¡ ¹x) for ® 2 [0;1]. Since X is convex, x® 2 X. Define a
multifunction H : [0;1] ! 2F by for any ® 2 [0;1], H(®) : = fÃ (s; ¹x; ¹y) j s 2
Tx® g. Then by (2), H(0) ½ ¡ intC¹x. Since T is generalized hemicontinuous w.r.t.
Ã , there exists ®̂ 2 (0; 1] such that for any ® 2 [0; ®̂);H(®) ½ ¡ intC¹x. Hence for
any ® 2 (0; ®̂) and s 2 Tx® ,

Ã (s; ¹x; ¹y) 2 ¡ intC ¹x:(3)

Fix ® 2 (0; ®̂ ). By the P -convexity of Ã (s;x® ; ¢), we have for any s 2 Tx® ,

Ã (s;x® ;x® )= Ã (s;x® ; ® ¹y + (1 ¡ ® )¹x)

2 ®Ã (s; x® ; ¹y) + (1 ¡ ® )Ã (s;x® ; ¹x) ¡ P:

From (3) and assumptions (v) and (vi), we have for any s 2 Tx® ,

¡ (1 ¡ ®)Ã (s; x® ; ¹x)2 ® Ã (s; x® ; ¹y) ¡ Ã (s;x® ;x® ) ¡ P

½ ®(1 ¡ ®)Ã (s; ¹x; ¹y) ¡ P ¡ P

½ ¡ intC¹x ¡ C¹x ¡ C¹x

½ ¡ intC¹x:

Thus for any s 2 Tx® ;¡ Ã (s;x® ; ¹x) 2 ¡ intC¹x, which contradicts (1). This com-
pletes the proof.

Corollary 3.1. Let E; F; X; K; C; W; Gr(W ) and P be the same as in
Theorem 3.1. Let T : X ! 2L(E;F) be a multifunction. Assume that the following
conditions are satisfied :
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( i ) T is generalized C-pseudomonotone;

( ii ) T is generalized hemicontinuous; and

(iii) for each finite subsetN ofX; there exists a nonempty weakly compact convex
subset LN of X containing N such that for each x 2 LN nK; there exists
y 2LN satisfying ht; y ¡ xi 2 ¡ intCx for some t 2 Ty.

Then there exists ¹x 2 K such that

8y 2X; 9 s 2 T¹x : hs; y ¡ ¹xi =2 ¡ intC¹x:

Proof. Taking Ã (s;x;y) = hs; y¡ xi in Theorem 3.1, we get the result. Indeed,
it is straightforward to check the conditions (i)-(vii) of Theorem 3.1 except the
continuity of s : (E;weak) ! (F;weak). But this directly follows from the
definition of the weak topologies for E and F . (See Kelley and Namioka [5, 16.1
(iv) p.140]).

Remark 3.1. Corollary 3.1 is a noncompact version of Konnov and Yao [6,
Theorem 3.1] in the context of a Hausdorff t.v.s. instead of a Banach space.

Example 3.1. Let E = F = R; X = [0;1) and K = [0;1]. Let Tx =
[x2 + 1;1) and Cx = [0;1) for any x 2 X, and Ã (s; x;y) = s(y ¡ x) for any
s 2 R and x; y 2 X. For each finite subset N of X, we take LN : = coN, where
coN denotes the convex hull of N. Then all the assumptions of Theorem 3.1 are
satisfied. Moreover, 0 2 K is a solution of (IVVI).

It is necessary to adopt more definitions in Konnov and Yao [6]. A point ¹x 2 X
is said to be a strong solution of (IVVI) if there exists ¹t 2 T ¹x such that

Ã (¹t; ¹x;y) =2 ¡ intC¹x for all y 2 X:

For s 2 F¤ , we set
H(s) = fz 2 F j hs; zi ¸ 0g:

Then T : X ! 2L(E;F ) is said to be

( i ) H(s)-pseudomonotone w.r.t. Ã if for any x; y 2 X and for every t0 2 Tx,
t00 2 Ty we have

Ã (t0;x;y) 2H(s) implies ¡ Ã (t00; y; x) 2 H(s); and

(ii) H(s)-pseudomonotone if for any x; y 2 X and for every t0 2 Tx, t00 2 Ty,
we have
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ht0; y ¡ xi 2H(s) implies ht00; y ¡ xi 2 H(s):

By a scalization method we derive the existence of a strong solution of (IVVI) under
an appropriate condition.

Theorem 3.2. Let E; Ã ; C and P be the same as in Theorem 3.1, and X
be a nonempty weakly compact convex subset of E. Let F be a Hausdorff l.c.s.
and L(E; F) be equipped with either the topology of pointwise convergence or
the topology of bounded convergence; and F ¤ the topological dual space of F .
Let T : X ! 2L(E;F ) be a multifunction. Assume that C¤

+ n f0g 6= ;; where
C+ = co([x2XCx) and

C¤
+ = fw 2 F ¤ j hw;yi ¸ 0 for any y 2C+g:

Assume further that the following conditions are satisfied :
( i ) Let s2 C¤

+ n f0g and H(s) 6= F . T is H(s)-pseudomonotone w.r.t. Ã ;
( ii ) T is generalized hemicontinuous w.r.t. Ã and for any x 2 X; Tx is nonempty;

(iii) for each t 2 L(E; F) and x 2 X; Ã (t; x;¢) is P -convex and continuous
where both X and F are endowed with the weak topologies;

(iv) for each x; y 2 X; ¡ Ã (¢;x; y) is P-convex and continuous where F is
endowed with the weak topology;

( v) for any x 2 X and t 2 Tx; Ã (t; x; x) 2 P ; and
(vi) for any t 2 L(E;F ); x; y 2 X and ® 2 [0;1]; Ã (t;x + ®(y ¡ x); y) =

(1 ¡ ®)Ã (t;x;y).

Then :
( I ) There exists a solution ¹x 2X of (IVVI).

(II) If; for each x 2 X; Tx is convex and compact, there exists a strong
solution of (IVVI).

Proof. (I) For notational simplicity, we define a mapping Ã s : L(E;F )£ X £
X ! R by Ãs(t; x;y) = s(Ã (t; x;y)). Due to the H(s)-pseudomonotonicity of T
w.r.t. Ã , for every pair of x; y 2X and for all t0 2 Tx; t00 2 Ty, we have

Ãs(t
0;x;y) ¸ 0 implies ¡ Ãs(t

00; y; x) ¸ 0:

Since T is generalized hemicontinuous w.r.t. Ã , for any x;y 2X and ® 2 [0;1],

® 7! Ãs(T(x+ ®(y ¡ x));x;y)

is upper semicontinuous at 0+. Moreover, Ãs(t; x;¢) is convex and continuous by
virtue of (iii). In addtion, Ã s(t;x; x) ¸ 0 for any x 2 X and t 2 Tx by (v).
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Let X be equipped with the weak topology from E. Define two multifunctions
A;B : X ! 2X to be

Ax : = fy 2 X j 9t 2 Ty such that ¡ Ã s(t; y;x)< 0g;
Bx : = fy 2 X j 8v 2 Tx such that Ã s(v;x;y) < 0g:

Then we can easily check the follwings:

(a) for any x 2 X, Ax ½ Bx;

(b) for any x 2 X, Bx is convex;

(c) for each y 2 X; A¡ 1y is open in X; and

(d) B has no fixed point. So, by Theorem 2.1, there exists ¹x 2 K such that
A¹x = ;. Thus, for each y 2 X and t 2 Ty, ¡ Ã s(t; y; ¹x) ¸ 0: By a similar
argument to the second part of the proof of Theorem 3.1, we can show that

8y 2 X; 9 ¹t 2 T¹x such that Ãs(¹t; ¹x;y) ¸ 0:(4)

Note that intH(s) = s¡ 1(0;1). For a proof, see Lee and Kum [13, Theorem 4.1].
From this observation and the fact that ¡ intC ¹x ½ ¡ intH(s), we can conclude that

8y 2 X; 9 ¹t 2 T¹x such that Ã (¹t; ¹x; y) =2 ¡ intC¹x:

(II) Suppose that T ¹x is convex and compact. By (4), (iv) and Kneser’s minimax
theorem [7], we have

max
t2T ¹x

min
y2X

Ã s(t; ¹x; y) = min
y2X

max
t2T ¹x

Ãs(t; ¹x;y) ¸ 0:

Thus there exists ¹t 2 T¹x such that

Ãs(¹t; ¹x;y) ¸ 0 for all y 2 X:

Recalling intH(s) = s¡ 1(0;1) yields

Ã (¹t; ¹x; y) =2 ¡ intC¹x for all y 2X;

which implies that ¹x is a strong solution of (IVVI).

Corollary 3.2. Let E; F; X; C; C+; C
¤
+ and P be the same as in Theorem

3.2, and L(E; F) be equipped with the topology of pointwise convergence. Let
T : X ! 2L(E;F ) be a multifunction. Assume that the following conditions are
satisfied :

( i ) Let s 2 C¤
+ n f0g and H(s) 6= F . T is H(s)-pseudomonotone; and
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(ii) T is generalized hemicontinuous and for any x 2 X; Tx is nonempty.

Then :

( I ) There exists ¹x 2 X satisfying

8y 2X; 9 ¹t 2 T¹x such that h¹t; y ¡ ¹xi =2 ¡ intC¹x:

(II) If; for each x 2 X; Tx is convex and compact; there exists ¹x 2X and
¹t 2 T ¹x such that

h¹t; y ¡ ¹xi =2 ¡ intC¹x for all y 2 X:

Proof. Taking Ã (s;x;y) = hs; y ¡ xi in Theorem 3.2, we get the result.

Remark 3.2. Corollary 3.2 is a generalized version of Konnov and Yao [6,
Theorem 4.1] in the context of a Hausdorff locally convex space.

4. (IVVI)0 WITHOUT GENERALIZED PSEUDOMONOTONICITY

Now we are in a position to introduce the following existence theorem of (IVVI)0

for compact-valued and upper semicontinuous multifunctions without the general-
ized pseudomonotonicity condition. Using this result, we will deduce the final main
result of this paper, say, Theorem 4.2.

Theorem 4.1. Let E; F; X; K; C; W; Gr(W ) and P be the same as
in Theorem 3.1. Suppose that L(E;F ) is equipped with either the topology of
pointwise convergence or the topology of bounded convergence. Let Ã : L(E;F)£
X £ X ! F be a function; T : X ! 2L(E;F) a multifunction; and G : X ! 2X a
multifunction. Assume that the following conditions are satisfied :
( i ) T is compat-valued and upper semicontinuous where X is equipped with the

weak topology; and T (X) is contained in a compact subset of L(E;F );

( ii ) for each s 2 L(E; F); Ã (s; ¢;¢) is P -convex with respect to two variables;
that is; for any y1; y2; z1; z2 2 X and ® 2 [0; 1];

Ã (s;® z1 + (1 ¡ ® )z2; ®y1 +(1 ¡ ®)y2) 2 ®Ã (s;z1; y1)

+(1 ¡ ®)Ã (s; z2; y2) ¡ P ;

(iii) for each y 2 X; Ã (¢;¢; y) is continuous where both X and F are endowed
with the weak topologies;

(iv) G is convex-valued and lower semicontinuous on X with the weak topology;

( v) for each x 2 X; 9 s 2 Tx such that Ã (s;z; x) =2 ¡ intCx for all z 2 Gx;
and
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(vi) for each finite subsetN ofX; there exists a nonempty weakly compact convex
subset LN of X containing N such that for each x 2 LN nK; there exists
y 2LN such that for any s 2 Tx; Ã (s; z; y) 2 ¡ intCx for some z 2 Gx.

Then there exists ¹x 2 K such that ¹x is a solution of (IVVI)0.

Proof. Let X be equipped with the weak topology from E. Define a multifunc-
tion A : X ! 2X to be

Ax := fy 2 X j 8s 2 Tx;9z 2 Gx s.t. Ã (s;z;y) 2 ¡ intCxg:
The proof is appealing to a similar argument in that of Theorem 3.1.

(a) For each x 2 X, Ax is convex. This follows directly from the assumption
(ii) and the convexity of Gx.

(b) For each y 2 X, A¡ 1y is open in X. In fact, let fx¸g be a net in (A¡ 1y)c

weakly convergent to x 2X . Then y =2Ax¸ and hence there exists s¸ 2 Tx¸
such that for any z 2Gx¸ ,

Ã (s¸ ; z; y) =2 ¡ intCx¸ :

Since T(X) is contained in a compact subset of L(E;F), we may assume
that s¸ converges to s 2 L(E;F ). Since T is compact-valued and upper
semicontinuous, the graph of T is closed, and so s 2 Tx. Since G is lower
semicontinuous, for any w 2 Gx, there exists z¸ 2 Gx¸ weakly convergent
to w. Since (x¸ ; Ã (s¸ ; z¸ ; y)) 2 Gr(W ), by virtue of (iii) and the weak
closedness of Gr(W ), we have (x; Ã (s;w; y)) 2 Gr(W). Hence Ã (s; w; y) =2
¡ intCx for any w 2 Gx, that is, x 2 (A¡ 1y)c. Therefore (A¡ 1y)c is closed
in X, so A¡ 1y is open in X.

(c) By (vi), for each finite subsetN of X, there exists a nonempty weakly compact
convex subset LN of X containing N such that for each x 2 LN nK , there
exists y 2 LN such that for any s 2 Tx, Ã (s; z; y) 2 ¡ intCx for some
z 2 Gx. Thus LN \Ax 6= ;.

(d) A has no fixed point by (v). From (a) - (d), we see, by Theorem 2.1, that
there must be an ¹x 2 K such that A¹x = ;, namely, for each y 2 X, there
exists s 2 T ¹x such that

Ã (s; z;y) =2 ¡ intC ¹x for any z 2 G¹x:

This completes the proof.

Corollary 4.1. (cf. Lee et al. [10, Theorem 2.1]) Let E be a Hausdorff l.c.s.
and X a weakly compact convex subset of E. Let F; C; W; Gr(W ) and P be the
same as in Theorem 3.1. Suppose that L(E; F) is equipped with the topology of
bounded convergence. Let T : X ! 2L(E;F ) be a multifunction and G : X ! 2X

a multifunction. Assume that the following conditions are satisfied :
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( i ) T is compat-valued and upper semicontinuous where X is equipped with the
weak topology;

( ii ) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(iii) for each x 2X; 9s 2 Tx such that hs;x ¡ zi =2 ¡ intCx for all z 2 Gx.

Then there exists ¹x 2 X such that for each y 2 X; there exists s 2 T¹x satisfying

hs;y ¡ zi =2 ¡ intC¹x for any z 2 G¹x:

Proof. Put Ã (s;x; y) = hs;y ¡ xi and X = LN = K in Theorem 3.2. Recall
that X is strongly bounded because E is a Hausdorff l.c.s. The image T (X) is
obviously compact since T is compact-valued and upper semicontinuous. Appealing
to Lemma 2.4 in Lee and Kum [13], we can easily check that all the conditions in
Theorem 4.1 are satisfied. Therefore we get the conclusion.

Using the selection theorem of Yannelis and Prabhakar [17] and Theorem 4.1
we prove the following existence theorem of (IVVI)0 for multifunctions with con-
vex values and open lower sections without the generalized pseudomonotonicity
condition.

Theorem 4.2. Let E; F; X; C; W; Gr(W ) and P be the same as in Theorem
3.1 except that X is a nonempty weakly compact convex set. Let L(E; F) be
equipped with either the topology of pointwise convergence or the topology of
bounded convergence. Assume that the following conditions are satisfied :

( i ) T is a nonempty convex-valued multifunction such that for any s 2L(E;F);
T ¡ 1(s) is weakly open in X;

( ii ) for each s 2 L(E;F ); Ã (s; ¢;¢) is P -convex with respect to two variables;

(iii) for each y 2 X; Ã (¢;¢; y) is continuous where both X and F are endowed
with the weak topologies;

(iv) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(v) for each x 2X; s2 Tx; and z 2 Gx; Ã (s; z; x) =2 ¡ intCx.

Then there exists ¹x 2 X and s 2 T ¹x such that

Ã (s;z;y) =2 ¡ intC¹x for any y 2 X and z 2 G¹x :

Proof. Let X be equipped with the weak topology from E. Since T has open
lower sections, that is, for any t 2 L(E; F); T ¡ 1(t) : = fx 2 Xjt 2 Txg is open
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in X, and T has nonempty convex values, by the selection theorem of Yannelis
and Prabhakar [17], there exists a continuous function f : X !L(E; F) such that
fx 2 Tx for any x 2 X. By Theorem 3.2, there exists ¹x 2X such that

Ã (f¹x;z; y) =2 ¡ intC¹x for any y 2 X and z 2 G¹x:

Putting s = f ¹x 2 T ¹x, we obtain the conclusion of Theorem 4.2.

Corollary 4.2. (cf. Lee et al. [10, Corollary 2.3]) LetE; F; X; C; W; Gr(W )
and P be the same as in Corollary 4.1. Let T : X ! 2L(E;F) be a multifunction and
G : X ! 2X a multifunction. Assume that the following conditions are satisfied :

( i ) T is a nonempty convex-valued multifunction such that for any s2 L(E; F);
T¡ 1(s) is weakly open in X;

( ii ) G is convex-valued and lower semicontinuous on X with the weak topology;
and

(iii) for each x 2 X; s 2 Tx; and z 2 Gx; hs;x ¡ zi =2 ¡ intCx.

Then there exists ¹x 2 X and s2 T ¹x such that

hs; y ¡ zi =2 ¡ intC ¹x for any y 2 X and z 2 G¹x:

Proof. Taking Ã (s; x; y) = hs;y ¡ xi in Theorem 4.2, we obtain the result as
in Corollary 4.1.
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