ON THE EXISTENCE OF STRONG SOLUTIONS TO SOME SEMILINEAR ELLIPTIC PROBLEMS

Tsang-Hai Kuo* and Chiung-Chiou Tsai*

Abstract

We study the following semilinear elliptic problem: $$
\left\{\begin{array}{l} \sum_{i, j=1}^{N} a_{i j}(x, u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i}(x, u) \frac{\partial u}{\partial x_{i}}+c(x, u) u=f(x) \quad \text { in } B \\ u=0 \quad \text { on } \partial B \end{array}\right.
$$

where B is a ball in $\mathbb{R}^{N}, N \geq 3, a_{i j}=a_{i j}(x, r) \in C^{0,1}(\bar{B} \times \mathbb{R}), a_{i j}$, $\partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}, c \in L^{\infty}(B \times \mathbb{R})$, with $i, j=1,2, \cdots, N$ and $c \cdot 0$, and $f \in L^{p}(B)$. For each $p, p \geq N$, there exists a strong solution $u \in$ $W^{2, p}(B) \cap W_{0}^{1, p}(B)$ provided the oscillations of $a_{i j}$ with respect to r are sufficiently small. Moreover, for $N / 2<p<N$, if $\|f\|_{L^{p}}$ is small enough, then the existence result remains hold.

1. Introduction

Let be an open set in $\mathbb{R}^{N}, N \geq 3$. $W^{m, p}()=\left\{u \in L^{p}() \mid\right.$ weak derivatives $D^{\alpha} u \in L^{p}()$ for all $\left.|\alpha| \cdot m\right\}, W_{0}^{m, p}(\quad)$ is the closure of $C_{0}^{\infty}(\quad)$ in $W^{m, p}(\quad)$ and $W_{\mathrm{loc}}^{m, p}()$ is the space consisting of functions belonging to $W^{m, p}\left({ }^{\prime}\right)$ for all ${ }^{\prime} \subset$. $H^{m}(\quad)=W^{m, 2}(\quad), H_{0}^{m}(\quad)=W_{0}^{m, 2}(\quad) . B_{R}(y)$ is the open ball in \mathbb{R}^{N} of radius R centered at $y . B_{R}^{+}(y)=B_{R}(y) \cap \mathbb{R}_{+}^{N}=\left\{x=\left(x_{1}, \cdots, x_{N}\right) \in B_{R}(y) \mid x_{N}>0\right\}$.

We investigate the following semilinear elliptic problem in a $C^{1,1}$ domain \subset $\mathbb{R}^{N}, N \geq 3$:

[^0](1.1) $\left\{\begin{array}{l}L u=\sum_{i, j=1}^{N} a_{i j}(x, u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i}(x, u) \frac{\partial u}{\partial x_{i}}+c(x, u) u=f(x) \text { in , } \\ u=0 \quad \text { on } \partial,\end{array}\right.$
where $f \in L^{p}(\quad)$.
Define the mapping F in $W^{2, p}() \cap W_{0}^{1, p}(\quad)$ by letting $u=F(v)$ be the unique solution in $W^{2, p}() \cap W_{0}^{1, p}()$ to the linear elliptic problem:

$$
\left\{\begin{array}{l}
L_{v} u=\sum_{i, j=1}^{N} a_{i j}(x, v) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i}(x, v) \frac{\partial u}{\partial x_{i}}+c(x, v) u=f(x) \quad \text { in } \tag{1.2}\\
u=0 \quad \text { on } \partial
\end{array}\right.
$$

The unique solvability of problem (1.2) is guaranteed by the linear existence result [4, Theorem 9.15] under appropriate coefficients conditions. We notice here that F is well-defined for $p>N / 2$ and is continuous in the topology of $H^{1}(\quad)$ [3]. One then intends to find a fixed point of F. Observe that the well-known regularity theorem of Agmon-Douglis-Nirenberg [1] asserts that

$$
\begin{equation*}
\|u\|_{W^{2, p}()} \cdot C\left(\|u\|_{L^{p}()}+\left\|L_{v} u\right\|_{L^{p}()}\right), \tag{1.3}
\end{equation*}
$$

where C is a constant depending on the moduli of continuity of the coefficients $a_{i j}(x, v(x))$ on ${ }^{-}$, etc. If $a_{i j}(x, v)=a_{i j}(x)$, then the constant C in (1.3) is independent of v; furthermore, there exists a constant C independent of v such that

$$
\begin{equation*}
\|u\|_{W^{2, p}()} \cdot C\left\|L_{v} u\right\|_{L^{p}()} . \tag{1.4}
\end{equation*}
$$

Applying the Schauder fixed point theorem, one can readily obtain a solution to problem (1.1). However, for the case that $a_{i j}$ depends on both x and v, the constant C in (1.3) varies with v.

Our main idea is to make the constant in (1.3) be independent of v. When is a ball B in \mathbb{R}^{N}, a global $W^{2, p}$ estimate for $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ is established in Section 2 under stronger coefficients conditions on $a_{i j}$ with $a_{i j}=a_{i j}(x, r) \in$ $C^{0,1}(\bar{B} \times \mathbb{R})$ and sufficiently small oscillations with respect to r. In Section 3, the global $W^{2, p}$ estimate together with the maximum principle [2] for the solution of problem (1.2),

$$
\sup |u| \cdot C\|f\|_{L^{N}()}
$$

leads directly to the existence of solutions to problem (1.1) in B provided $p \geq N$. Moreover, for $p<N$, if $\|f\|_{L^{p}}$ is small enough, then the existence result can be also asserted. Besides, existence of solutions in some other specific domains is also considered in this paper.

2. $W^{2, p}$ Estimates

Recall that an operator L in (1.1) is said to be elliptic in if there exists $\lambda>0$ such that

$$
\begin{equation*}
\sum_{i, j=1}^{N} a_{i j}(x, r) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2} \quad \text { for }(r, \xi) \in \mathbb{R} \times \mathbb{R}^{N} \text { and a.e. } x \in \tag{2.1}
\end{equation*}
$$

For a fixed point $x \in \mathbb{R}^{N}$, we denote osc $a_{i j}(x, r)$ the oscillation of $a_{i j}$ with respect to r in \mathbb{R}, that is, osc $a_{i j}(x, r)=\sup \left\{a_{i j}\left(x, r_{1}\right)-a_{i j}\left(x, r_{2}\right) \mid r_{1}, r_{2} \in \mathbb{R}\right\}$, and let

$$
\operatorname{osc} a(x, r)=\max _{1 \cdot i, j \cdot{ }_{N}} \text { osc } a_{i j}(x, r)
$$

For $v \in W^{2, p}() \cap W_{0}^{1, p}(\quad)$, let $L_{v} u$ be given by (1.2). We start this section by observing an interior $W^{2, p}$ estimate in an open set $\subset \mathbb{R}^{N}$ for $u \in W_{\text {loc }}^{2, p}() \cap$ $L^{p}()$, with $L_{v} u \in L^{p}(\quad)$, which will then be applied to derive a global $W^{2, p}$ estimate for $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$, with $L_{v} u \in L^{p}(B)$, in a ball $B \subset \mathbb{R}^{N}$ in Proposition 2.2.

Notice that the interior $W^{2, p}$ estimate for the linear case formulated in Theorem 9.11 [4, p. 235] is derived by a uniform perturbation of the coefficients $a_{i j}(x)$ in the neighborhoods of finite points in . In the present case that $a_{i j}=a_{i j}(x, u)$, an interior $W^{2, p}$ estimate can be established along the same line provided the oscillations of $a_{i j}$ with respect to r are sufficiently small. Therefore, we have the following lemma in which K is a constant depending only on N, p, and satisfying

$$
\begin{equation*}
\left\|D^{2} w\right\|_{L^{p}()} \cdot K\|\Delta w\|_{L^{p}()} \tag{2.2}
\end{equation*}
$$

where $w \in W_{0}^{2, p}()[4]$.
Lemma 2.1. Let be an open set in \mathbb{R}^{N} and the coefficients of L satisfy, for a positive constant Λ,

$$
\begin{equation*}
a_{i j} \in C^{0,1}(\times \mathbb{R}), b_{i}, c \in L^{\infty}(\times \mathbb{R}),\left|a_{i j}\right|,\left|b_{i}\right|,|c| \cdot \Lambda, \tag{2.3}
\end{equation*}
$$

where $i, j=1, \cdots, N$. Suppose that

$$
\begin{equation*}
\text { osc } a(x, r) \cdot \frac{\lambda}{4 K} \quad \forall x \in \tag{2.4}
\end{equation*}
$$

where K is given by (2.2). Then if $u \in W_{\mathrm{loc}}^{2, p}() \cap L^{p}(\quad)$ and $L_{v} u \in L^{p}()$, with $1<p<\infty$, we have for any domain ${ }^{\prime} \subset$ the estimate

$$
\begin{equation*}
\|u\|_{W^{2, p}(\prime)} \cdot C\left(\|u\|_{L^{p}()}+\left\|L_{v} u\right\|_{L^{p}()}\right), \tag{2.5}
\end{equation*}
$$

where C is a constant (independent of v) depending on $N, p, \lambda, \Lambda, \quad$, with respect to x on '.

To simplify the boundary estimate, we refrain to be a ball in \mathbb{R}^{N}. Thus, we can further derive a local boundary estimate which together with Lemma 2.1 enables us to establish the following global estimate.

Proposition 2.2. Let B be a ball in \mathbb{R}^{N} and the operator L satisfy (2.3) with $a_{i j}(x, r) \in C^{0,1}(\bar{B} \times \mathbb{R})$. Suppose that

$$
\begin{gather*}
\text { osc } a(x, r) \cdot \frac{\lambda}{4 K} \quad \forall x \in B, \tag{2.6}\\
\text { osc } a(x, r)<\frac{\lambda}{8 N^{2} K} \quad \forall x \in \partial B, \tag{2.7}
\end{gather*}
$$

where K is given by (2.2). Then if $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ and $L_{v} u \in L^{p}(B)$, with $1<p<\infty$, we have the estimate

$$
\begin{equation*}
\|u\|_{W^{2, p}(B)} \cdot C\left(\|u\|_{L^{p}(B)}+\left\|L_{v} u\right\|_{L^{p}(B)}\right), \tag{2.8}
\end{equation*}
$$

where C is a constant (independent of v) depending on $N, p, \lambda, \Lambda, \partial B, B$ and the moduli of continuity of the coefficients $a_{i j}(x, r)$ with respect to x on \bar{B}.

Proof. For simplicity, let B be the unit ball $B_{1}(0)$ with its boundary \mathcal{S} :

$$
\mathcal{S}=\partial B=\left\{x=\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{N} \mid \sum_{i=1}^{N} x_{i}^{2}=1\right\}
$$

Now we claim that $\mathcal{S} \in C^{1,1}$. For any $x^{0}=\left(x_{1}^{0}, \cdots, x_{N}^{0}\right) \in \mathcal{S}$, there exists an integer $k, 1 \cdot k \cdot N$, such that $x_{0} \in \mathcal{S}_{k}^{+}$or $x_{0} \in \mathcal{S}_{k}^{-}$, where

$$
\begin{aligned}
& \mathcal{S}_{k}^{+}=\left\{x \in \mathcal{S} \left\lvert\, \sum_{i \neq k} x_{i}^{2} . \frac{N-1}{N}\right., x_{k}>0\right\}, \\
& \mathcal{S}_{k}^{-}=\left\{x \in \mathcal{S} \left\lvert\, \sum_{i \neq k} x_{i}^{2} . \frac{N-1}{N}\right., x_{k}<0\right\} ;
\end{aligned}
$$

for otherwise we would have $\sum_{i=1}^{N} x_{i}^{2}>1$, a contradiction. Without loss of generality, we can assume $x_{0} \in \mathcal{S}_{N}^{+}$. Write

$$
\begin{aligned}
x_{0}= & \left(\cos \theta_{1} \sin \theta_{2} \cdots \sin \theta_{N-1}, \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{N-1},\right. \\
& \cos \theta_{2} \sin \theta_{3} \cdots \sin \theta_{N-1}, \cos \theta_{3} \sin \theta_{4} \cdots \sin \theta_{N-1}, \\
& \left.\cos \theta_{4} \sin \theta_{5} \cdots \sin \theta_{N-1}, \cdots, \cos \theta_{N-2} \sin \theta_{N-1}, \cos \theta_{N-1}\right)
\end{aligned}
$$

for some $\theta_{i}, 0 \cdot \theta_{N-1} \cdot \tan ^{-1} \sqrt{N-1}, 0 \cdot \theta_{i}<2 \pi, i=1, \cdots, N-2$, where θ_{N-1} is the angle from the positive x_{N}-axis to x_{0}. Rotate the coordinate axes, the rotated axes being denoted as the $x_{1}^{\prime}, \cdots, x_{N}^{\prime}$-axis, by the mapping $\mathbb{R}_{x_{0}}$ defined by $x^{\prime}=x \mathbf{O}_{N}$, where

$$
\begin{aligned}
& \mathbf{O}_{3}=\left[\begin{array}{ccc}
\cos \theta_{1} \cos \theta_{2} & -\sin \theta_{1} & \cos \theta_{1} \sin \theta_{2} \\
\sin \theta_{1} \cos \theta_{2} & \cos \theta_{1} & \sin \theta_{1} \sin \theta_{2} \\
-\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right], \\
& \mathbf{O}_{k}=\left[\begin{array}{cc}
\mathbf{O}_{k-1} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{I}_{k-2} & 0 & 0 \\
0 \cdots 0 & \cos \theta_{k-1} & \sin \theta_{k-1} \\
0 \cdots 0 & -\sin \theta_{k-1} & \cos \theta_{k-1}
\end{array}\right], \quad k=4, \cdots, N,
\end{aligned}
$$

here \mathbf{I}_{k-2} being the $(k-2) \times(k-2)$ identity matrix, such that x_{0} is converted into the point $(0, \cdots, 0,1)$. Define a mapping $\boldsymbol{\psi}=\boldsymbol{\psi}_{x_{0}}=\boldsymbol{\psi}_{(0, \cdots, 0,1)} \circ \mathbb{R}_{x_{0}}$ in a neighborhood $\mathcal{N}=\mathcal{N}_{x_{0}}=\mathbb{R}_{x_{0}}^{-1}\left(\mathcal{N}_{(0, \cdots, 0,1)}\right) \subset \mathbb{R}^{N}$, where

$$
\boldsymbol{\psi}_{(0, \cdots, 0,1)}=\frac{1}{r_{0}}\left(x_{1}^{\prime}, \cdots, x_{N-1}^{\prime}, \sqrt{1-\sum_{i \neq N} x_{i}^{\prime 2}}-x_{N}^{\prime}\right), \quad 0<r_{0} \cdot \sqrt{\frac{N-1}{N}}
$$

and

$$
\left.\begin{array}{rl}
\mathcal{N}_{(0, \cdots, 0,1)}=\left\{x^{\prime} \in \mathbb{R}^{N} \mid \sum_{i \neq N} x_{i}^{\prime 2}\right. & <r_{0}^{2}, \sqrt{1-\sum_{i \neq N}{x^{\prime}}_{i}^{2}}-\sqrt{r_{0}^{2}-\sum_{i \neq N}{x^{\prime}}_{i}^{2}} \\
& <x_{N}
\end{array}<\sqrt{1-\sum_{i \neq N}{x^{\prime}}_{i}^{2}}+\sqrt{r_{0}^{2}-\sum_{i \neq N}{x^{\prime}}^{2}}\right\} .
$$

Then ψ is a diffeomorphism from \mathcal{N} onto the unit ball $B_{1}(0)$ in \mathbb{R}^{N} such that $\boldsymbol{\psi}(\mathcal{N} \cap B) \subset \mathbb{R}_{+}^{N}, \boldsymbol{\psi}(\mathcal{N} \cap \partial B) \subset \partial \mathbb{R}_{+}^{N}, \boldsymbol{\psi} \in C^{1,1}(\mathcal{N}), \boldsymbol{\psi}^{-1} \in C^{1,1}\left(B_{1}(0)\right)$. Under the mapping $y=\boldsymbol{\psi}(x)=\left(\psi_{1}(x), \cdots, \psi_{N}(x)\right)$, let $\widetilde{u}(y)=u(x), \tilde{v}(y)=v(x)$ and $\tilde{L}_{\tilde{v}} \tilde{u}(y)=L_{v} u(x)$, where

$$
\tilde{L}_{\tilde{v}} \tilde{u}=\sum_{i, j=1}^{N} \tilde{a}_{i j}(y, \tilde{v}(y)) \frac{\partial^{2} \tilde{u}}{\partial y_{i} \partial y_{j}}+\sum_{i=1}^{N} \tilde{b}_{i}(y, \tilde{v}(y)) \frac{\partial \tilde{u}}{\partial y_{i}}+\tilde{c}(y, \tilde{v}(y)) \tilde{u}(y) \text { in } B_{1}^{+}(0)
$$

and

$$
\begin{aligned}
& \tilde{a}_{i j}(y, \tilde{v}(y))=\sum_{r, s} \frac{\partial \psi_{i}}{\partial x_{r}} \frac{\partial \psi_{j}}{\partial x_{s}} a_{r s}(x, v(x)) \\
& \tilde{b}_{i}(y, \tilde{v}(y))=\sum_{r, s} \frac{\partial^{2} \psi_{i}}{\partial x_{r} \partial x_{s}} a_{r s}(x, v(x))+\sum_{r} \frac{\partial \psi_{i}}{\partial x_{r}} b_{r}(x, v(x)), \\
& \tilde{c}(y, \tilde{v}(y))=c(x, v(x))
\end{aligned}
$$

so that \tilde{L} satisfies conditions similar to (2.1) and (2.3) with constants $\tilde{\lambda}, \tilde{\Lambda}$ depending on λ, Λ and $\boldsymbol{\psi}$. Furthermore, $\tilde{u} \in W^{2, p}\left(B_{1}^{+}(0)\right), \tilde{u}=0$ on $B_{1}(0) \cap \partial \mathbb{R}_{+}^{N}$ in the sense of $W^{1, p}\left(B_{1}^{+}(0)\right)$.

Notice that $D \boldsymbol{\psi}=D \boldsymbol{\psi}_{(0, \cdots, 0,1)} D \mathbb{R}_{x_{0}}$ and $\tilde{a}=(D \boldsymbol{\psi}) a(D \boldsymbol{\psi})^{T}$, where

$$
\begin{aligned}
D \boldsymbol{\psi} & \left.=\frac{\square_{\psi_{i}}}{\partial x_{j}}\right], D \boldsymbol{\psi}_{(0, \cdots, 0,1)}=\left[\frac{\partial \psi_{i}}{\partial x_{j}^{\prime}}\right], \\
D \mathbb{R}_{x_{0}} & \left.=\frac{\partial x_{i}^{\prime}}{\partial x_{j}}\right], \tilde{a}=\left[\tilde{a}_{i j}\right], i, j=1, \cdots, N .
\end{aligned}
$$

We can obtain from a further computation of \tilde{a} that

$$
\begin{equation*}
\operatorname{osc} \tilde{a}(0, r)<\frac{N^{2}}{r_{0}^{2}} \cdot \operatorname{osc} a\left(x_{0}, r\right) \tag{2.9}
\end{equation*}
$$

Now we will choose $\tilde{\lambda}>0$ properly. For all $\xi=\left(\xi_{1}, \cdots, \xi_{N}\right) \in \mathbb{R}^{N}$,

$$
\begin{aligned}
\sum_{i, j=1}^{N} \tilde{a}_{i j} \xi_{i} \xi_{j} & =\xi \tilde{a} \xi^{T}=(\xi(D \boldsymbol{\psi})) a(\xi(D \boldsymbol{\psi}))^{T} \geq \lambda|\xi(D \boldsymbol{\psi})|^{2} \\
& =\frac{\lambda}{r_{0}^{2}}\left(\sum_{i \neq N} \xi_{i}^{2}+\left(1+\sum_{i \neq N} X_{i}^{2}\right) \xi_{N}^{2}-2 \sum_{i \neq N} \xi_{i} \xi_{N} X_{i}\right) \\
& \geq \frac{\lambda}{r_{0}^{2}}\left((1-\epsilon) \sum_{i \neq N} \xi_{i}^{2}+\left(1+\left(1-\frac{1}{\epsilon}\right) \sum_{i \neq N} X_{i}^{2}\right) \xi_{N}^{2}\right)
\end{aligned}
$$

for any $\epsilon>0$, where $X_{i}=x_{i}^{\prime} / \sqrt{1-\sum_{i \neq N} x^{\prime 2}}, i=1, \cdots, N-1$. Choose $0<\epsilon<1$ such that $1+(1-(1 / \epsilon)) \sum_{i \neq N} X_{i}^{2}>1-\epsilon$, i.e., $\sum_{i \neq N} X_{i}^{2}<\epsilon^{2} /(1-\epsilon)$ and so $\tilde{\lambda}=\lambda(1-\epsilon) / r_{0}^{2}$. Since $\sum_{i \neq N} X_{i}^{2}<r_{0}^{2} /\left(1-r_{0}^{2}\right)$ in $\mathcal{N}_{(0, \cdots, 0,1)}$, we can take $\epsilon^{2} /(1-\epsilon)=r_{0}^{2} /\left(1-r_{0}^{2}\right)$ to obtain

$$
\begin{equation*}
\tilde{\lambda}=\lambda \cdot \frac{2-r_{0}^{2}-\sqrt{4 r_{0}^{2}-3 r_{0}^{4}}}{2 r_{0}^{2}\left(1-r_{0}^{2}\right)} \tag{2.10}
\end{equation*}
$$

In view of the proof of Theorem 9.13 [4, p. 239], the oscillations of $\tilde{a}_{i j}(0, r)$ with respect to $r \in \mathbb{R}$, corresponding to condition (2.4), must be less than $\tilde{\lambda} / 8 K$, that is,

$$
\begin{equation*}
\operatorname{osc} \tilde{a}(0, r) \cdot \frac{\tilde{\lambda}}{8 K} \tag{2.11}
\end{equation*}
$$

In view of (2.9) and (2.10), inequality (2.11) holds provided

$$
\begin{equation*}
\operatorname{osc} a\left(x_{0}, r\right) \cdot \frac{\lambda}{16 N^{2} K} \cdot \frac{2-r_{0}^{2}-\sqrt{4 r_{0}^{2}-3 r_{0}^{4}}}{1-r_{0}^{2}} \tag{2.12}
\end{equation*}
$$

Since the right-hand side of (2.12) increases to $\lambda / 8 N^{2} K$ as $r_{0} \rightarrow 0$, there exists r_{0} small enough such that, under hypothesis (2.7), inequality (2.12) holds. Thus, using the same deduction as in the proof of Lemma 2.1, we obtain, on returning to our original coordinates, a local boundary estimate in a neighborhood, say $\tilde{\mathcal{N}}$. For an arbitrary ball B in \mathbb{R}^{N}, by means of a linear transformation from B onto the unit ball and following the arguments as stated above we can also arrive at such an estimate. Finally, by covering ∂B with a finite number of such neighborhoods $\tilde{\mathcal{N}}$ and using also the interior estimate (2.5), the desired estimate (2.8) follows immediately.

Corollary 2.3. Under the hypotheses of Proposition 2.2 with B replaced by the ellipsoid

$$
\mathcal{E}=\left\{x=\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{N} \left\lvert\, \sum_{i=1}^{N}\left(\frac{x_{i}-c_{i}}{r_{i}}\right)^{2}<1\right.\right\}
$$

and with (2.7) replaced by

$$
\begin{equation*}
\text { osc } a(x, r)<\frac{\min r_{i}}{\max r_{i}} \cdot \frac{\lambda}{8 N^{2} K} \quad \forall x \in \partial \mathcal{E} \tag{2.13}
\end{equation*}
$$

the same conclusion (2.8) remains valid.
Proof. Let $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be given by

$$
T(x)=\left(\frac{x_{1}-c_{1}}{r_{1}}, \cdots, \frac{x_{N}-c_{N}}{r_{N}}\right) .
$$

Then T is a diffeomorphism from \mathcal{E} onto the unit ball $B_{1}(0)$ in \mathbb{R}^{N}. For any $x^{0}=\left(x_{1}^{0}, \cdots, x_{N}^{0}\right) \in \partial \mathcal{E}$, there exists an integer $k, 1 \cdot k \cdot N$, such that $x_{0} \in \Gamma_{k}^{+}$ or $x_{0} \in \Gamma_{k}^{-}$, where $\Gamma_{k}^{+}=T^{-1}\left(\mathcal{S}_{k}^{+}\right), \Gamma_{k}^{-}=T^{-1}\left(\mathcal{S}_{k}^{-}\right)$. Thus, there is a neighborhood $\mathcal{U}=\mathcal{U}_{x_{0}}=T^{-1}\left(\mathcal{N}_{T\left(x_{0}\right)}\right)$ and a diffeomorphism $\boldsymbol{\phi}=\boldsymbol{\phi}_{x_{0}}=\boldsymbol{\psi}_{T\left(x_{0}\right)} \circ T$ from \mathcal{U} onto the unit ball $B_{1}(0)$ in \mathbb{R}^{N} such that $\phi(\mathcal{U} \cap \mathcal{E}) \subset \mathbb{R}_{+}^{N}, \phi(\mathcal{U} \cap \partial \mathcal{E}) \subset \partial \mathbb{R}_{+}^{N}$, $\phi \in C^{1,1}(\mathcal{U}), \phi^{-1} \in C^{1,1}\left(B_{1}(0)\right)$. The desired estimate (2.8) can be similarly derived by following the proof in Proposition 2.2.

Remark 2.4. Proposition 2.2 remains valid with B replaced by an ovaloid in \mathbb{R}^{N}. (An ovaloid in \mathbb{R}^{N} is a rectangle in \mathbb{R}^{N} with rounded corners.)

3. Existence of Strong Solutions

The results of the preceding section will now be applied to establish the existence of solutions of the following semilinear elliptic problem:

$$
\left\{\begin{array}{l}
L u=\sum_{i, j=1}^{N} a_{i j}(x, u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i}(x, u) \frac{\partial u}{\partial x_{i}}+c(x, u) u=f(x) \text { in } B, \tag{3.1}\\
u=0 \quad \text { on } \partial B,
\end{array}\right.
$$

where $f \in L^{p}(B)$.
For the moment, we suppose $a_{i j} \in C^{0,1}(\bar{B} \times \mathbb{R}), a_{i j}, \partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}$, c are bounded Carathédory functions, with $c \cdot 0$, and $f \in L^{p}(B)$, with $p>N / 2$. Consider the mapping F which assigns to $v \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ the solution $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ to the equation

$$
\begin{equation*}
L_{v} u=\sum_{i, j=1}^{N} a_{i j}(x, v) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i}(x, v) \frac{\partial u}{\partial x_{i}}+c(x, v) u=f(x) \quad \text { in } B . \tag{3.2}
\end{equation*}
$$

(F is well-defined provided $p>N / 2$.)
Since $W^{2, p}(B) \cap W_{0}^{1, p}(B)$ is continuously imbedded in $H^{1}(B)$, by the ellipticity of L, the mapping $F: W^{2, p}(B) \cap W_{0}^{1, p}(B) \longrightarrow W^{2, p}(B) \cap W_{0}^{1, p}(B)$ is continuous in the topology of $H^{1}(B)$ [3]. Together with estimate (2.8) and the maximum principle for equation (3.2):

$$
\begin{equation*}
\sup _{B}|u| \cdot M\|f\|_{L^{N}(B)}, \tag{3.3}
\end{equation*}
$$

where M is a constant depending on N, diam B, λ and Λ [2], (the maximum principle is only valid for $p \geq N$), we have the following existence result.

Theorem 3.1. Let B be a ball in \mathbb{R}^{N} and suppose $a_{i j} \in C^{0,1}(\bar{B} \times \mathbb{R})$, $a_{i j}$, $\partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}, c \in L^{\infty}(B \times \mathbb{R})$, with $i, j=1, \cdots, N$ and c. 0 . Then, for $p \geq N$, there exists a solution $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ to problem (3.1) under hypotheses (2.6) and (2.7).

Proof. Consider the solution $u=F(v)$ for $v \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$. Since $f \in L^{p}(B)$ with $p \geq N$, it follows from (2.8) and (3.3) that there exists a constant $k>0$ such that

$$
\|u\|_{W^{2, p}} \cdot k \quad \text { for all } u=F(v), v \in W^{2, p}(B) \cap W_{0}^{1, p}(B) .
$$

Let

$$
\mathcal{K}=\left\{v \in W^{2, p}(B) \cap W_{0}^{1, p}(B) \mid\|v\|_{W^{2, p}} \cdot k\right\} .
$$

Then F is a continuous mapping from \mathcal{K} into \mathcal{K} in the topology of $H^{1}(B)$. Moreover, since $W^{2, p}(B)$ is a reflexive space and $W^{1, p}(B)$ is continuously imbedded in $H^{1}(B), \mathcal{K}$ is weakly compact in $H^{1}(B)$ and hence it is closed in $H^{1}(B)$. Also, since $W^{2, p}(B) \hookrightarrow W^{1, p}(B)$ is a compact imbedding, \mathcal{K} is a compact set in $H^{1}(B)$. We conclude from the Schauder fixed point theorem that there exists a solution to problem (3.1) in \mathcal{K}.

In the sequel, we shall show that if $\|f\|_{L^{p}}$ is sufficiently small, then the existence result of problem (3.1) still holds.

Lemma 3.2. Let $a_{i j} \in C^{0,1}(\bar{B} \times \mathbb{R}), a_{i j}, \partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}, c \in L^{\infty}(B \times$ \mathbb{R}), with $i, j=1, \cdots, N$ and $c \cdot 0$. Then, under hypotheses (2.6) and (2.7), there exists a constant C independent of u and v such that, for all $v \in \mathcal{K}=\{v \in$ $\left.W^{2, p}(B) \cap W_{0}^{1, p}(B) \mid\|v\|_{W^{2, p}} \cdot k\right\}$,

$$
\begin{equation*}
\|u\|_{W^{2, p}} \cdot C\left\|L_{v} u\right\|_{L^{p}} \tag{3.4}
\end{equation*}
$$

for all $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$.
Proof. We argue by contradiction. If (3.4) is not true, then for all $m>0$ there exist sequences $\left(w_{m}\right) \subset W^{2, p}(B) \cap W_{0}^{1, p}(B)$ and $\left(v_{m}\right) \subset \mathcal{K}$ satisfying

$$
\left\|w_{m}\right\|_{W^{2, p}} \geq m\left\|L_{v_{m}} w_{m}\right\|_{L^{p}}
$$

We will claim that there exists a sequence $\left(u_{m}\right) \subset W^{2, p}(B) \cap W_{0}^{1, p}(B)$ satisfying

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{p}}=1 ;\left\|L_{v_{m}} u_{m}\right\|_{L^{p}} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

Let $z_{m}=w_{m} /\left\|w_{m}\right\|_{W^{2, p}}$. Then $\left\|z_{m}\right\|_{W^{2, p}}=1$ and

$$
\left\|L_{v_{m}} z_{m}\right\|_{L^{p}}=\frac{\left\|L_{v_{m}} w_{m}\right\|_{L^{p}}}{\left\|w_{m}\right\|_{W^{2, p}}} \cdot \frac{1}{m}\left\|w_{m}\right\|_{W^{2, p}} \frac{1}{\left\|w_{m}\right\|_{W^{2, p}}}=\frac{1}{m} .
$$

Thus

$$
\left\|L_{v_{m}} z_{m}\right\|_{L^{p}} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

From Proposition 2.2, there exists $M>0$ independent of $\left(v_{m}\right)$ such that

$$
\left\|z_{m}\right\|_{W^{2, p}} \cdot M\left(\left\|z_{m}\right\|_{L^{p}}+\left\|L_{v_{m}} z_{m}\right\|_{L^{p}}\right)
$$

Hence, for any $\epsilon>0$, we have

$$
\left\|z_{m}\right\|_{W^{2, p}} \cdot \quad M \epsilon+M\left\|z_{m}\right\|_{L^{p}} \quad \text { as } m \rightarrow \infty
$$

It follows that

$$
\left\|z_{m}\right\|_{L^{p}} \geq \frac{1}{M}\left\|z_{m}\right\|_{W^{2, p}}-\epsilon=\frac{1}{M}-\epsilon \quad \text { as } m \rightarrow \infty
$$

Since ϵ is arbitrary, we have

$$
\left\|z_{m}\right\|_{L^{p}} \geq \frac{1}{M} \quad \text { as } m \rightarrow \infty
$$

Let $u_{m}=z_{m} /\left\|z_{m}\right\|_{L^{p}}$. Then

$$
\left\|u_{m}\right\|_{L^{p}}=1 ;\left\|L_{v_{m}} u_{m}\right\|_{L^{p}} \rightarrow 0
$$

Thus we get a sequence $\left(u_{m}\right) \subset W^{2, p}(B) \cap W_{0}^{1, p}(B)$ satisfying (3.5) and

$$
\begin{equation*}
\left\|u_{m}\right\|_{W^{2, p}} \cdot M\left(\left\|u_{m}\right\|_{L^{p}}+\left\|L_{v_{m}} u_{m}\right\|_{L^{p}}\right) . \tag{3.6}
\end{equation*}
$$

Combining (3.5) with (3.6), we know that $\left(u_{m}\right)$ is bounded in $W^{2, p}(B)$ and thus there exists a subsequence, denoted again by $\left(u_{m}\right)$, converging weakly to a function $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$. Moreover, since $W^{2, p}(B) \hookrightarrow W^{1, p}(B)$ is a compact imbedding, $\left(u_{m}\right)$ converges to u in $L^{p}(B)$ satisfying $\|u\|_{L^{p}}=1$. Similarly, since $\left(v_{m}\right)$ is bounded in $W^{2, p}(B)$, we can extract a subsequence, denoted also by $\left(v_{m}\right)$, such that $v_{m} \rightarrow v$ a.e. and $v_{m} \rightarrow v$ in $W^{1, p}(B)$ for some $v \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$. Also, since $a_{i j}, \partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}$ and c are bounded Carathédory functions, by Lebesgue's dominated convergence theorem, we have

$$
\begin{aligned}
& \int_{B} a_{i j}\left(v_{m}\right) \frac{\partial u_{m}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{i}}+\int_{B}\left(\frac{\partial a_{j i}}{\partial x_{j}}\left(v_{m}\right)+\frac{\partial a_{j i}}{\partial r}\left(v_{m}\right) \frac{\partial v_{m}}{\partial x_{j}}-b_{i}\left(v_{m}\right)\right) \frac{\partial u_{m}}{\partial x_{i}} \phi \\
& +\int_{B}\left(-c\left(v_{m}\right)\right) u_{m} \phi \rightarrow \int_{B} a_{i j}(v) \frac{\partial u}{\partial x_{j}} \frac{\partial \phi}{\partial x_{i}}+\int_{B}\left(\frac{\partial a_{j i}}{\partial x_{j}}(v)+\frac{\partial a_{j i}}{\partial r}(v) \frac{\partial v}{\partial x_{j}}\right. \\
& \left.-b_{i}(v)\right) \frac{\partial u}{\partial x_{i}} \phi+\int_{B}(-c(v)) u \phi
\end{aligned}
$$

for all $\phi \in C_{0}^{\infty}(B)$. Hence $L_{v} u=0$ and $u=0$ by the uniqueness assertion, which contradicts the condition $\|u\|_{L^{p}}=1$.

Theorem 3.3. Let B be a ball in \mathbb{R}^{N} and suppose $a_{i j} \in C^{0,1}(\bar{B} \times \mathbb{R}), a_{i j}$, $\partial a_{i j} / \partial x_{i}, \partial a_{i j} / \partial r, b_{i}, c \in L^{\infty}(B \times \mathbb{R})$, with $i, j=1, \cdots, N$ and $c \cdot 0$. Then, for $p>N / 2$, there exists a positive constant C_{0} such that if

$$
\|f\|_{L^{p}(B)} \cdot C_{0}
$$

there exists a solution $u \in W^{2, p}(B) \cap W_{0}^{1, p}(B)$ to problem (3.1) under hypotheses (2.6) and (2.7).

Proof. Consider the set

$$
\mathcal{K}=\left\{v \in W^{2, p}(\quad) \cap W_{0}^{1, p}(\quad)\|v\|_{W^{2, p}} \cdot k\right\} .
$$

It follows from Lemma 3.2 that there exists a constant $C>0$ independent of $v \in \mathcal{K}$ such that

$$
\|u\|_{W^{2, p}} \cdot C\|f\|_{L^{p}} \quad \text { for all } u=F(v), v \in \mathcal{K} .
$$

Choose a constant $C_{0}>0$ such that $C C_{0} \cdot k$. Hence if $\|f\|_{L^{p}} \cdot C_{0}$, we have $\|u\|_{W^{2, p}} \cdot k$. It follows readily from the Schauder fixed point theorem that there exists a solution of problem (3.1) in \mathcal{K}.

Remark 3.4. For $p \geq N$, since $W^{2, p}()$ is imbedded in $C^{1}\left(^{-}\right)$for a bounded $C^{1,1}$ domain , the constant C in estimate (1.3) can be chosen to be independent of v with v restricted to some bounded set in $W^{2, p}()$. Then, together with the maximum principle, Theorem 3.3 remains valid with B replaced by provided $p \geq N$ without any restrictions on the oscillations of $a_{i j}$ with respect to r.

Remark 3.5. Theorems 3.1 and 3.2 remain valid with B replaced by the ellipsoid \mathcal{E} in Corollary 2.3 and with (2.7) replaced by (2.13).

Remark 3.6. Theorems 3.1 and 3.2 remain valid with B replaced by an ovaloid in \mathbb{R}^{N}.

Remark 3.7. For any bounded domain with a sufficiently smooth boundary, although the diffeormorphism $\boldsymbol{\psi}$ in Proposition 2.2 is not explicitly observed, it seems that the existence of strong solutions $u \in W^{2, p}() \cap W_{0}^{1, p}()$ to problem (3.1) in remains valid provided the oscillations of $a_{i j}$ with respect to r are sufficiently small.

References

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727.
2. C. Pucci, Limitarzioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. 74 (1966), 15-30.
3. T.-H. Kuo, On some semilinear elliptic eigenvalue problems, Chinese J. Math. 22 (1994), 1-9.
4. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Sec. Ed. Springer-Verlag, New York, 1983.

Tsang-Hai Kuo
Department of Applied Mathematics
National Chiao Tung University, Hsinchu 300, Taiwan
E-mail: thkuo@ math.nctu.edu.tw

Chiung-Chiou Tsai
Department of Civil Engineering
Nanya Institute of Technology, Chung-Li 320, Taiwan
E-mail: cctsai@nanya.edu.tw

[^0]: Received March 1, 2000.
 Communicated by S.-B. Hsu.
 2000 Mathematics Subject Classification: 35D05, 35J20.
 Key words and phrases: Semilinear elliptic problem, strong solution, $W^{2, p}$ estimate.
 *This work was supported in part by the National Science Council of Taiwan under grant NSC 84-0208-M-009-010.

